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Effect of superconducting tuctuatioris on spin susceptibility and NMR relaxation rate
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We study the effect of superconducting fluctuations on the spin susceptibility g, and NMR relaxation rate

1/T& just above T, for arbitrary impurity concentrations. Fluctuations are found to reduce g, below the Pauli
susceptibility. 1/T&T is enhanced above the Korringa value for weak pair breaking, but suppressed when the

pair breaking is large.

I¹RODUCTION

In this paper we study the effects of superconducting (SC)
fluctuations on the spin susceptibility g, and the NMR relax-
ation rate 1/T, using standard diagrammatic techniques. '

While the effect of fluctuations on g, has not been examined
before, there have been previous studies of 1/T, , focusing
mainly on the most singular contribution, the anomalous
Maki-Thompson (MT) term, in the dirty limit Tr&~1. We
were led to reexamine the problem in the context of the high-

T, superconductors for several reasons. First, these systems
are in an intermediate regime with Tr-1, (where r is the
momentum relaxation time). Second, with the unusually

strong pair breaking suspected in high-T, materials, one
might expect the main MT contribution to be suppressed and

1ITq to be dominated by less singular contributions. (See
Refs. 6 and 7 for a similar situation for the c-axis conduc-
tivity. ) Finally, it has recently been suggested that dynamic
pairing correlations beyond the perturbative weak coupling
regime are responsible for the spin gap anomalies observed
well above T, in the underdoped cuprates. The analysis pre-
sented here, which only treats static fluctuations very close to
T„nevertheless constitutes the first correction' to Fermi
liquid behavior, to order max(I/a~a, T, /e~), arising from
pairing correlations above T, . At the end of the paper we
discuss the prospects of experimentally studying these ef-
fects in the high-T, cuprates and other layered superconduct-
ors.

Our main results, valid for e=(T T,)//T, (&1, can—be
summarized as follows.

(1) SC fluctuations lead to a suppression of the spin sus-
ceptibility y„due to the combined eKect of the reduction of
the single-particle density of states (DOS) and of the regular
part of the MT process.

(2) "Cooperon" impurity interference terms, involving
impurity ladders in the particle-particle channel, are crucial
for the y, suppression in the dirty limit.

(3) The processes contributing to g, are negligible in
usual fluctuation calculations (e.g., conductivity o). y, is
unusual in that the Aslamazov-Larkin (AL), and anomalous
MT terms, which dominate cr, are absent.

(4) For weak pair breaking (1/r~(«T, ), we find an en-
hancement of 1/T&T coming from the anomalous MT term.
We recover known results in the dirty limit, and extend
these to arbitrary impurity scattering.

A t'

1/T&T= lim — (dk) Imp+ (k, co)
~~ply J

(2)

where the constant A)0. We use f(dk)= fd k/(2n) in d
dimensions. For later reference we note that for noninteract-
ing electrons g+ (k, cu„)= —TX„f(dp)G(p+ k, e„
+re„)G(p, e„) with e„=2mT(n+I/2). This leads to the
well-known results for T(eF . g, =N(0) (Pauli suscepti-
bility) and (1/T~T) A m[N(0)] (Korringa relaxation),
where N(0) is the DOS at the Fermi level.

To leading order in max(1/e~r, T, /eF) the fluctuation
contributions to g+ are given by the diagrams shown in
Fig. 1.The diagrams are constructed from fermion lines, SC
fluctuation propagators (wavy lines) and impurity vertex cor-
rections (shaded objects), each of which will be described in
detail below. Note that the two fermion lines attached to the
external vertex have opposite spin labels for g+ . Conse-
quently, the AL diagram (1) does not exist since one cannot
consistently assign a spin label to the fermion line marked
with a '?' for spin-singlet pairing.

The Maki-Thompson (MT) diagram is shown in Fig. 1
(2), and MT with Cooperon impurity corrections in (3) and
(4). There is an important difference in the topology, and
thus the sign, of the MT graph for y+ and that for conduc-
tivity, arising from the spin structure. Drawing the fluctuation
propagator explicitly as a ladder of attractive interaction

(5) In the clean limit (T,r &)1) we find a different asymp-
totic behavior of 1/T, T depending on whether one has T,r is
greater or smaller than 1/Pa.

(6) Finally, strong dephasing suppresses the anomalous
MT contribution, and 1/T, T is then dominated by the less
singular DOS and regular MT terms. These contributions
lead to a suppression of spectral weight and a decrease in

1lTt T.
We begin with the dynamic susceptibility gt+) (k, co)

= g+ (k,ice„~co+i0+)with

f 1/T

g+ (k, cu„) = dre'""(T[S+(k,r)S ( —k0)]).
Jo

A A

S are the spin raising and lowering operators, T denotes
time ordering, the brackets represent thermal and impurity
averaging and ~„=2n vT. The spin susceptibility

g, = gt+ ) (k~0,co =0) and the NMR relaxation rate is given
by
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lines, we see that the diagram (2) is a nonplanar graph with a
single fermion loop, in contrast with the conductivity graph
which is planar and has two fermion loops.

The diagrams (5) and (6) represent the effect of SC fluc-
tuations on the self-energy, leading to a decrease in the DOS.
The DOS diagrams (7) and (8) include impurity vertex cor-
rections. (Only a single impurity scattering line is shown
since additional scattering, in the form of a ladder, has no
effect.) Finally (9) and (10) are DOS diagrams with Coop-
eron impurity corrections.

The fermion lines represent the one-electron Green func-
tion G(p, co„)= [i@„—((p)], where e„=e„+sgn(e„)/2r.
The momentum relaxation rate 1/r(&eF, however, T,r is
arbitrary. We will first discuss the two-dimensional (2D)
case, and then turn to layered systems and 2D to 3D cross-
over at the end. For the isotropic case g(p) =

~p~ /2m —eF .
Pairing fluctuations above T, are described in the usual

way'" by the fluctuation propagator (wavy line in Fig. 1)
L(q, Q„) where q is the momentum and A~ is the frequency
of the pair. We restrict our attention to s =(T T,)/T,—&&1,

and thus it suffices to focus on long wavelength, static
(0 = 0) fluctuations. In this regime we have

'(q, —e„,e„+„)= 1— O(e„e„+„) . . . (5)
rg(e„+e„+„) +u q )

where 0" (x) is the Heaviside step function.
Finally, the Cooperon C(q, —e„,e„+„) is defined as the

sum of impurity ladders in the particle-particle channel
where —e„and e„+„are the frequencies of the two fermion
lines and q their total momentum. We have

1 1 O(e„e„~„)
2'(0)r. r 12m„+~~l+Dq

zeta functions, respectively. Pair breaking will be described
by a phenomenological r&&& 7-, see discussion preceding Eq.
(15) below.

We now turn to vertex corrections due to impurity scat-
tering. First, note that external vertices are not
renormalized. ' Next, the (three-legged) impurity vertex

k(q, —E„,E„+„) is defined as the sum of impurity ladders
dressing the bare vertex consisting of two fermion lines, with
frequencies —e„and e„+„=e„+co„, and a fluctuation

propagator L(q, co„). This is given by

L t(q, 0„=0) = —N(0) [s+ rjdq ],

where in 2D, the DOS N(0) =m/2rr and

(3) +O( ~~+ ) (6)

U r )1 1 \ )1l 1 (11
2 i2 4rrrT) (2) 4rrrT (2)

rrD/(8T, )

7((3)v /(32m Tc )

for T, r&&1,

for T, r&&1.

Here v is the Fermi velocity, D=v r/2 is the 2D diffusion
constant, and P(z) and ((x) are the digamma and Riemann

SPIN SUSCEP'1'1SILITY

The external frequency and momentum can be set to zero
at the outset, thus simplifying the calculation. The MT dia-
gram (2) then yields a result which is identical to the sum of
the DOS diagrams (5) and (6), which are evaluated as fol-
lows:

gss+gs6= 2T (dq)L—(q,0)TQ X (q, E„,—E„)

tl

(3)

tl

i

(4)

X (dp)G (p, e„)G(—p, —p„) (7)

Doing the p integration, and using X =
~ e„~/~ e„~, ignoring its

q dependence, we are left with X„1/[e„~e„~], which can be
evaluated in terms of digamma functions. Finally using

f(dq)L(q, 0)= —[4'(0) r/z] 'In(1/s) we get

(g 5++ 6)/g, =(r/2m rlz)f(T, r)ln(1/s), (8)

where f(x) =x(t/1(1/2) —/[1/2+1/(4')])+ m/8.
We first discuss the clean limit, where the fluctuation con-

tribution given by y, =ys2+ Xs5+ Xs6,
' all other diagrams arefl

negligible for T,r &&1. The final result is

-X y, /g, = —(2T, /eF)ln(1/s) for T,r&1. (9)

FIG. 1.Diagrams for the fluctuation contribution to the dynamic
spin susceptibility y+

The dirty limit of (8) yields a result of +T, /eF), which
is negligible, and the dominant +1/@Fr) contribution must
come froin elsewhere. Graphs (7) and (8) vanish, since
f(dp)G (p, e„)=0. The important graphs are those with the
Cooperon impurity correction: MT (3) and (4), and DOS (9)
and (10). This is an interesting example where Cooperons,
which play a crucial role in weak localization, are important
for SC fluctuations. As an example, we evaluate
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f
3+X 4 2T (dq)L (q,0)TQ k (q, E„, E„)

X C(q, e„,—e„)W(e„)W(—e„),

+(~.) =J(dp)G'(p, ~.)G(q —p, —~.)
= —i2mN(0) 7 sgn(e„) for q=0.

Using k=(2r~e„~) ', and Dq (&~e„~ in the Cooperon C we
obtain the sum X„1/(e„~e„~). Doing this sum and the q inte-

gration we obtain one half the final result given below; dia-

grams (9) and (10) give the other half. The total fluctuation

susceptlblllty +s Xs3+ Xs4+ Xs9+ Xs10 ~ 1sfl

Hq -eT, 7(&1. In the clean case, on the other hand,
u q /T, -sT, and Hq -s(T,7) (&1 only when
1(&T,7(& 1/Pa.

For the above conditions (either T, r(& 1 or

1(&T,r(&1/Qa) we obtain the singular MT contribution

fd q[(Dq + 1/r„)(s+ 7/zq )] where we have introduced
the pair breaking rate 1/7„as an infrared cutoff. We define
the dimensionless pair breaking parameter 8= 7/z/D7~(&1;
in the dirty limit 8-1/T, 7~ while for the clean case
8-1/T, 7r„. The "bare" transition temperature T,o is
shifted by the pair breaking, so that e = so+ 8', with

sp = (T T p)/T p and we obtain the final result

(1/TtT)" m 1

X,/X, = —[7f(3)/m F7]ln(1/s) for T,r (&1. (11)

It is tempting to physically understand X,"(0 in Eqs. (9)
and (11) as arising from a suppression of the DOS at eF.
However, only diagrams (5) and (6) can strictly be inter-

preted in this manner; the MT graphs and the coherent im-

purity scattering described by the Cooperons do not permit
such a simple interpretation.

( I/Tt T)" m T, 1

(1/T T) $14$(3) e
(16)

The other limiting case of interest is the "ultra-clean
limit" when the characteristic q values satisfy /q&) 1.This is

obtained when T, r&)1/ge&)1. From (14) we then find

M(q) =41n(/q)/vq, which leads to

RELAXATION RATE We note that in all cases the anomalous MT contribution
leads to an enhancement of 1/T, T over the normal state
Korringa value. In particular, the SC fluctuations above T,
have the opposite sign to the effect for T(&T, (where 1/T,
drops exponentially with T). One might argue that the en-
hancement of 1/T, T is a precursor to the coherence peak just
below T, . Although the physics of the Hebel-Slichter peak
(pile-up of DOS just above gap edge and coherence factors)
appears to be quite different from that embodied in the MT
process, we note that both effects are suppressed by strong
inelastic scattering.

We now discuss the DOS and regular MT contributions
which are important when strong dephasing suppresses the
anomalous MT contribution discussed above. The contribu-
tion from diagrams (5) and (6) is given by

This calculation requires rather more care than y, because
of the subtleties of analytic continuation. Let us define the
local susceptibility K(co„)= f(dk)X+ (k, r0„). The MT
contribution, with e„+„=e„+co„, is given by

Kz(co„)= T (dq)L(q, 0)g k(q, 6„+„, E„+„)

&&X(q, E„, E„)g(q,e„+„)g(q,e„). (12)

Ks+6(co„)= —2T (dq)L(q, 0)

Xg k (q, e„,—~„)X,(~„)+z(t.'„+„) (17)

with

Defining X(q, e„)= $4e„+u q, we have g(q, e„)
= f(dp)G(p, e„)G(q—p, —e„)=2'(0)/X(q, e„) and

k(q, e„,—e„)=X(q, e„)/[X(q, e„)—1/7] The re.sulting
Matsubara sum is S= X„1/([X(q,e„)—I/7][X(q,
e„+„)—I/7]).

The "anomalous" MT contribution [subscript (an)] comes
from that part of S which involves (co„/277T)—
= —v~ n ~ —1.The reason this piece dominates, and has to
be treated separately, is that S~,„~ has a singular q depen-
dence. We evaluate S~ ~

using contour integration and after
ice,~co+i0+ we obtain

lim —Indfz~t~ &(cu) =-
0Ct)

17[N(0)]
8 (dq)L (q,0)M(q),

and

+i(~.) =f (dp) G'(p, ~.)G(q —p —~n)

= —i mN(0) sgn( e„)/(2 e„)

I z
~(q) =27

~
dz sech F(z—i)F(z+i), (14)

J (4T7j

where F(x)=1/(gHq —x —1) and P=vr is the mean
free path.

The first simple limiting case for (14) is z q(& 1, for which

M(q) = 277/Dq . The characteristic q values are determined
by L; in the dirty limit, we have Dq -sT, , leading to

Wq( e„+„)=f (dk) G (p+ k, e„+,) = —i mN(0) sgn( E + „)
where we have set q=0 everywhere except in L. Using
k(0,e„,—e„)= ( e„~/~ e„~ we are left with the frequency sum

X„sgn(e„)sgn(e„+„)/e„and a simple q integration.
The other remaining contribution is from the "regular"

part of the MT diagram, corresponding to terms with
n( —v and n ~0 in the Matsubara sum in (12). This contri-
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bution is exactly one half of the total DOS contribution from
diagrams (5) and (6). All other diagrams either vanish

[graphs (7) and (8)] or contribute at higher order in I/@Fr
(Cooperon corrections). The final results are given by

(1/T, T)"/(1/TtT) = —(6T, /eF)ln(1/e)

for T,7&&1, and

(18)

LAYERED SYSTEMS

It is straightforward to extend the above analysis to lay-
ered systems with the spectrum g(p) = e(p) —

eF =pl/2m
—eF+ w cos(p~a). Here

p~~ andy~ are the electron momenta
parallel and perpendicular to the plane, respectively, a is the
interlayer distance, w is the interlayer hopping. (For details
on the fluctuation propagator and impurity vertex corrections
in layered systems, see Refs. 11 and 7.)

The layered system results are obtained by making the
replacement

In(1/s) —+21n(2/[ge+ pe+ r]), (20)

in the 2D results given above, with r=4tyzw /U . The
physical meaning of r is clarified by noting that

r(T,)=4/~(0)/a where $~(0) is Ginzburg-Landau coher-
ence length in c-direction. Thus r is the anisotropy parameter
which controls the dimensional crossover from the 2D
[r&«a with $~(T)&&a/2] to the 3D regimes [r&)a with

(~(T)&)a/2] where the In(1/e) singularity changes to [con-
stant —(s/r) 't ].

EXPERIMENTAL IMPLICATIONS

Much of the experimental work on fluctuations as probed
by NMR has been restricted to small particles (zero-

(1/T, T)"/(1/T, T) = —[21$(3)/m ezr]ln(1/a) (19)

for T,v&&1. The sign of the result indicates a suppression of
low-energy spectral weight as in the y, calculation.

dimensional limit) of conventional superconductors; see Ref.
14 for a review. There has been resurgence of interest in SC
fluctuations since the high-T, cuprates show large effects
above T, due to their short coherence length and quasi-two-
dimensional structure. However, in order to extract the "Auc-
tuation contribution" from experiments one needs to know
the normal state background, which in a conventional metal
would simply be the Pauli susceptibility for y, and the
Korringa law for I/TtT. In the high-T, materials the back-
grounds themselves have nontrivial temperature

dependences above T, : for example, the non-Korringa re-
laxation for the Cu(2) nuclei in YBazCu&07 s, and the spin-

gap behavior with dy, /dT)0 and the 0 and

Y 1/T, T-y, (T) in the underdoped cuprates. In fact, as
noted in the Introduction, part of the theoretical motivation
for the calculation presented here came from earlier work on
spin gaps as precursor effects to short-coherence length su-

perconductivity, even though the dynamics of the fluctua-
tions and the deviation from particle-hole symmetry, which
are crucial in that work, are ignored here.

From an experimental point of view, it appears that the
best systems for observing the effects calculated in this paper
would be conventional layered superconductors where the
normal state backgrounds are well understood and small de-
viations from these may be reliably extracted.
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