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Zlatko Tesanovic and Igor F. Herbut
Department of Physics and Astronomy, The Johns Hopkins University, Baltimore, Maryland 21218

(Received 2 May 1994)

The "glassy" superconducting transition at high magnetic fields can be induced by columnar disorder. A
model is proposed in which the thermodynamics of Bose condensation of Cooper pairs into the lowest Landau-

level eigenstate of the random potential can be solved exactly. The solution reflects a peculiar character of the

high-field limit: for example, the effective dimensionality of the transition is shown to be a function of
magnetic field.

The problem of a superconducting transition in the pres-
ence of strong disorder is of both practical and theoretical
interest. Technologically, the goal is to introduce defects into
the sample in a way that maximizes pinning of vortices and
increases critical currents. The theoretical challenge is to
understand the mechanisms and the nature of a supercon-
ducting transition for various types of disorder. A variety of
novel phases have been proposed, differing in the cases of
pointlike ' andlinelike disorder. "' Inthispaper wepresenta
theory of superconducting transition at high magnetic fields
(~1 T in high-temperature superconductors) induced by the
presence of columnar (linelike) defects. In the absence of
disorder, the high-field fluctuations of the order parameter,

t/1(r), are strongly enhanced by formation of Landau levels
(LL's) for Cooper pairs. Such fiuctuations lead to
(D~D 2)-dimension—al reduction in the pairing suscepti-
bility, y„(r,r'), and eliminate the superconducting (Abriko-
sov) transition for D=2,3. The Abrikosov phase is then
replaced by a different fluctuation-induced state, the density
wave of Cooper pairs (SCDW), in which the thermal average

(lt/1(r)l ) has a weak modulation accompanied by only a
short-range phase coherence. ' In the presence of disorder
the LL degeneracy is lifted and a possibility of superconduct-

ing transition is restored. y„can now diverge at some finite

temperature, T (H), determined by the strength of disorder.
At T„(H) the normal state is unstable to Bose condensation
of Cooper pairs into the lowest-energy eigenstate of the ran-

dom potential, which we argue extends over the whole
sample in situations of experimental interest. Furthermore,
for experimentally relevant parameters, T„(H) can be far
above the SCDW transition line over much of the H-T phase
diagram, allowing us to treat the correlations that produce
SCDW in an approximate way.

We consider a realistic model for a superconductor in a
magnetic field parallel to the columns which is exactly solv-
able. The model exhibits "dimensional transmutation, " i.e.,
the effective dimensionality of the transition changes con-
tinuously as a function of magnetic field. This effect is a
direct consequence of analytic properties of LL wave func-
tions and is a signature of the high-field limit. We determine
the transition line in the H-T phase diagram, the Edwards-
Anderson order parameter, and the behavior of correlation
length, specific heat, and magnetic susceptibility in the vicin-
ity of the transition. There are similarities between the tran-
sition considered here and the one in the spherical model for
spin glasses.

We are interested in strongly anisotropic layered super-
conductors described by the Ginzburg-Landau (GL)
Lawrence-Doniach model, with the magnetic field perpen-
dicular to the layers. Fluctuations of the magnetic field are
neglected (tc&&1). We focus on the high geld -limit, where
the LL structure of Cooper pairs dominates the fluctuation
spectrum: this is the case for fields above Hb
=( 8/16) H, 2( 0) IT/T, ( 0)], where 8 is the Ginzburg fluctua-
tion parameter. [For instance, Bi-Sr-Ca-Cu-0 (2:2:1:2),
8=0.045 and Hb=1 T.] In this regime, the essential features
of the physics are captured by retaining only the lowest Lan-
dau level (LLL) modes. This is the renormalized GL-LLL
theory. ' The partition function is Z= fD[t//*t/I]exp( —S),
and

where a'(T,H)=a[T T,2(H)], d—is the effective layer
separation, n is the layer index, k &0 is the effective strength
of the defects, and a, p, and il are phenomenological pa-
rameters. The magnetic field is assumed to be parallel to
columnar defects, the effective potentials of all defects the
same and well represented by 8 functions. Random variables
in the problem are two-dimensional coordinates of defects,
(r;). We assume that columns of damaged superconductoi
are distributed according to the Poisson distribution

PN(r, , . . . , r/v) =(e ~"p )IN! where Ptt is the probability
for finding N impurities at the positions r1, . . . ,rN, A is the
area of the system, and p is the concentration of impuri-
ties." After rescaling the fields and the lengths as

(2dp2ml /T) / t/t~ t/I, r/(i/2m)~r, where I is the mag-
netic length for charge 2e, the quartic term can be rewritten,

l1 t 1
4X d'rl W.l'= 2 P~(n)' d'rl k.P (2)

n n

where N =A/2ml is the degeneracy of the LLL and

pz(n)=(N Jlt/lnl )/(flpnl ) is the generalized Abrikosov
ratio corresponding to configuration t/t„(r). We now observe
that pz(n) is only weakly dependent on the actual configu-
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t In Eq. (6) it is important to know the behavior of the
density of states at low energies. For f&1, the density of
states has a b-function singularity at V=O, while for f)1,
p/(V)-V when V~O. When V&0, p(V)—=0, as also
can be inferred from Eq. (4).' The transition line, T„(H), in
the H-T diagram is determined by Eq. (6) and x+g =0,
which corresponds to condensation of Cooper pairs into
k=0 and V=0 eigenstate of the random potential. It is eas-
ily seen that there will be a nonzero transition temperature
only if the concentration of impurities and magnetic field are
such that f) -', . Below this value of f LLL degeneracy is not
sufficiently lifted by the random potential and thermal Auc-

tuations prevent a finite temperature phase transition in our
model. Experimentally, this should manifest itself as a drop
in transition temperature when the field exceeds a certain
value. f= —', determines the effective lower critical dimension
for our model. After introducing dimensionless quantities
t =T/T, (0), h =H/H, z(0), 8= 2PH, z(0)/da T,(0)Pp,
and X

' = kH, z(0)//pa T,(0), where Pp is the flux quantum,
we perform the integration over wave vector k in Eq. (6) to
obtain the expression for transition temperature,

FIG. 1.The H-T phase diagram for a strongly type-II supercon-
ductor with columnar disorder [h=—H/H, z(0), t= TIT,—(0)] The.
full line represents the second-order phase-transition boundary be-
tween normal and "glassy" superconducting states for the set of
parameters given in the text. The dashed-dotted line is the SCDW
transition in a clean system. The dashed line is the mean field

h,z(t). The LL approximation breaks down in the shaded region at
the bottom.

ration, the well-known example being the small difference in

p„between a triangular and square lattice of zeros. Thus
we may substitute pz(n) in the quartic term by its thermal

average, (p„), and treat this as an input to the theory. This
approximation neglects the nonperturbative lateral correla-
tions that produce the SCDW transition. It is justified if
T (H) is far above the SCDW transition line. In that case
the SCDW correlations enter only very close to the transition
and can be ignored in most realistic situations. Since super-
conducting and SCDW transitions arise from two distinct
mechanisms, the respective transition lines scale differently
in the H-T phase diagram and, for moderate disorder, we are
assured of a wide region near H,z(T) where the neglect of
SCDW correlations should be justified (see Fig. 1).'

After the pz(n)~(pz) substitution the thermodynamics
of the model becomes exactly solvable. We first introduce
variables (x„) to decouple the quartic term and integrate over
the fields (P*,t/I). This leads to Z= fII„dx„exp( NS'), —
where

t„(h) = (1—h)

e(P„) ~- p,(v)dv
X 1+ 2X' J p gv +(4 trav)/[hk'aT, (0)]

f oos'= —g "+
„(p«) ~ p

d Vp/( V)Trl„ lln[g ~(2 8„—b„

(3)~., +i)+(g.+x.+g~v) ~., 1.

We drop terms coming from the rescaling of t/i„(r) and in-

troduce dimensionless combinations of GL parameters

g~ i =[«/, u', X/2ml )X g(del )/(TP) The density . of
states for a disordered system in the LLL can be found ex-
actly by using the supersymmetric formalism. For the Pois-
son short-range scatters it is given by

«dy
pt(V) = —Im ln i dt exp, i Vt f —(1—e '«)—

vr dV Jp ' Jp y
(4)

where f=p2m. l . In the thermodynamic limit N —+~, the
partition function is completely determined by the saddle
point of 5'. Assuming that the saddle point is at x indepen-
dent of the layer index, we fina11y write the free energy
above the critical temperature,

Notice that when k'~0 we have t„(h)~0, while for
k'-+~, t (h)~1 —h. ' Also, with increasing parameter f,
t„(h) increases. This is related to the observation in Ref. 1
that the irreversibility line shifts to higher temperatures with
increasing doses of irradiation with heavy ions. The numeri-
cal solution for t„(h) is displayed in Fig. 1 for k =1,
2tllaTp=0. 01, 8=0.03, (Pz)=1.3, and f=0 04/h We. .
have set (pz) to a constant for simplicity. If H,z(0) =100 T,
f=0.04/h corresponds to the average distance between de-
fects of 225 A (at 1 T, l—=180 A). The diameter of the col-
umns depends on the size and energy of particles used for
irradiation but it is about 50 A and hence much smaller than
the magnetic length for the fields of interest. Thus represent-
ing defects by 8 functions is appropriate.

As the temperature drops below t (h), x remains at the
value it had at the transition. There is now macroscopic oc-
cupancy of the lowest energy state at V=O and k=O. As is
we11 known, condensation into this state is possible only if
the state is extended. It is a special feature of this problem
that this indeed is the case for a certain range of impurity
concentration. The density of states, Eq. (4), changes at V= 0
from being infinite when f(2, to being zero when f)2.
Thus, for fields and impurity concentrations such that param-
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eter f&2, true extended states [which always exist in the
LLL (Ref. 16)] must lie at the bottom of the impurity band,
since the number of states there diverges. The change of
behavior in the density of states at f=2 could be caused by
the fact that the mobility edge shifts to positive energies at
some fo)2, leaving spread out but localized states at

V=O, which now becomes the tail of the distribution. Nu-

merical diagonalization studies indicate that the mobility
edge is indeed located near the band center for f)4 'T.hus,
strictly speaking, our model is appropriate for f(fo. How-

ever, even for f above but close to fo, which is often the
case for fields and concentrations of experimental interest,
the states at V=O are still near the mobility edge and will

appear extended in a finite-size sample. On this basis, we
expect that useful information about the transition can still be
obtained within our model.

With these cautionary remarks in mind, the natural order
parameter is the thermal average of the component of
rP„(r) corresponding to the eigenvalue with V=0 and
k=o Thi»s (Ao,o) =Ã&i(g li=~„(},l g )/(Pw)]'" The

disorder average value of the field is ((/I„(r))

= Zv kgv(r)exp(ikn)(tPy~)=0, due to random phases of the
state Pv o(r). Under the assumption that the lowest state is

extended through the sample, l Pv o(r) l
= 1/N; the

Edwards-Anderson order parameter qEA=l((/1„(r))l then

equals

2
qEA (p )(g It=a (h} ga)

below t (H), and is zero above. Thus qnA ~ [t~(h) —t] &,

with the exponent p= 1/2. The free energy below t„(h) is

F g 1 t't

, + — dk pf(V) d Vln[g ~e(k) +g„V].

To calculate the exponents that determine the divergence
of correlation lengths parallel and perpendicular to the field
we first note that from Eq. (6) and the definition of the criti-
cal line it follows that

(P)" - p Vdv
10)

4 J q Jo [g~e(k)+g},V][g~e(k)+g},V+g +x]

The integral in the last equation diverges for f(z as (g +x)f ~ when the transition line is approached from above, and it is
finite for f)';. Thus we obtain (g +x) ~ (t t„) i(f—/ }for f(-', and (g +x) ~ (t t~) fo—r f)z. The same behavior follows
if the transition line is approached along the line of constant temperature. This determines the value of the exponent
vi=1/(2f —3) for f(-', and the classical value vi=-,' for f)-'„where the correlation length parallel to the field is (i
~ [t—t (h)] II. The concentration corresponding to f= —, determines the effective upper critical dimension in the problem.
We now turn to the correlation length perpendicular to the field, gi ~ [t t„(h)] "i,—and study the susceptibility associated
with the Edwards-Anderson order parameter,

XEA(r —r') =—( t/.*(r)P.(r'))( l .(r) P.*(r'))

After expanding the field operators in the eigenbasis of random potential we obtain

d V,d Vzdk, dkzF(r —r', V, , Vz)
XEA(r—r') =

[g~e(ki)+g},V&+g +x][g~e(kz)+g„Vz+g +x] '

where the function F is the two-particle spectral density

(12)

F(r—r', V, , Vz) =g 8(V& —V;) 8(Vz —V;) P,*(r)P;(r') P,(r) PJ (r') (13)

and P;(r) are the eigenstates of the random potential. If we
now introduce V=(V, +Vz)/2 and co=(V, —Vz)/2, for V
close to the mobility edge and small (q, ro), the Fourier
transform of F has a diffusive form,

pf(V)q D(q /cu)F«V ~)=
7r[cu +q D (q /co)]

' (14)

where D(q /co) is the generalized "diffusion constant. "As-
suming this form for F(q, V, co) and rescaling everything by
the appropriate power of temperature in Eq. (12), we obtain
vi= vi. Note that the density of states pf(V) is roughly

M

ANI d

2T~th ( 2x }

dP +8( (P )}
(15)

constant except in a narrow region, typically 1% of total
bandwidth, around V=O, where it either diverges or van-
ishes. Hence, unless one experimentally probes the system
very close to the transition, the observed correlation length
exponent would be the one corresponding to f=2, i.e.,
vi =

vii
= 1.This agrees well with the experimental results of

Ref. 5.
Magnetization per unit volume equals
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Below the transition line this coincides with the usual mean-
field result. Above the transition line qEA=O and from Eq.
(10) it follows that at constant temperature close to
the transition (g +x)~[h —h (t)] ~ /) when f&2 and

(g +x) ~ [h —h„(t)] otherwise. Thus the magnetic sus-
ceptibility is a smooth function of the field at the transition
for f&2, but has an upward cusp for 2&f&'-, and a discon-
tinuity for f);.The size of this discontinuity depends on the
location of the transition in the H-T diagram. Differentiating
the free energy twice with respect to temperature one obtains
the specific heat. It is straightforward to show that at the
transition it behaves the same way as susceptibility; smooth
for f&2, a cusp for 2&f& '-„and the usual discontinuity for
f) '-, . More precisely, both magnetic susceptibility and spe-
cific heat behave as [t—t„(h)] for -',&f& —',, where

n=(f '-,)/—(f—-',). The behavior of the specific heat, order
parameter, and correlation length in our model is related to
the one obtained from the O(2N) vector model in the limit
N~~ and in the effective dimension D,tt=2f 1. ' Th—e
magnetic susceptibility, however, behaves differently at the
transition; while it diverges in the O(2N) vector model with
the exponent y= [(D,a/2) —1],it is finite in our case even
below the effective upper critical dimension. This is a con-
sequence of a diamagnetic nature of magnetization in our
problem.

We should stress again that the critical behavior of our
model does not describe "true" critical properties of the
GL-LLL theory with disorder, since we have ignored lateral
SCDW correlations. Such correlations will always become
important sufficiently close to the transition. However, as it
is clear from Fig. 1, there is a wide region in the H-T phase
diagram where the superconducting transition lies far above
the SCDW transition line for clean systems. In this region,
the "true" critical behavior will set in only very near the

T„(H) line and our model should be appropriate in most
experimental situations.

In summary, we have studied the high-field superconduct-

ing glassy transition induced by columnar disorder. Using the

exact density of states for a random array of short-range
scatterers in the LLL level and the assumption that the lowest
eigenstate of such a potential is extended over a finite-size
sample under certain conditions, we have obtained the
Edwards-Anderson order parameter, correlation length, mag-
netization, and specific heat close to the transition. The tran-
sition line in the H-T phase diagram has also been calcu-
lated. The critical exponents are found to depend on
magnetic field.
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