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Spin softening in models with competing interactions: A high-anisotropy expansion to all orders
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An expansion in inverse spin anisotropy, which enables us to study the behavior of discrete spin models as
the spins soften, is developed. In particular we focus on models, such as the chiral clock model and the p-state
clock model with competing first- and second-neighbor interactions, where there are special multiphase points

at zero temperature at which an infinite number of ground states are degenerate. The expansion allows calcu-
lation of the ground state phase diagram near these points as the spin anisotropy, which constrains the spin to
take discrete values, is reduced from infinity. Several different behaviors are found, from a single first-order

phase boundary to infinite series of commensurate phases.

Competing interactions lead to many important physical
phenomena. ' Examples are charge-density waves, long-
period phases in binary alloys, and ferrimagnetism in the rare
earths. ' Considerable understanding of these systems has
been obtained by studying one-dimensional models which

embody the competition. The most famous of these is the
Frenkel-Kontorova model, atoms connected by springs lying
in a periodic potential. Several spin systems behave simi-

larly, for example, the chiral J-Y model with p-fold spin
anisotropy, D. Here the value of the chirality selects a
given wave vector which competes with the preferred spin
directions defined by D.

These models have subtle and complicated ground states.
Long-period commensurate and incommensurate phases are
important and devil s staircase behavior, upsilon points, and

symmetry-breaking second-order transitions are among the
features observed. " If the interactions are convex the
ground-state behavior is rather well understood. ' ' For non-

convex interactions, however, much less is known and most
work has been numerical. Spin systems, which generically
fall into this category, have received less attention than
Frenkel-Kontorova models. ' An important aim is to un-

derstand which ground-state features can occur in these mod-
els and to ascertain whether any universal behavior arises.

To this end we have developed a new analytic approach
which allows us to study the behavior of spin models in the
limit where the pinning potential which results from the spin
anisotropy, D, is large. This is an expansion in inverse spin
anisotropy which can be carried to all orders where neces-
sary. In the limit of infinite D the spins can take only discrete
values and the ground state typically consists of a few short-
period phases as a controlling parameter such as the chirality
is varied. Interesting behavior can occur when the boundary
between different ground states is infinitely degenerate, at
so-called multiphase points. ' Here, as D decreases from
infinity and the spins are allowed to soften, we are able to
demonstrate several different behaviors, ranging from a
single first-order boundary to infinite series of commensurate
phases.

The approach is described for the one-dimensional, clas-
sical X-Y model with competing first- and second-neighbor
interactions and p-fold spin anisotropy

W=g (—J,cos(8;, —8;)+J2cos(8; 2
—8;)

—D(cosp8; —1)/p ).

xp = (cos(2 m/p) —cos(4 m/p))/(2[cos(4 m/p)

—cos(6 m/p) ]). (2)

Here all phases with Bn;=—n;+& —n;=1,2, with the proviso
that Bn; = Bn;+& =2 is forbidden are degenerate for D =0.

To facilitate a description of the ground-state structures
near this point it is helpful to define a wall as a position
where Bn;=2 and a band as a sequence of spins
between walls. ' Then we label a state which is made
up of a repeating sequence of bands m&, m2, . . . ,m„as
(m&, m2, . . . ,m„). With this definition the phases bordering
the multiphase point at xp are (~) and (2) and all phases
consisting of bands of length )2 are stable at the point itself.

The aim here is to investigate the stability of the phase
diagram around xo as D decreases from infinity as an expan-
sion in D '. Although we focus on the Hamiltonian (1) and
a particular series of multiphase points the method is general
and results for other models will be described later in the
paper.

J|,J2, and D are chosen to be positive and 8; is an angle
between 0 and 2m. For D =0 the ground state of the Hamil-
tonian (1) is ferromagnetic for x—=J2/J&&1/4 and modu-
lated with a wave vector 2mq= cos t(1/4x) for x) 1/4. At
D=~ (1) becomes a p-state clock model and 8; can take
values 2rtn;/p, n;=0, 1,2, . . . ,p —1. The ground state is
now a sequence of short-period phases as x is varied. The
boundaries between the different ground states can either be
simple points where only a few distinct phases have the same
energy or multiphase points where an infinite number of dif-
ferent states are degenerate.

A particular case of the latter which has very rich behav-
ior is the boundary between states with wave vectors 1/p
({n;)= . . . 012345. . . ) and 3/(2p) (. . . 013467. . . )
which occurs for all p~6 at
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The expansion is possible because for D large the spins
deviate from their clock positions by an angle analytic in

D . Writing

8i Jl(si, l si+1,1) J2(si2 , si+2,2)
1=

8", =J,(c;,(8", , —8", )+c;+,,(8,"+,' —8,". '))

(8)

and keeping only terms quadratic in 8; i —8; and 8; 2
—8;

in the expansion of the Hamiltonian (1) gives

=+D=„+Jlc;1(8; 1
—8;+s;1/ci 1)'/2 —Jls, 1/2c;1

—Jzc;2(8; z
—8;+s; 2/c; 2) /2+Jzsi2/2c;2+D8, /2, .

where

s 1=sill(8; 1 8 ), c l=cos(8; 1 8 ),

s;2=sill(8, 2
—8, ), c;z=cos(8, 2

—8;).

The equilibrium values of the 8; are given by minimizing
the Hamiltonian (4). This leads to linear recursion relations

8;=Jl(;,1(8,-1—8,)+;+l,i(8;+1—8,)+,1
— + . )/D

Jz(ci,z( 8i —2 8i) + el+2, 2( 8i+2 8i) + si,2

s +22)/D. (6)

If the full Hamiltonian (1) is used nonlinearities appear in the
recursion relations (6). However, these do not affect the
leading-order terms needed for the subsequent calculations.

Writing

8,
'

8; 8";

Eq. (6) immediately gives

Jz(ci,z( 8i —2 8i ) + ci +2,2( 8i+2 8i ))~ (9)

It follows from Eqs. (5) and (8) that the two spins in a
2-band, the edge spins of a 3-band, and the two spins nearest
each edge of a band of length ~4 have a deviation
+1/D). All other spina remain unmoved to this order. From
Eq. (9) it is apparent that the next pairs of spins moving in

from each edge of the band will have a deviation +1/D ),
the next pairs +1/D ), and so forth.

We establish the stable phase sequences near xo by fol-
lowing an inductive argument originally due to Fisher and
Selke' (see also, Refs. 18 and 19). Defining E&

&
as the

ground-state energy per spin of (a) and n&
&

as the number
of spins per period, this can be summarized as follows: as-
sume that @1/D") two neighboring phases (a) and (P)are
stable and all phases comprised of a and P sequences are
degenerate on the boundary between them. Then the first
phase that can appear between them is (y)—=(aP). If
AE—=n& il&E& p&

—
n& &E& &

—
nilly&E&P&)0 the boundary re-

mains stable to all orders. If DE&0 and +1/D™)with
m)n, however, (np) appears as a stable phase on the

(a):(P) boundary over a region @1/D ) and the analysis
must recommence about the new (a):(aP) and (aP):(P)
boundaries.

Hence the task is to calculate b,E. Let n& &=n, ,

n&»=n and label the repeating spin sequences of (a),
(P , +1 P , +2

. . . ,P„), and (y, , yz, . . . , y„), respectively. It is lengthy
but not difficult to show that

Jl 1,1((ap —Pp)( yl —y.,+1)—(al —Pl)( yp
—y.,)8 —J2 1 2((a —1

—P—1)(yl —y. ,+1)—(al —Pl)( y-1 —y. , —1))/2

Jzczz((ixo Po) ( yz ynl+ 2) ( az P2) ( Yo y )V2

This formula is exact for the quadratic Hamiltonian (4). Higher-order terms in the full Hamiltonian (1) appear as higher-order
corrections.

The value of hE must obviously be independent of the choice of spin labeling. However, given an appropriate choice of
labeling only the leading-order terms in the spin differences need to be calculated. This follows from noting that all possible
states have an axis of symmetry. This lies either on or between spins depending on whether the number of spins in a period is
even or odd. When states are combined there are two possibilities: (i) n&

&
odd, n&p& odd ~ n&

&
even. For an odd state

symmetry demands that one spin remains fixed (8=0). Therefore we may choose ao=0, pp=O. (ii) n&
&

odd, n&P& even~ n&» odd. We choose u&„+1&&2=0 or equivalently y, —y„+,= yp
—y„. This implies (a, —p, )= —(ap pp). (Consider-

ation of how neighboring states are constructed shows that two adjacent even states are never generated. )
The spin differences can be calculated to leading order by replacing 8; with (a;—P;) or the closely related (y; —y„+;) in"1+'

Eqs. (8) and (9). Let (a;—P;) =0, i &np The choice .of spin labeling detailed above maximizes np. Iteration of the recursion
equations leads after an involved calculation which will be detailed elsewhere to the following expressions for the energy
differences for n) 0.

(i) n&» ——1[mod4]—=4n+1'np=2n 1:

~E={ J1,1J2"C3 "cz "(s3—sz) —2J1 2/z" Jlc3" "" cz" "" ""(s3—sz) [c3cl(n —1 —x)+czx]
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(ii) n( l=2[mod4]= 4n+2;no=2n —1:

{Jzn+1 znn, 2n —1 2 n|N( )2)/D2n (12)

(iii) n(~l=3[mod4]= —4n+3;no=2n:

bE=(2J1212 J1c3 cz ($3 sz) [c3c1(rl x)+czx]

(13)

(iv) n(~l=4[mod4]= 4—n+4;no=2n:

E=( Jzn+ 2 znN, 2n —znn( )2)/D2n+ 1 (14)

where c = cos(2mn/p), s = sin(2+m/p), J11=J1cos[2m(at —no)/p], J1z=Jzcos[2m(ut —a 1)/p], Jz2= Jzcos[277(clz un)/p],

n„and n„are the number of walls between nn and 2 and no and 1, resPectively, x=X; z4 tz„zl(8n; —1) and

~ 1=1,3, . . . , (zn —1)(~&;—1).

Different formulas are needed for for the phases (m) which

border (~). (i) (4n)+ (~)~(4n+ 1):

bE = —Jz" cz" +1[(2n—1)J1c1+Jzcz]

—2p,pzJzcz)/D ",

(ii) (4n+ 1)+(~)~(4n+ 2):

(15)

2J2n —1 2n 1/D2n-p&2 2 (16)

(iii) (4n+ 2)+ (~)~(4n+ 3):

(iv) (4n+3)+(~)~(4n+4):

bE=Jz" 'cz" 'Q, (2J,nc, +Jzcz) —2Jzp, pzcz)ID "+'
(17)

p =8: many of the energy differences are zero. Hence the

formalism breaks down. Numerical results show, however,
that at least all phases expected to appear @1/D ) are

stable.
p=9: no clear pattern emerges. 8(1/Ds) the phase se-

quence is (~):(4):(34):(3);(2333);(233);(23);(23223);
(223);(2223);(2), where: denotes a stable boundary and; a

boundary which may be split at higher orders of the expan-
sion.

p= 10: many of the energy differences are zero. Numeri-

cally we have been able to show that @1/D ) only the

phases (2 3), k=1,2, . . . ,5 are stable between (2) and

(3).
p~ 11:the (2):(~) boundary is stable and no new phases

appear near xo and the transition is first order.
Results have also been obtained for several other models.

The chiral X-Y model with p-fold anisotropy

2J2nc2n/D2n+1p1 2 C2 (18)
W= g (—Jcos(8;,—8;+b) D(cosp 8, 1)—/p )—(19)

where p1= —Jz(S3—Sz) and pz=J1(sz —S1)—Jz(S3 Sz).
Results for low-order phases, n=0, can be obtained di-

rectly from Eq. (4) and then the formulas (11)—(18) can be
used to build up the phase diagram inductively. Although the

energy differences bE are cumbersome it is not hard to es-
tablish their sign for different phase sequences and values of
p. If AE is not too small the results can be checked numeri-

cally. This is done by minimizing the ground-state energy (1)
with respect to the 8; giving a set of coupled nonlinear equa-
tions which can be solved by iteration. Typically it is feasible
to identifiy phases which appear +1/D ).

The results for the Hamiltonian (1) are strongly p depen-
dent.

p=6: the (2):(3) boundary is stable. All energy differ-
ences are negative for phases which can be constructed by
the iterative process of combining neighboring states which
contain bands of length )3.Hence all these phases spring
from the multiphase point.

p = 7: all phases lying between (223) and (~) are stable.
The (2):(223) boundary is not split.

M=+ (—J(8; 1
—8;+b.) D(8;—8;)j—(21)

has a multiphase point at b, = m./p between the ferromagnetic
and chiral states. Here

bE= —(8m J"(»)/(p D"(» ')

in agreement with the exact results of Aubry.

(22)

becomes the chiral clock model in the D~~ limit. At the
multiphase point at b=m/p between the ferromagnetic

(. . . 000. . . ) and chiral (.. . 012. . . ) states

bE= —(4sin (m/p)[Jcos(m/p)]"(»)/{D"(» ') (20)

for a final phase (y). This is always negative for p~ 3 indi-

cating, in agreement with Chou and Griffiths that all phases
are stable.

The Frenkel-Kontorova model with a piecewise parabolic
potential
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The series expansion in inverse anisotropy outlined here
provides a new tool to understand the crossover between
discrete and continuous spin models particularly near
D =~ where the narrowness of the phases renders numerical
work difficult. Many interesting avenues remain to be ex-
plored. In particular it would be of interest to understand the
behavior of models where the leading term in the energy
differences vanishes and the recursion relations become non-
linear. Moreover it may be possible to recast the formalism
in terms of interactions between domain walls' ' ' and

hence attempt to classify the high-D behavior of systems
with modulated structures. Finally the multiphase point con-
sidered here is a special case of the anti-integrable limits
described by Aubry which also exist in electronic models
and systems of coupled anharmonic oscillators. Investigation
of whether similar expansions exist for these models would

be of considerable interest.
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