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Quantum Heisenberg model with long-range ferromagnetic interactions
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A modified spin-wave theory is applied to the one- and two-dimensional quantum Heisenberg
model with long-range ferromagnetic interactions proportional to r " ['R=—-g. . (Js/r~ )S; S. ~].
It is shown that for d & p & 2d there exists a phase transition at finite temperatures; the critical
temperature is estimated. The susceptibility and the specific heat are obtained at low temperatures.
Our results for d = 1, p=2, and S=

~ agree with the exact solution of the Haldane-Shastry model.
For d=1, we find a scaling relation &&+1=A when 2&p&3.

There has been much interest taken in models with
long-range interactions proportional to the inverse square
of the distance between sites ever since Haldane and
Shastry obtained the eigenstates and eigenvalues of the
S =

2 Heisenberg chain with a r exchange (HS
model). i 2 Haldane discussed the thermodynamics of the
S=2 model and obtained the susceptibility, which is ex-

ponentially divergent at low temperatures; less is known
about the general interaction r ".It has been shown that
the Ising chain with long-range ferromagnetic interac-
tions (LRFI's) decaying as 1/r" has a phase transition
for 1&p&2 and that for p) 2 no phase transition of
the model exists. Regarding the d-dimensional classi-
cal Heisenberg model with LRFI's (d=l, 2), the existence
of a phase transition for d&p&2d and the nonexistence
for p&2d are known. ~ s Simulations for the classical case
were performed using the Monte Carlo method and the
renormalization group approach to the n-vector model
was used. ' Also, rigorous bounds for the correlation
functions in the disordered phase are known.

For the investigation of the Heisenberg model with
nearest-neighbor interaction (NNH model), many meth-
ods have been developed. One of them is the modi-
fied spin-wave (MSW) theory, proposed by one of the
authors. The MSW theory is valid even in dimensions
less than three and results &om it agree with the exact
results &om the Bethe ansatz method. ' Recently, we
made the first attempt to apply this MSW theory to a
case with LRFI's

In this paper we consider the quantum Heisenberg
model with long-range ferromagnetic interactions decay-
ing as 1/r". The model in one dimension and that on
a two-dimensional square lattice are studied. Its Hamil-
tonian with a periodic boundary condition is written as

Z = -- ) ) J(n)S . S +„,

where the prime means the exclusion of the origin. The
strength of coupling J(n) is defined by gt Jo]Ll + n]
where L is such that L" is the size of the system. Note
that J(n) tends to Jo/]n~~ in the thermodynamic limit
and the condition p)d is necessary for sensible thermo-
dynamics. This model in the limit phoo is the NNH

model; the one-dimensional model for p=2 and S=2 is
the HS model. We will now discuss a MSW theory of
this model and study its properties at low temperatures.
After a formulation of the MSW theory, the terms up
to the second order in the Bose operators of the trans-
formed Hamiltonian are considered as the first step of
this approximation. It is then shown that in the region
p&2d there is no phase transition at finite temperatures.
The nonzero critical temperature in the region d&p&2d
is estimated. The temperature dependence of the sus-
ceptibility and of the specific heat are calculated; in the
one-dimensional case, a previously unknown scaling rela-
tion is obtained for 2&p&3. Next, the terms up to the
fourth order in Bose operators are considered and a set
of equations is derived. The procedure by which physi-
cal quantities are obtained is shown for the case of the
HS model; the susceptibility and the specific heat are
analytically calculated.

First of all, the Holstein-PrimakoK (HP) transforma-

at (2S —at a )i~2, S' = S —at a ] is applied to the
Hainiltonian (1). Note here that S S = S(S+1)and
that [a,at] = h,„.After an expansion in S i, we use

the Fourier transformation [a = (1/~N) pk e'"' ak,
a~~ = (1/y N) pk e '" akt] to change Rom coordi-
nate space to momentum space, where N is the num-
ber of sites. Then, the Hamiltonian is rewritten as 'R =
Eo + 'R2 + 'R4 + O(S ), where Eo ———(1/2)NS rl(0),
'R2 ——pk akakS(il(0) —il(k)), and

t+4=
8N ) ak ak ak ak +ks —k

k1 ik2, k3

x rl(ki)+il(W2)+il(Ws) + rl(ki+k2 —ks)
—2'(ki-ks) —rl(ks —k2) -rl(k2 —ks) .

Here il(k) = P„' J(n)e'k
We define (0) as the expectation value of an operator

0 for the state ~{nk)), i.e., (0) = ((nk)]0~(nk)), where

~(nk)) =gk(nk!) s (akt) "~0), which are eigenstates of
'82. Thus, the energy E, defined to be (Q), is Eo +
('R2) + ('R4), where ('R2) = gk(nk) S(il(0) —rl(k) }and
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())4)=-,„' () .((;*)—(-.)) (n(o) -n)k) )
k

+ ) (nant)(q)O)+g)k —k') —q)k) —g( —k')))
k,

k'(krak'

}

Here, the number operator nk is defined by akak. The
magnetization in the z direction is given by SN—
g& a&ai„which in conventional spin-wave theory is di-
vergent in dimensions less than three. To avoid this diver-
gence, we impose the zero-magnetization condition given
by SN —g& hi, = 0, where hi, = (ni, ). This modification
makes the spin-wave theory valid even in one and two
dimensions.

We assume here that Ak is the Bose distribution; the
entropy and the &ee energy are respectively written as
(entropy) = g&((1 + hi, ) ln(1 + hi, ) —h), lnhi, ) and
F = E —T x (entropy). Note that (ni, ) is given by
2hI, + hk. We want to know the nt, which minimizes the
free energy under the constraint condition of zero magne-
tization. Therefore, we introduce a Lagrange multiplier
»), and minimize the quantity W = F —»)', (Pi, hg —SN)
with respect to n),. From BW//Bh), = 0, the Bose distribu-
tion hi, = [e) ('("1 "1 —1] i is reproduced, where e'(k) =
BE/Bh), and P = T i. From BW//BIJ, = 0, we have
the self-consistent condition (SCC) S = (1/N) Pi, hk
which determines the nonzero chemical potential p, . Us-

ing rotational averaging, we obtain the static suscep-
tibility (y) when we have no Bose condensation, i.e. ,

y = (P/3N) g&(h& + hi, ). When we have Bose conden-
sation (BC), we cannot determine the nonzero chemi-
cal potential p, which means spontaneous magnetization.
Instead, we can determine the critical temperature T,
(= 1/P, ) from S = (1/N) Q„[e)"(")—1]

%'e erst consider the two terms up to quadratic order in
the Bose operators of the HP transformed Hamiltonian,
l.e., R=Ep + R2.

The model in one dimension can now be investigated.
To calculate the behavior of s(k), we use the property
of the Bose-Einstein integral function F(p, v) defined by

[1/I'(p)gp z" i(e +"—1) idz near v 0,

(-v)~-' )'" .'1 ~ . q(p-n)
F(p, v)=, i ) ——lnv +), (—v)",

when p is a positive integer, and

otherwise, where ((p) is Riemann's zeta function and
I'(p) is the gamma function. The dispersion e(k) in the
thermodynamic limit N—+oo is

( )
Jp S((p —2)k2 (p & 3)

2JpS ) ( JpSk ink (p=3)— (2)
JpSa)i(p)k~ (1&p&3)

SCC and therefore the system has no finite-temperature
phase transition. In this region, we can determine the
nonzero p, from the SCC, finding it to be

4((p —2)S P Jp
1

(S"[K(p)]~ iuri(p)P Jp) ' '
exp(PJpS vr )

(p & 3)

(2 & p & 3)
(p= 2)

where )r(p):—(p —1) sin[+/(p —1)]. The susceptibility
can now be determined and we obtain

2S g{p—2}~2

~ is, exp(P JpS27r2)

(p & 3)

(2&p&3)
(» =2).

where A(p) =I'( "i)(( ~ ). We note that for any k(&0),

s(k) goes to s(m) as p m 1+. The critical temperature
near p 1 can then be estimated for S=

2 to be

T, = 2(1 —2 ")((p)Jp/ln3.

The free energy per site of the one-dimensional model
in the thermodynamic limit is written as f = ep + Sp, +
(T/~) Jp' ( dk/de) ln(l —e )' ")ds, where Ep/N ~ ep

[= —JpS ((p) ] as N ~ oo. From the dispersion relation

(2), the free energy is found at low temperatures to be

f ep ——[((3/2)//4~S((p —2)]gT/Jp (p & 3)
—[A(p)/7r] [Su)i (p)] '=~ (T/ Jp) & (1&p&3).

We can now calculate the specific heat per site (c) and
for S=l/2 we have

(34(3/2)i[4V'2~(,'(p-2)]}V'TIJp (p & 3).(,"'",'). [~i(p)/2]'- (TIJp) -' (1&p&3).

%'e now consider the case when the model is on a two-

dimensional square lattice. First, we consider the sum

S„(k), defined by P' e '"'
~m~ ", to get the disper-

sion for small k (= ~k~). Lee and Bagchi showed that
S„(k)I'(p/2) (4/vr)i')'2 is

~k - 2~m]'
7r

XIX rn

where 4 (x) = J' e v dv Moreover. , Glasser ob-

tained S~(x, m) = 4 (2 & —1) ((p)p(p) and S„(0,0)

4((p)p(» ), wh«e p(» ) = E.:-i(—1)" 'i(2n —1)""U'-

ing these results, we get for s(k)/JpS, when k 0 and

in the thermodynamic limit,

In the region 1&p(2, on the other hand, we have BC.
Thus, the nonzero critical temperature can be estimated
kom the constant terms of the Bose-Einstein integral
function in the SCC with p, =0. Near p 2, we have

T, = JpSu)i(p)[zS(p —1)/A(, '„)]" '- JpS'vr'(2 —p), (3)

for positive and small k, where ug(p) is defined by
vr"d i'[I'(p/d)] "/sin[a(p —d)/2] for d= 1, 2.

In the region p&2, we have no BC which breaks the

I 1 —cos(k . rn)
[m])'

'q(&-1)p(~-1)k' (p&4)
-vrk2 ln(1/k) (p =4)

(ug(p)k~ 2 (2&p&4).
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For p ) 4, we can use the SCC: S =
f&B2 ni, (2z') dk,

where the region of integration is the first Brillouin
zone (1BZ), to determine the nonzero chemical po-
tential p, , because we then have no BC. Hence, we
can determine the nonzero chemical potential, ob-
taining Pp—= exp (4vrPJpS g($ —l)P($ —1)}. We
can now calculate the susceptibility in the same way
as the one-dimensional case; we find that
exp (4~PJoS'0(', —1)0(,—1)}/[»JpS&(2 —1)&(2—1)].

In the region 2 & p & 4, BC breaks the SCC of zero
magnetization. We can again use the SCC, with p, =0, to
estimate T, of BC as in the one-dimensional case. The
critical temperature near p 4 is estimated to be

T, = JpS(u2(p)[2z(p —2)S/A(4' )] ~

Noting that as p ~ 2, s(k) goes to s(vr, n) which equals
8JpS(1 —2 ~~ )((p/2)P(p/2), we can obtain for the crit-
ical temperature for S = 1/2 near p 2

T, = 4Jp(1 —2 ~ )((p/2)P(p/2)/ln3. (6)

The free energy per site in the two-dimensional case is
now given by f = ep+ Sy, —T j&B&(2z) ln(1+ ni, )dk.
Thus, we obtain for the low-temperature behaviors of the
free energy and of the specific heat

f " -— /[24S&(l-1)P(l-1)](T/J ) (p & 4)
—"',"'"[S~2(p)] '-'(T/Jp) '-' (2 &p «)
/[12S&(:-1)P(:-1)](TIJ.) (p & 4),

'.(„'" ') [S (p)]'- (T/J )'-' (2&p&4)

respectively.
The case of the two-dimensional model for p = 4, which

is marginal, as there is the problem as to whether or not
the SCC can determine the nonzero chemical potential, is
now examined, concluding that there is no transition. To
reach this conclusion, Grst we use spherical polar coordi-
nates, then the right-hand side of the SCC is estimated at
low temperatures to be (1/27r) fp

' ' k(dk/dz)(e +"—
1) idz, where z—:Pe' and v—:—Pp. We divide the in-
tegral region into two parts. One is the region &om 0 to
zo, where k and z are sufficiently small; there, we can
make the approximation k(dk/dz) 2/[7rSP Jp ln(1/z)].
The other is the region from zp to Ps(z, z), where this
approximation for the state density is insufficient. At low
temperatures the contribution &om the former region is
dominant; then, we consider the following improper in-
tegral for v = 0:

correct, because both Haldane's susceptibility3 and our
corresponding g are exponentially divergent at low tem-
peratures and because the region d&p&2d, where a finite-
temperature phase transition exists, is the saroe as the
region in Frohlich and co-workers discussion regarding
the phase transition of the classical case by means of the
re6ection positivity method. It is a striking result to ob-
tain results for the region 2(@&3,as here we get a new
scaling relation o.+1=p, in the d=l case. Here, n and
p are the exponents of the specific heat and of the sus-
ceptibility, respectively, at the zero-temperature phase
transition. We have no other results of T, to compare
with ours. We have obtained an unexpected gap of T at
p=4 in the d=2 case. The behaviors of p for the d=l
case, T, for the d=l case, and T, for the d=2 case are
shown in Fig. 1.

Next, we consider the terms up to quartic order in the
Bose operators of the HP transformed Hamiltonian, i.e.,
'R = Eo + Rz '+ 'R4. Therefore, because the dispersion
relation is given by s(k) = BE/Bni„we have

s(k) = ) J(n)(1 —cos(k n))

1 ~ ~ 1 Ix S ——) n„, + —) n„.cos(k n) .
N N

h'

(8)

We can make the Fourier expansion of the even func-
tion nk with respect to each component of k; the Fourier
coefficient f(m) is written by

s(k) = (Jp/2")) 1 —cos(k n) ]n~ "f(n), (10)
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f(m) = f&Bz(dk/7r )ni, cos(k m).

The dispersion s(k) in the limit N-+ oo is then given by

dx

o ln(1/z) e

0 I

3 4'

If this improper integral is divergent, we can obtain the
nonzero chemical potential without BC; if not, we have
BC. It is easy to check that lim ~pzi s (ln(i)} [(e
1)/z] =0 for 0&8&1and therefore (7) is divergent. Hence,
we reach the conclusion that the two-dimensional model
for @=4 has no phase transition at finite temperatures.

It is reasonable to consider that our results obtained
when we approximate 'R by Eq+'R2 are qualitatively

FIG. 1. The exponent of the susceptibility for the case of
d = 1 and the critical temperature of the S =

~ model for
d = 1 and d = 2. The exponent is represented by the dotted
line. The solid line and the dashed line denote T, for d = 1
aud for d = 2, respectively. The two results (3) and (4) are
linked numerically; the two results (5) and (6) are also linked.
Note that at p = 4 in the taro-dimensional case there is no
transition at any Snite temperatures.
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dk 2Jp 1 —e
ln

dc P 1 —e

- -z/a
—2JpSe (12)

where the initial conditions g=e=o at k=0 are used.
Equation (12) is used to change an integral variable &om
k to e in the integrations.

where we have used the SCC in this limit, i.e.,
~=f(0)/2"

Hence, the problem of calculating physical quantities in
a disordered phase is reduced to obtaining the dispersion
and the nonzero chemical potential which satisfy Eqs. (9)
and (10) and the equation of Bose distribution under the
SCC. For arbitrary p, we can obtain s(k) and v &om the
two equations S(2z')~ = fiBi dk[ei '(")+"—1] i and

Jo I [1 —cos(k n)] cos(q n)
(2~)" „. 1Bz lnl~(e~ (~)+" —1)

(11)
The dispersion and the chemical potential which are ob-
tained &om these two equations then give physical quan-
tities.

Fortunately, we can employ an analytical treatment for
the case of the HS model. Equation (10) for d=l and for
p=2 is differentiated twice, giving the differential equa-
tion d s/dk2= Johg —JoS. The introduction of a function
g(k)=de/dk and the integration of the difFerential equa-
tion give

The substitution of z for k in Eqs. (10) and (12) gives
the chemical potential as v exp( —PJoS2vr2/2) at low
temperatures. Using Eq. (12), the low-temperature sus-
ceptibility of the HS model is calculated for S = 1/2 to be

(P/6) g2/(PJoz) exp(P Jour /8). The dominant term
in the specific heat per site of the HS model is found to
be c (2/3)(T/Jo) for S = 1/2.

Our susceptibility, when we take Ep + A2 + R4 as 6,
agrees well with Haldane's. The only difFerence is the
constant factor 2/3, which we can improve in Schwinger-
boson mean-field theory, is since in that theory, y is cal-
culated &om (P/2N) P&(n& + ni, ).

In summary, we have studied one- and two-dimensional
quantum Heisenberg ferromagnets with a 1/r" exchange,
using modified spin-wave theory. We have shown the ex-
istence of a phase transition at finite temperatures for
d ( p & 2d and estimated its critical temperature. We
have also calculated the low-temperature behavior of the
susceptibility and that of the specific heat; a scaling re-
lation o.+1=p has been obtained for 2& p&3 in the
one-dimensional case.
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