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Bosonic high-T, superconductivity in two dimensions
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The mixed boson-fermion model of superconductivity of Friedberg and Lee is adapted to two
dimensions. Owing to the finite correlation length l(T), Bose-Einstein (BE) condensation can prevail
only for a finite, but still macroscopic system. It is shown that for T ( T, 40 K, BE condensation
of charged bosons that are converted from fermion (electron or hole) pairs leads not only to a perfect
Meissner effect but also an energy gap in the fermion excitation spectrum. For the temperature
range T, ( T ( TM „,where TM „depends, in part, on the thickness of the two-dimensional layer,
although the system shows no vestige of BE condensation, a near-perfect Meissner effect would yet
persist until T TM y ~ 150 K, based on the adaptation of the theory of May to the present model.

I. INTRODUCTION

An important common feature of the current high-
T, superconductors is the very small "coherence length"
(( 10 A.).i' This implies that the pair state whose ex-
istence has been confirmed experimentally can be looked
upon as a local boson field P(r). Based on this, several
boson models have been proposed to explain the mech-
anism of high-T, superconductivity. s The motivation
for these bosonic models is the well-known fact that a
charged Bose gas will exhibit the Meissner effect when
it is in a state of Bose-Einstein (BE) condensation. Due
to the small mass of the charge carriers, the critical tem-
perature for the BE condensation will be very high which
might then lead to high critical temperatures for super-
conductivity. However, many experiments show that for
these high-T, materials, the Cu02 layers play an essen-
tial role for the superconducting behavior. The other
layers of atoms between the Cu02 layers serve as reser-
voirs to provide the charge carriers, either electrons or
holes. On the other hand, BE condensation does not ex-
ist in two dimensions (2D) and, as a consequence, no su-
perconducting transitions can be expected for 2D boson
systems. One might then invoke the weak layer-layer cou-
pling and consider instead a very anisotropic Bose gas,
retaining thereby the BE condensation. However, evi-
dence pointing to the importance of interlayer coupling
is not conclusive.

In the following we will propose a bosonic theory for
high-T superconductivity without interlayer coupling.
This is adapted, on the one hand, &om the Friedberg-
Lee (FL) boson-fermion model of superconductivity to
2D (Ref. 3) and, on the other hand, f'rom May's work"
on superconductivity for two-dimensional free charged
bosons. According to May, although there is no sharp
BE condensation in 2D, there remains a nearly perfect
Meissner efFect at temperatures below TM~y which is in-
distinguishable practically &om the perfect London-type
Meissner efFect. When May's work is extended to the
FL boson-fermion model in two dimensions, we shall find

the following results. As the temperature T decreases
&om above, the two-dimensional FL model would first
exhibit a near-perfect Meissner efFect at TM y 150 K.
For a layer of 6nite area A, as the temperature T fur-
ther decreases to T, 40 K, an energy gap b, (T) in
the fermion excitation spectrum begins to appear as a
result of the mean-6eld-type interaction between the bo-
son field representing pair states and the broken pairs
of free fermions. The above scenario is somewhat differ-
ent &om that of the original FL model in the case of 2D
which will be discussed in a later section.

It should be emphasized that no attempt is made to
theoretically justify the smallness of the coherence length
which renders a phenomenological boson model possible.
Qualitative pictures for the formations of bosons can be
found elsewhere 8 xo

In the following, we shall briefiy review May's theory of
the magnetic susceptibility kernel for a two-dimensional
&ee charged boson gas in Sec. II. The Friedberg-Lee (FL)
mixed boson-fermion model originally designed for three
dimensions will be adopted but extended to two dimen-
sions in Sec. III. The bosons of a definite density in this
model depending essentially on the excitation energy pa-
rameter 2v of the boson 6eld will be the key quantity in
determining the relevant transition temperature to su-

perconductivity with near-perfect Meissner efFect. On
the other hand, the requirement for the existence of an
energy gap in the corresponding fermion excitation spec-
trum is more stringent. If this requirement for a system of
macroscopic but 6nite area is satisfied, a perfect Meissner
efFect usually associated with Base-Einstein (BE) con-
densation will occur. The results will be discussed and a
brief conclusion will be given in the final section.

II. SUSCEPTIBILITY KERNEL K(Q)
FOR FREE CHARGED BOSON SYSTEMS

The susceptibility kernel K(q) is defined by

M(q) = K(q)B(q),
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where M(q) is the q Fourier component of magnetiza-
tion, and B(q) the q coinponent of the magnetic induc-
tion. Generally, it can be shown that K(q) is of the form

K(q) =— (2)

In the London theory for 3D, A(q) becomes independent
of q after the system has gone into a BE condensate. The
resulting ~ singularity as q -+ 0 gives rise to the London-
type Meissner effect. In fact, K(q) can then be shown to
be given by~

e2 1 Np(T) \

mczq2 ( V )' (3)

plays the role of Np(T) of Eq. (3). This is as if the group
of states with momentum p ( &2, each with a weighted

average population of s Np(T), acted together as a whole

in contributing to K (q 0), somewhat analogous to
BE condensation into a single p = 0 state in 3D. How-

ever, unlike the 3D case, the q2 factor in Nq cancels the
singularity, eliminating thereby the perfect London-

type Meissner effect. While '&~ l,' 0 as T -+ T, for

3D, our present '& does not become zero at a singleN (T)

sharp temperature. Nevertheless, it can be straightfor-
wardly shown that the resulting susceptibility kernel is
given by

&T,K (q 0) = ——exp
27l ( T

where To and Tg~y are de6ned by

N 2mTp 1

4 h2 p2~

T, l
TMay j

(6)

where Np(T) is the temperature-dependent population of
the p = 0 state.

In two dimensions, on the other hand, there is no sharp
BE condensation in the thermodynamic limit. It can be
shown that the susceptibility kernel is given by

e 1 Nq(T)"1(N T&
(4)

mczqz( b, A )'
where b, is the thickness of the quasi-two-dimensional
layer and A is its area. The quantity Nq given by

Nq = z — —[Np(T)j
t'ql '2

(5)

III. MIXED BOSON-FERMION MODEL

A. Priedberg-Lee madel in three dimensions

In this model, Friedberg and Lee reasoned. that since
the pairing between electrons, or holes, is well localized
in the coordinate space, the pair state could be well ap-
proximated by a phenomenological local boson field P(r),
whose mass M is 2m, and whose elementary charge is 2e,
where m, and e are the mass and charge of an electron.
It follows then that the transition

2e, P(r) : 2e

must occur via the "s-channel" reaction. This is what
leads to a mixed boson-fermion model. Each P quantum
carrying 2e is assumed to be unstable, with 2v as its ex-
citation energy. In the rest kame of a single P quantum,
the decay P ~ 2e occurs, in which each e carries an en-

%ergy z
= v. It follows that, in a large system, there are

macroscopic numbers of both bosons (P quantum) and
fermions (electrons or holes), distributed according to the
principles of statistical mechanics. These charged bosons
would then Bose condense below a critical temperature,
leading to superconductivity, while the fermions would
acquire an energy gap in the excitation spectrum.

This model is partly motivated by the experimen-
tal observationii that in all high-T, superconductors,
there is a universal law: T, oc ~. If one interprets
p as the number density of bosons of charge 2e and
m' = 2m„ the proportionality constant could become
40K to 10 cm /m„which can be easily shown to be
equivalent to the condition of 0Az& 8, or

„' =2~2 (10)
1

for all cupric superconductors, where d—:cr ~, 0 be-
ing the two-dimensional boson number density. Such a
universal law is indeed suggestive of some sort of Bose-
Einstein condensation in which the interparticle distance
d and the thermal wavelength Az, should be of compara-
ble magnitude.

Following FL, we write the Hamiltonian as (h = 1)

H = Hp+Hg,

sidered as the transition temperature to superconductiv-
ity. As seen in Eq. (5), K2n(q 0) is given in terms of
the ground level population Np(T). In the mixed boson-
fermion model of FL, as we shall see, this ground level
population will be expressible in terms of the parameter
of the model.

exp — = (( 1.
TNi~y ) 12mc2b,

(7b) where

If m = 2m~, b~ 10 cmf Q 12.8. Athough there
+May

is no ~ singularity in K2n(q 0), we see that

~2Q /
Q

exp onentiaDy 1arge, T & T~yK (q~Q) =
exponentially sma11, T ) T]4f~y.

As shown by May, Eq. (6) and Eq. (7) lead to a near-
perfect Meissner efFect below TNL~y which may be con-

Q2
~0= ~r 2v — rdr

2M j
p2)

+) @t(r) — Q (r)d r
2m)

=) 2v+ btb~+) aqua ai,
2M) ~~ 2m" (12)
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and

Ki ——g r tr ~r +Hc dr
1= g ) ) b~ae+k ~as k~ + Hc.

p k

where x = xq —x2, and A is the two-dimensional area
of the system. Since '& is microscopically small as
A —;oo, we have

(13) 1 exp( —ikzcos8)
(27r) 0 0 z exp(Psk) —1

'

We see that IIi couples the bosonic P(r) to a pair of
fermions gt(r)g~(r).

To proceed &om Eqs. (11) and (12) we shall make a
mean-field approximation. Anticipating some degree of
Bose condensation that will become clear later we replace
the boson field operators P(r) and Pt(r) in Eq. (12) by
their thermal averages, which are expected to be inde-
pendent of r in a homogeneous system, i.e. ,

H, = g(jt) fjb~(r)g~(r)d r + H. c. (14)

The well-known procedure of the Bogoliubov-Valatin
transformation &om the bare fermion operators to the
quasiparticle operators can then be followed to yield the
quasiparticle excitation spectrum

&k = V'(" —~)'+
I
&k I'

where the energy gap
~
Ek

~

is given by

The transformed Hamiltonian would then yield the spec-
trum that, aside Rom a constant eo, represents the ki-
netic energy of a free boson (mass 2m, ) gas and the col-
lection of fermionic quasiparticles of energies EI,.

For a system in three dimensions, ~())t))
~

= ~&, which is
the number of bosons condensed into the p = 0 state per
unit volume for temperatures below the critical temper-
ature. Consider the case p ) p, p~ = (3x ) i(2m@) ~.
At T = 0, the system is in its lowest-energy state, which
(for g sufficiently small) consists of a degenerate Fermi
distribution of density p„and Fermi energy ep ——v, while
the remaining particles are all condensed into the p = 0
state with No ——

z (N —Ap„), where N is the total num-

ber of particles, X = 21' + Nf, Nf ——p„O being the
number of fermions and Ng the number of bosons. As
T increases, Xo decreases and becomes zero at the criti-
cal temperature while Ns ——

2 (N —Ny) rexnains practi-
cally unchanged except for small Sommerfeld correction

(kT )2

B. Mixed boson-fermion model in two dimensions

In two dimensions, BE condensation does not exist in
the thermodynamic limit. This immediately throws some
doubt on the validity of the mean-field approximation
itself, as expressed in Eq. (14). This can best be seen by
examining the correlation function

C(x, —x2)—:(Pt(xi)P(x2)) (»)
and the associated coherence length l. In terms of ak and

ak, we obtain, for a homogeneous system,

C(xi —x2) = —(aoao) + ) (akak) exp( —ik x)
kgo

(18)

where z = exp( —P)M) = exp(rI) ) 1, rI = —Pp ) 0. Ex-
plicit evaluation of the integral yields

(20)

where

t—: AT exp
4vr 2

(21)

where ~(P) ~

is then expected to be independent of xi
or x2 for a homogeneous system. However, the obvi-
ous contradiction between Eq. (22) and Eq. (20) renders
Eq. (22) invalid for a system with an area A )) l2. Only
when A (( I, would phase coherence be maintainable
over the entire area in the sense 8(xi) 8(x2) = 8 so
that Eq. (20) becomes consistent with Eq. (22); the order

parameter (P) would then also acquire a finite magnitude
commensurate with A, i.e., i(P)~2 ~Q ——finite.

With the above in mind we now reexamine Eqs. (14)—
(16). It might be argued that, although (P(x))
~(P)~e' ~"~ cannot maintain phase coherence over dis-
tances Az & /, we could first divide an infinite two-
dimensional system (A ~ oo) into regions of size (& t.
Within each region, at suKciently low temperature the
parameter (P) exists in the sense ~(P)~ g 0. The phase

8(x) of (P(x)) wanders from region to region, but its
magnitude ~(P) ~

remains the same. Since the gap energy
b„according to Eq. (16), depends only on the constancy
of ~(P(x)) ~, we have the same A for the entire infinite
two-dimensional system.

An important point to consider in the above context,
however, is how the constant value ~(P(x)) ~2 that remains
the same from region to region changes as the number of
such regions, each of size ( /, increases. The above sce-
nario would be meaningful only if ~(P(x)) ~

remains undi-

minished as A ~ oo. Since ~(P) ~

= ~Q, we consider the

calculation of No = (AGAO) from the above point of view,

is the temperature-dependent correlation length, ex-
pressed here in terms of the density 0 = & and the
thermal wavelength AT.

As we see from Eqs. (18)—(21), the finite range of coher-
ence / is not due to the BE condensation into the k = 0
state, but rather to the phase coherence of the particles
in states of various k's within an interval Ak &

&
~ This

is why (P (xi)$(x2)) = finite as long as ~xi —x2~ ( t as a
consequence of phase coherence maintained over a range
of order l.

If the mean-field approximation were valid, it would
mean the factorization, as ~xi —x2~ ~ oo,

C(x) = (4'(x ))(4(x )) = l(4)l'""'"' ""'" (»)
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where Ao denotes the annihilation operator for particles
in the k = 0 state in a system of area A.

Let us divide then A into m regions, each of area s =
—= s1 ——s2 ——- - - ——s~ (& l . The boson Geld opera-

tor P(x) = ~ g& Ai, e' ' or Ai, = ~ f P(x)e '" "d x
Hence,

Ap —— P(x)d x
A

f d(x)dsx + f d(x)dse

+ tt(x) d'e ).
trs

(23)

Let a; o denote the boson amplitude in the ith re-

gion. Obviously a;,0 —— J P(x)d z, just like Ao ——

~ f P(x)d z. It then follows that Ao ——~P,. i a; 0

and
m TA f7L

N() = (AotA()) = —) (A;o)+ —) ) (atoa, ()).
i=1 ig j

(24)

In Eq. (24), the first term on the right hand sidei2 is ~&',T'
the second term involving the double sum would give a
much greater contribution to Np for m )& 1. Recognizing
that

(
t .

)
(atoa p) if~x; —x ~(l,

we can immediately evaluate the double sum to give

t' g&& (1)
a pa~, p = m — — a pa;,p.=i) )'

(25)

(28)

In the above, the factor m represents the number of ways
to choose the region i. Since / is finite, for a given i
there are —, ways of choosing regions j of area s~ &( l2

within sample area A && t . The factor 2 is to correct
for double counting. Since (n;o) = (a;Oa;0) = ~z', we

1 1 l'see that —P,& P. i(atoa~ 0) = —(m —', )(z)n; 0 =
2 ~&T'

which is seen to be independent of the area A. It follows
from Eq. (24) that N()(T) is independent of the area A.
In fact, with the use of Eq. (21), No(T) e +. As a

result, ~(P}~ = ~&
'

& which decreases as &~ to zero
as the area A increases to infinity.

Consider now a 2D system with Gnite but macroscopic

area 2 = L & l (T). We calculate ~(t)(r)))
Since the two-dimensional Np is given by

1
Np ——

e~ —1

oANp ——e~"& —&. (28)

where g = —p((L is determined by the condition o = ~& ——

f~,„&"+
) i, this yields exp( —

(yI) = 1 —exp( —oA2)
or

Correspondingly ~(d(r))~ = )t—s = s, ) -„x and

the energy gap, according to Eq. (16), is given by

4ml2
(29)

T

which is now finite since A & l2(T).
The condition that A & l2(T) defines a critical tem-

perature T, for the existence of the energy gap in the
fermionic excitation spectrum, i.e.,

A=1 (T,).
This T, can be related to the previously introduced To

in Eq. (7a) as follows: &,
—— » ' ——e '".. Thus,

ln4zNs. For example, if Ns = 10 2, ~$ 53. For
m = 2m„we find Tp 2000 K, so that T, 40 K.
Thus in this weak coupling limit of the FL theory as
adapted to two dimensions, there will be BE condensa-
tion ((tt) =finite for T ( T, . Correspondingly, a perfect
Meissner efFect will persist &om T = 0 until T = T, . Note
that the existence of T, related to A through Eq. (30)
is arrived at independently of the presence of fermions.
It is a modification of May's result for 2D bosonic sys-
tems in general. As a consequence, one may conjure up
a scenario that, at a given T, magnetic fIux that was
originally repelled from a system of finite area A could
now penetrate the same system but with an enlarged
area. This is in contrast to the 3D case, but it is not
as surprising as it might seem. We recall that it costs
&ee energy for the system to repel magnetic Qux. While
it xq.ay be energetically favorable overall for a system of
smaller area A to maintain the coherent superconduct-
ing state and repel the Hux, to repel the prevailing Bux
&om a larger area may proportionally be too costly in
energy. This is in view of the fact that the coherence
of the (Bose-condensed) superconducting state can only
be maintained up to a finite distance l(T). The latter
means that the corresponding energy lowering due to the
maintenance of the superconducting state relative to the
norinal state is proportional to A only when A ( l (T).
When A ) l2(T), this energy lowering per unit area falls
off as A increases, and may not be able to compensate for
the energy cost in repelling the Hux &om a larger area.

In the temperature range T, ( T & TM~y, since
(P) = 0, the energy gap b, also vanishes. The usual
perfect Meissner effect associated with BE condensation
of a charged boson gas now gives way to the nearly per-
fect Meissner effect described by the susceptibility kernel
of Eq. (8). As discussed in Sec. II, a group of states with
moment»m p ( ~2 rather than a single p = 0 state con-
tributes collectively to K (q 0) of Eq. (8) in which
TM z is expressed in terms of To in Eq. (7b). In turn, To of
Eq. (7a) is now determined by the two-dimensional boson

density mrs = ~&
——' z —— ' &" —— ((r —o„)—

where 0„= &", is the density corresponding to a Fermi
energy e~ ——v.

For T & T]My the system becomes nonsuperconduct-
ing, exhibiting no Meissner efFect at all.
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IV. SUMMARY AND CONCLUSION

We have adapted the mixed boson-fermion model of
Friedberg and Lee to two dimensions. For illustration
purpose, only the weak coupling limit has been consid-
ered. Owing to the nonexistence of BE condensation in
two dimensions as the area A ~ oo, we are led to con-
sider a finite but macroscopically large area A, whose lin-

ear dimension L is not larger than the correlation length
l(T).

An analogous case is that of a two-dimensional crys-
tal. Although the correlation length for long-ranged or-
der is not infinite, as required of a theoretical crystal, it is

large enough to be of macroscopic size. This means that,
in practice, we should be able to make two-dimensional
crystals of finite but macroscopic size.

For the case of p & p„ in the FL model, the condition
that A = l2(T, ) defines the critical temperature T, below
which the usual BE condensation prevails for this two-
dimensional Bose system of 6nite size. In turn, this leads
to a finite energy gap A(T) for T ( T, in the fermion

excitation spectrum through the mean-field approxima-
tion in the FL model. The system then also exhibits a
perfect Meissner effect as for the usual charged boson
gas in three dimensions. Although this T, depends on
the number of bosons Xg which, for p ) p, depends
very simply on the boson formation energy parameter
2v of Eq. (12), T, has been estimated to be 40 K
for Ng 10 . On the other hand, for the temperature
range T, & T & TM&y there is no longer any trace of BE
condensation. However, a nearly perfect Meissner effect
as Erst suggested by May would persist in the absence
of any energy gap in the fermion excitation spectrum.
TM ~ has been estimated as 150 K. The statements
above refer to a strictly two-dimensional layer. Any in-
terlayer coupling tends to enhance the long-ranged order
or increase l(T) which, in turn, would enhance the su-

perconductivity transition temperature. For T ) TM~y,
there is no longer any remnant of long-ranged order and
superconductivity disappears. It would be interesting to
generalize the present theory to multiple layers and see
explicitly the effect of interlayer coupling.
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