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A three-dimensional covalent network of N atoms possessing a fraction (n, IN) of r-fold-coordinated atoms

will, in general, display percolation of rigidity at an average coordination number (r) =2.4—0.4(n& /N), where

n&/N represents the fraction of onefold-coordinated atoms. As an example, we show how these ideas can

elucidate the glass-forming region in the Ge-S-I ternary system.

For a covalent network constrained by bond-stretching

(a) and bond-bending (P) forces, a mechanical critical point
exists when the number of constraints per atom (n, ) equals
the dimensionality or degrees of freedom (n„) of the space in

which it is embedded.

P1 c nd'

(r) =2.40. (2)

The character of a covalent network undergoes a qualita-
tive change from being easily deformable at (r)(2.40 to
being rigid at (r) )2.40. The predictive power of these basic
ideas has stimulated experimental work to look for such a
threshold in a variety of physical properties in glasses. Dis-
continuities in Aoppy modes detected by inelastic neutron
scattering and Lamb-Mossbauer factors, further disconti-
nuities in other observables such as Mossbauer site-intensity
ratios, activation energies for viscosity and enthalpy relax-
ation near Tg, specific heat jumps at Tg and Raman A&
vibrational mode frequencies in ternary Ge-As-Se glasses
and liquids, all have been observed to occur close to
(r)=2.40. In covalent glassy networks indicated above
which do not contain onefold-coordinated atoms (OFC at-

This general condition, enunciated by Phillips nearly four-
teen years back, has stimulated considerable interest in glass
science. This condition is satisfied exactly in some of the
best glass formers in nature such as As2Se3 and Si02. In
SiOz the P constraint associated with 0 atoms is apparently
broken as revealed by experiments and this ensures

n, =nd. Equation (1) is thought to describe the formation of
optimally polymerized networks. ' One of us recognized that
the glass condition (1) can be cast in the language of perco-
lation theory. Specifically, it was shown that for covalent
networks in which the N atoms chemically bond with coor-
dination numbers greater than or equal to 2, the number of
zero frequency modes F=N(n„—n, ) vanishes when the av-

erage coordination number (r) increases to 2.40.

n, = nq(1/2)+ g n„(r/2+2r 3)—
r~2

N. (3)

The number of zero frequency modes per atom F/N is given
by

oms), the experimental evidence is in general agreement with
the prediction of Eq. (2), although not without some
exceptions.

Within the context of network glasses which represent a
metastable system in structural arrest, vector percolation has
been used to describe elastic behavior of glasses in terms of
rigidity. Specifically, networks possessing twofold- and
higher-fold-coordinated atoms are successfully handled by
Eq. (2). However, OFC atoms which interrupt network con-
nectivity are specifically excluded in Eq. (2). Such atoms in
a glassy network have been considered to be ineffective '

percolatively and therefore unimportant. For this reason, one
can remove onefold-coordinated atoms to form a "plucked
network" as in previous discussions of H in a-Si networks,
H in a-C networks" and recently H in a-Ge-Si alloys. ' For
example, presence of H in a-Si network degrades the me-
chanical properties of the network (e.g., elastic moduli, hard-
ness). Dangling bonds can be systematically eliminated t

from the complete network and then standard counting pro-
cedures applied to the plucked network. However, we have
found it more instructive to consider the complete network
and explicitly treat onefold-coordinated atoms in the count-
ing of constraints. This leads to a result with a correction
term explicitly due to OFC atoms. In this paper, we look at
the effect of such atoms on the glass-forming tendency.

Let us consider a three-dimensional-covalent network
consisting of N atoms with n, of these possessing a coordi-
nation number of r. For an atom having r ~2, one has r/2 tr
constraints and 2r 3P constraints —(as discussed earlier),
while for an atom possessing r=1, there is —,

' of an n con-
straint but no P constraints. The total number of constraints
can then simply be enumerated as
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F/N=nd —n, =3 — (1/2)(ni/N)+ g (5r/2)(n, /N)
r&2

—g 3(n„/N) (4)

=3 —(1/2)(ni/N)+ g (5/2)(rn, /N) —(5/2)(ni/N)

4

P4

—g 3(n„/N)+3(ni/N) (5)

= 6 —(5/2)(r) —n i /N (6)

where (r)=X„,rn, /N and X, ,n, /N=1. The general
condition for onset of rigidity occurs at

SOP.'
ao 40 Qel 60 80

at. % Ge-

(r) =2.4—0.4(ni /N) (7)

(r) =4x+ 2(1 —x —y, ) +y, =2.4—0.4y,

or y, =(10x—2)/3. (8)

In Fig. 1, the filled square pathway represents a plot of
Eq. (8). It is remarkable that this calculated trend, which has
no adjustable parameters, reproduces the principal features

when one requires F to vanish. This brings us to the central
result of the present work. This exact result is also obtained
in the plucked network upon requiring (r)'=2.40, where

(r)'=[(r) —2(ni/N)]/(1 ni/N—) is the average coordina-
tion number of the plucked network. The plucked network
thus also incorporates the effect of OFC atoms in the corn-

plete network but only close to the rigidity percolation
threshold.

At the outset we observe that the present result of Eq. (7)
goes over to the familiar result of Eq. (2) due to He and

Thorpe when a covalent network does not contain OFC at-

oms (n, =0). More significantly, the present result highlights
the role played by such atoms in contributing to the rigidity
of a network. Specifically, the additional term —0.4(n, /N)
suggests that, in general, the rigidity percolation threshold

depends explicitly on the concentration of the onefold-
coordinated atoms in a network. These ideas can be put to a
quantitative test in real glasses as we comment next.

Bulk glasses in the Ge-S-I ternary system can be formed

by a fast quench over a wide composition (region II) as
shown in the phase diagram of Fig. 1, taken from the work of
Dembovskii, Krilenko, and Buslaev. ' Noteworthy in the

phase diagram is region I, where glass formation occurs even

upon slow cooling the melts at a rate of 2 'C/min. The gen-
eral shape of region I, where glass formation is apparently
optimized, can be understood in terms of ideas developed
above where OFC atoms are considered explicitly. Let us
consider a Ge S& „YIY ternary, in which Ge, S, and I atoms
bond in conformity to the 8-~ rule and possess a coordina-
tion number r of 4, 2, and 1, respectively. For a given Ge
concentration x, one can obtain the critical iodine concentra-
tion y =y, , at which the glass condition (1) in this ternary is
satisfied exactly. This requires the average coordination num-

ber (r) of the network to satisfy Eq. (7), i.e.,

FIG. 1. Glass formation in the Ge-S-I ternary as determined by
Dembovskii, Kirilenko, and Buslaev (Ref. 13). Region I: glasses
formed by slow (2'C/min) cooling. Region II: glasses formed by
fast (water-quench) cooling. The optimum glass-forming composi-
tions including corrections for the onefold-coordinated I atoms us-

ing Eq. (8) is shown by filled squares and incorrectly using Eq. (9)
by open squares.

(r) = [4x+2(1—x —y, )]/(1 —y, ) =2.4

or y, +Sx=1. (9)

The open square pathway (Fig. 1) is a plot of Eq. (9). This
pathway exhibits no overlap with region I. Thus, the lack of
any overlap between region I and the prediction of Eq. (9)
which explicitly excludes OFC atoms on the one hand, and
the clear overlap between region I and the prediction of Eq.

of glass formation in region I. Specifically in the center of
the phase diagram (Fig. 1), note that the filled square path-

way nicely overlaps with the glass forming tendency in re-

gion I. We also observe that the filled square pathway ex-
tends outside the glass-forming region towards higher Ge
and I concentration. At higher y, )0.40) iodine concentra-
tions, Raman scattering results provide signature of mono-
meric GeI4 units appearing in these glasses. Such units do
not contribute to network formation. Their appearance most
likely provides the reason for the deviation in the maximum
iodine concentration to which glass formation can occur be-
tween the predicted (y, =0.62) value, based strictly on ine-
chanical effects [Eq. (8)] and the observed value

(y, =0.55), which clearly includes chemical (or enthalpic)
effects as mell. Refinements to the theory to include such
effects and further investigations of the phase diagram (Fig.
1) region I near the composition GeS are ongoing. Glass
formation in this ternary appears to be qualitatively pro-
moted along the filled square pathway because the network is
optimally constrained and can polymerize with minimal ac-
cumulation of strain.

On the other hand, if we completely exclude OFC atoms
(I atoms) in the count of constraints to determine the com-
position of a Ge S

& ~I~ glass network at which the glass-
forming tendency is optimized, then we must require Eq. (2)
to be fulfilled as follows:
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(8) which explicitly includes the effect of OFC atoms on the
other, underscores in no uncertain terms the qualitative im-

portance of including constraints due to I atoms in describing
the glass-forming tendency in the Ge-S-I ternary. The predic-
tion of Eq. (8) would apply directly to many other ternaries
such as Ge-Se-I, Si-S-I, etc. in the IV-VI-VII family of
glasses. The present ideas can also be extended to include
other ternaries like As-S-I, Sb-S-I in the V-VI-VII family of
glasses.

The constraints counting arguments developed to include
OFC atoms [Eq. (6)] yield a result, which will stimulate an

understanding of the mechanical behavior of covalent net-
works containing such atoms. Specifically, one can use
present ideas to understand vibrational density of states, me-
chanical hardness, elastic constants and Lamb-Mossbauer
factors, in hydrogenated or fluorinated group IV semiconduc-
tors (such as Si and diamond), and IR transmitting glasses

based on Te-chalcohalides (Te 3Brz). These represent some
examples of covalent networks containing a significant frac-
tion of OFC atoms.

In conclusion, we have examined the role of OFC atoms
in determining the mechanical equilibrium of covalent net-
works using constraint theory. The rigidity percolation
threshold is shown to occur generally at (r) = 2.40
—0.4(n, IN), where n, /N represent the fraction of onefold-
coordinated sites. This exact result should be of broad inter-
est in understanding the role of alloying monovalent atoms
on physical properties of network glasses.
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