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The temperature dependence below T, of the line shape of optical phonons of different symme-
try as seen in Raman scattering is investigated for superconductors with anisotropic energy gaps.
It is shown that the symmetry of the electron-phonon vertex produces nontrivial couplings to an
anisotropic energy gap which leads to unique changes in the phonon line shape for phonons of different
symmetry. The phonon line shape is calculated in detail for Bi, and A4 phonons in a supercon-
ductor with d,2_,2 pairing symmetry. The role of satellites peaks generated by the electron-phonon
coupling are also addressed. The theory accounts for the substantial phonon narrowing of the Biq
phonon, while narrowing of the A;, phonon which is indistinguishable from the normal state is
shown, in agreement with recent measurements on BizSroCaCu20s and YBa;Cu3O7.

I. INTRODUCTION

Optical phonons observed via Raman scattering have
provided a large amount of information concerning the
energy gap in high-T,. superconductors,! and there have
been attempts to describe the changes in the phonon line
shapes below T, in s-wave? and d-wave superconductors.?
It is believed that the changes in the phonon line shape
below T, are due in part to changes in the phonon self-
energy resulting from coupling between phonons and
quasiparticles. It has been argued that if the optical
phonon has a frequency below the pair threshold energy
2A, then the phonon’s linewidth decreases (narrows) and
its frequency renormalizes to lower frequencies (softens)
as the quasiparticles become frozen out. However, for a
phonon near 2A, the linewidth is predicted to grow due
to the enhancement of the density of states at the gap
edge and there can be either pronounced phonon soften-
ing or hardening depending on which side of the thresh-
old the phonon is located. This simple picture has been
employed to determine the position of 2A in the cuprate
superconductors.

However, this simple analysis applied to the cuprate
systems has revealed that the above picture is a bit mis-
leading. The above scenario has yielded a value for the
energy gap that is different for different types of opti-
cal phonons and is thus symmetry dependent. For the
case of the Bi 2:2:1:2 system, where very clean surfaces
can be obtained, a low frequency phonon which trans-
forms according to A;4 symmetry (located at 464 cm™?,
connected with the bridging oxygen vibrations) shows a
downward frequency shift (softening) while no substan-
tial linewidth change from the normal state can be re-
solved from the data.* However, the B;, phonon [285
cm™1, connected with the antisymmetric out of plane
O(2) and O(3) vibrations in the Cu-O plane] on the con-
trary shows a small frequency softening but a substantial
linewidth narrowing below 7.5 Similar behavior is seen
in the YBa;Cu3zO7 (YBCO) systems (but the A;4 phonon
bardens),® where such a large difference in behavior be-
tween the A;, and B,y phonons in part led the authors
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of Ref. 6 to suggest that these two phonons interact with
different electronic systems.

There has been no satisfactory theoretical explanation
for the behavior of the different phonons. The main
problem in addressing these experiments with the exist-
ing theories concerns the lack of attention paid to the
symmetry dependence of the optical phonons. However,
this symmetry dependence can be an important tool to
uniquely determine the k dependence of the energy gap
around the Fermi surface. It has been shown that the
electronic contribution to Raman scattering can provide
a large amount of polarization- (symmetry-) dependent
information that allows for a stringent test to made to
determine the actual symmetry of the energy gap in
superconductors.” It was shown that the coupling be-
tween the Raman vertex and an anisotropic gap leads to
symmetry-dependent spectra, with peak positions and
low frequency and temperature behavior dependent on
polarization orientations. These changes in the spec-
tra allow for a direct determination of | A(k) |. Good
agreement with the electronic Raman spectra taken on
very clean Bi;Sr,CaCu;0g (BSCCO) surfaces was ob-
tained using a gap which was predominantly or entirely
of dy2_,2 symmetry, where the peak position and the low
frequency behavior of the spectra could be straightfor-
wardly accounted for. The symmetry dependence of the
data led to the conclusion that the gap must be predom-
inantly of By, character. Since the phonon self-energy is
very similar to the electronic Raman density response,
the same type of analysis for the electronic contribu-
tion to Raman scattering can be made to the phonons
as well, leading to a further check on the predictions re-
cently made concerning the energy gap in the cuprate
materials.

We propose an alternative explanation for the sym-
metry dependence of the Raman shifts based upon non-
trivial couplings of phonons of different symmetry with
an anisotropic energy gap. Close attention will be paid
to the role of the electron-phonon vertex, and conse-
quences of its k dependence will be addressed. Most im-
portantly, it is shown that the line shape is polarization
dependent for anisotropic superconductors and different
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dependences on temperature can be used to determine
not only the magnitude but the symmetry dependence of
the energy gap. Moreover, it is shown that the peak of
the self-energy can be located at frequencies below 2A a5
for certain polarizations which have a symmetry orthog-
onal to that of the energy gap. Thus if the symmetry
of the phonon is neglected, values of the energy gap in-
ferred from changes in the phonon line shape using an
isotropic s-wave theory will be underestimated (see, e.g.,
Ref. 1). In particular, the phonon spectral function for a
superconductor with d,:_, 2 symmetry is examined and
a comparison is made with experimental data on both
the By, and the A;; phonons in BSCCO and YBCO.
It is shown that satisfactory agreement can be obtained
which reconciles the differences between the A;4 and By,
phonon line shapes.

II. PHONON SPECTRAL FUNCTION
The phonon spectral function is given by
4wis" (w)

ImD(w) =
mD(w) (W2 — wZ — 20T (w)]? + 4wZE"2’ (1)

where wy is the optical phonon frequency and X', X" are
the real and imaginary parts of the phonon self-energy,
respectively. The real part of the self-energy renormal-
izes the position of the phonon, while the imaginary part
governs the linewidth. The interaction of optical phonons
and electrons can be simply written as

Hepn= ) 6@k qotkably +bas),  (2)

k,q,7,0

where g/ (q) is the matrix element for scattering an elec-
tron from k = k — q, and bgq -, bfl,,y are the field opera-
tors for phonons of branch . The details of the scatter-
ing matrix elements depend on the nature of the mecha-
nism of the electron-phonon coupling and the symmetry
of the lattice vibration. In this paper we only consider
the symmetry of the matrix element and leave a trea-
ment of the mechanism and magnitude of the coupling
for future consideration.®

We take the k dependence along the Fermi surface of
the vertex into account by expanding in terms of Fermi
surface harmonics ® for small q,

g =3 g1e1(k), 3)
L

|
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where the index L indicates the order of polynomial that
transforms according to the ~th representation of the
point group of the crystal. For cylindrical Fermi sur-
faces, L can be replaced by azimuthal quantum numbers.
The symmetry of the optical phonon enters into the ma-
trix elements gy. The matrix elements for the phonons
accessible to in-plane polarizations are given for a cylin-
drical [two-dimensional (2D)] Fermi surface in terms of
azimuthal angle ¢ as

glf:lg =g£;90 + 92;94\/§cos(4¢) + .-

gf‘g = gf;”z 2cos(2¢) + - - (4)

where we have dropped higher order terms, arguing that
they are more anisotropic than the terms considering here
and will hence be of minor importance. The L = 2 term
for the A;, channel which is present for z dispersion is
absent here and the L = 4 term is the first anisotropic
term in the series in this case.” Also, since there is no
dispersion in the z direction in this case, there are no
contributions to the Ey channels. Consequences of the
Fermi surface and the resulting response functions are
considered in a forthcoming publication,® and thus for
our purposes we will confine our attention to only cylin-
drical Fermi surfaces.

The form of the e-ph interaction Eq. (2) is similar to
the electronic contribution to Raman scattering in the
case of nonresonant scattering with the replacement of
the effective Raman vertex by the e-ph coupling vertex.
Thus we can proceed along the lines recently taken for
the case of the electronic Raman scattering,” where it was
shown that the Raman response is extremely polariza-
tion dependent for superconductors with an anisotropic
energy gap. Moreover, it was shown that the collective
modes which appear in the case of d-wave superconduc-

tors are of little importance to the Raman response.”®
We can then separate the self-energy into two parts
Y(q,w) = E(q=0,w) + 6X(q,w). (5)

Delaying a discussion of 6% until Sec. III, we can write
down the spectrum of the self-energy at ¢ = 0 in the pair
approximation, e.g., neglecting collective modes as

DU -0 —
9.¢(d=0,w) »

The subscript g, g denotes the pair susceptibility calcu-
lated with vertices g. The real part can be obtained
via a Kramers-Kronig transformation. Here (- - ) denotes
an average over the Fermi surface, Ng is the density of
states per spin at the Fermi level, © is a theta function,
and A(k) is the generalized k-dependent energy gap. We
see that if the gap is isotropic [A(k) = A], the average

_4NF<1gg PlAK) P o@w? - 4| AK) )

Vw2 —4]adk) 2

> tanh(w/4T). (6)

-

around the Fermi surface is frequency independent and
thus the symmetry of the vertex only determines an over-
all prefactor of the self-energy. Also, since the imaginary
part of the self-energy has a divergence at the pair thresh-
old energy 2A, a phonon with a frequency below the
threshold should be infinitely sharp (neglecting strong-
coupling effects). However, if the gap is anisotropic, the
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vertex and gap couple when averaging over the Fermi
surface to produce nontrivial changes in the self-energy
of phonons of different symmetries. Further, if the gap
vanishes on the Fermi surface, the presence of the nodes
can provide decay channels for the phonon leading to a
finite linewidth for all nonzero frequencies.?

The isotropic (L = 0) densitylike terms will be coupled
to the long-range Coulomb forces and thus we must take
screening of the vertex into account. Summing random-
phase approximation (RPA) diagrams we recover the
known result at ¢ = 0,

B =34 — 22,1/21,1, (7
J

/1 sc __ " —_— —_
231: - Blg (q - 0’ w) - 3wz

—4Nrgh,, [[(2+2?)K(z) - 2(1 + 2?)E(z)], < @)
z[(1+22%)K(1/z) — 2(1 + z?)E(1/z)], =>1;
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where 1 denotes the L = 0 contribution of the vertex
g.1%1! Therefore we see that the L = 0 terms are com-
pletely screened for q = 0 as a consequence of the long-
range Coulomb interactions and do not contribute to the
Raman response.

Carrying out the integrations in Eq. (6) using a dz3_,3
gap A(k, T) = Ao(T) cos(2¢) for a cylindrical Fermi sur-
face, the spectrum of the phonon self-energies can be
written down in terms of complete elliptical integrals K
and E of the first and second kinds, respectively. Tak-
ing screening into account and defining z = w/2A,, we
obtain for T = 0,

<1,

i.e., the By, channel is not affected by Coulomb screening, while

3:1, = EAlgaAlg - 2?41,.1/21,17 9)
with the spectral functions
" _ _ —4NF911, 7 — 8z2 + 16z4)K a:)— 7 —12z22% + 3224 E , z <1,
By, (1= 0,0) = 157z {:[1:(4[(32 — 28/z? +)11(/a:4)1§(1/z) - (32— 12)/x(2w~)}—] 7/z*)E(1/z)], z=>1,
(10)
" —0.0) = ~2V2NFgay, [[(1+22%)K(2) - (1+ 42%)E(a)), z <1,
Apa(@=00) = =5, { (1/2)[(4 = 1/2)K(1/z) = (4 + 1/2)E(1/2)], = >1, (11)
and
"o _ —2Nr [ [K(z) — E(z)], <1,
Tra(a=0w) = T {m[K(l/z) - E(1/z)], =>1. (12)

The response functions for finite T are obtained sim-
ply by multiplying Eqs. (8) and (10)-(12) by the factor
tanh(w/4T). The partial screening of the A;, channel
by long-range Coulomb forces comes from the observa-
tion that the square of the energy gap enters into the re-
sponse function in Eq. (6). For the case of d.s_,2 pairing
symmetry, the energy gap squared contains a term which
transforms according to A;y symmetry which leads to a
mixing of the L = 0 and L = 4 A, basis functions. This
corresponds to partial “transverse screening” of the A;q
vertex.”

The corresponding real parts were obtained via
Kramers-Kronig analysis and are plotted together with
the imaginary parts in Fig. 1 for the B;y, and screened
Ajg channels. We see that the peak in the imaginary
part of the self-energy (which determines the linewidth of
the phonon) lies at different frequencies wpeax ~ 2A¢(T)
and 1.2A¢(T) for the B4 and A;4 channels, respectively.
This is a consequence of the angular averaging which cou-
ples the gap and e-ph vertex, and leads to constructive
(destructive) interference under averaging if the vertex
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FIG. 1. Real and imaginary parts of the phonon self-
energy for the B;g, and A4 channels for a cylindrical Fermi
surface. Magnitudes of the vertices are set equal to 1.
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and the gap have the same (different) symmetry. Sim-
ilar behavior for the electronic contribution to Raman
scattering led to the reasoning that the symmetry which
shows the highest peak position gives an unique indica-
tion of the predominant symmetry of the gap.” The sym-
metry dependence is also manifest in the low frequency
behavior, which can be written as

B, (w—0)= 3Npgfgum3/4 + 0(z%),
i’tlg(w —0)= Npgfhga:/2 + O0(z®); (13)

i.e., the spectrum of the self-energy rises slower in the
B, channel than the A;, channel.'? The power laws are
a signature of an energy gap which vanishes on lines
on the Fermi surface, but the channel dependence of
the exponents is unique to a dg2_,2 pair state. These
channel-dependent power laws have been observed in the
electronic contribution to Raman scattering in BSCCO,
YBCO, and double and triple layer thallium cuprates
which constitute strong evidence for a d-wave gap of this
symmetry as opposed to dgy, dz,, or dy, symmetry, which
also have nodes on lines on the Fermi surface.”

The real parts of the self-energies (which determines
the frequency renormalization) show a change of sign
near the peak in the imaginary part. While the B;,4 chan-
nel shows a mild frequency dependence away from the
peak maximum and then a rapid change of sign at the
peak, the A,y channel shows a smooth crossover from
negative to positive values, with a change of sign that

|
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occurs at a frequency which is slightly greater than the
peak maximum in the imaginary part. Thus a phonon
of A;, symmetry which lies at energies below 2A¢(T)
can become hardened as opposed to softened. We im-
mediately can draw the conclusion that phonons of the
same frequency will show qualitatively different behavior
in different channels as a consequence of their symmetry.
Therefore, careful attention must be paid to symmetry
before an analysis of the gap can be made by locating
the point where phonon softening or hardening occurs.

III. TEMPERATURE DEPENDENCE

We now investigate the temperature dependence of the
phonon line shape. The q = 0 spectral function, Eq. (6),
vanishes at T, due to the lack of particle-hole continuum
for pair creation. This term thus always predicts phonon
broadening compared to the normal state below 7T, for
a gap with nodes. However, the term responsible for
the normal metal self-energy (due to, e.g., finite momen-
tum transfer or anharmonic decay) will be affected by
superconductivity due to the reorganization of the den-
sity of states as the gap opens up. In order to recover
the normal metal line shape at T, one must use finite
q (or impurity scattering!®!3) to generate the additional
term 0¥ which does not vanish at T.. We now general-
ize the result to finite g for anisotropic gaps. For finite
g, the spectrum of 6% at finite temperatures is given by
6%"(q, T, w) = O(vrg — w)(| g |2 F(k,w)) with

E(E +w)— | A(k) |2

F(k,w) = Npn® /m
’ 2vrq Jia)

dE{[f(E) — f(E +w)]

VE — | AK) 24/ (B +w)— | A(K) 2

E(E —w)— | Ak)

+O(E- | Ak) | —w)[f(E — w) — f(B)]

where f is a Fermi function. The theta function ©(vpq—
w) restricts the frequency shift due to phase-space con-
siderations, reflecting that the region of the particle-hole
continuum vanishes for small wave numbers as a conse-
quence of momentum conservation. Since vpg < A in
the cuprate materials and also in A 15 materials, this
term will only contribute to the self-energy for phonons
of very small energy. However, it has been shown for s-
wave superconductors!® that the incorporation of impu-
rity scattering removes the phase-space restriction due to
the lifting of momentum conservation and 4% contributes
for all frequencies. While incorporating impurity scatter-
ing remains beyond the scope of the present treatment,
we remark that it is expected that a similar consideration
for the case of d-wave superconductors would also lead to
the contribution of §¥ for all frequencies. This remains
to be explored.'*

In the limit of small frequencies (w <« T'), we obtain
the simple result

- __, (14)
VE | AR [2y/(B —w)2— | AK) 12}

| 9z I?
e A®I/T 4 1

2
2" (q,w < T) = o <
VFq

>(-)(qu - w).

(15)
Similarly, at T., Eq. (14) recovers 63" (q,w << T) =
O(vpq — w)wlE™ (| 9] |?) and thus the ratio of the low

vrq
frequency response in the superconducting state to that

of a normal metal at T, is given by

55 g 1) _ (6L 1C AR ()
X" (qw < T:) (l9g 1%

This shows how the redistribution of the density of states
below T, to higher energies as the gap opens up leads to
a reduction of the decay channels available to particle-
hole creation and a net decrease in the phonon linewidth.
In isotropic superconductors, the Fermi function can be
pulled out of the average and the resulting expression is

(16)
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SZ(T,A)
SX(T,A=0)

FIG. 2. Temperature dependence of the
w — 0 imaginary part of the self-energy in
a d,2_,2 and isotropic BCS superconductor
compared to the normal state.

independent of phonon symmetry. However, once the gap
is anisotropic, there exists coupling between the vertex
and the the gap which leads to a symmetry-dependent
result.

Using a weak-coupling expression for the teniperature
dependence of the energy gap (2A0/kpT. = 4.2794), we
numerically evaluate Eq. (16) while taking screening into
account. The results are plotted in Fig. 2 as a func-
tion of T/T, for a d,a_,2 energy gap compared to a BCS
isotropic gap. The low temperature behavior is given by
a power law in T for all channels for the d-wave case while
the ubiquitous exponential dependence in T is seen for
all channels in the s-wave case. The power-law behavior
for the d-wave case is channel dependent, with exponents
identical to those of Eq. (13), in the sense that w can be
replaced by T. What is remarkable is that the falloff
of the Fermi function at low temperatures is quite slow
in those channels which are orthogonal to the symmetry
of the gap, with the notable example of the A;, chan-
nel, which shows a residual broadening at T/T, = 0.3
of roughly 20% of that of the normal state. This was
argued in the case of electronic Raman scattering to be
further evidence for an energy gap in the cuprate mate-
rials which has predominantly By, character, due to the
observation that a gap opens up quickly in the Byg4 chan-
nel compared to A;, and others which have been probed
via Raman scattering.”

For higher frequencies w > T, we have evaluated Eq.
(14) directly. The results are quite similar to those of
Fig. 2 for all frequencies w up to roughly 4A, but then at
higher frequencies all channels eventually display a linear
T dependence (i.e., the behavior of the normal state) for
energy scales much greater than the gap energy.

IV. ENTIRE SPECTRAL FUNCTION
AND ROLE OF SATELLITES

In this section we consider the entire phonon spectral
function Eq. (1), paying particular attention to the role
of satellites which arise due to e-ph coupling. The role
of satellites has not been explored in anisotropic super-
conductors. As is well known for BCS superconductors,
satellites appear in the phonon spectral function for all
frequencies of the optical phonon, but have the greatest

residue for phonons near twice the gap edge. In the BCS
case, impurities wipe out the satellite peak,'® explaining
why they have yet to be definitively observed in conven-
tional A15 superconductors. In the absence of impurities,
however, vastly different line shapes can be obtained due
to the interference of the satellites.

Using a gap of d,a_,2 symmetry and working specif-
ically at ¢ = 0, Eq. (6), we find that the satellites are
present in anisotropic superconductors as well due to the
fact that the real part of the denominator of Eq. (1)
has two zeros for any value of wp—one at the renormal-
ized phonon frequency and the other at the satellite po-
sition. The satellite becomes more pronounced the closer
the optical phonon is to the peak position of the self-
energy spectrum as in the BCS case and interferes with
the phonon. Therefore, for the case of a phonon located
below the spectral maximum, where the satellite peak is
observable only at T'=0 for large e-ph coupling, as the gap
decreases on approaching 7, the satellite will be made
to pass through the phonon position and will be subse-
quently distorted. This is shown in Fig. 3 for a By,
phonon [wo/Ao(T = 0) = 10,93, Nrp/Ao(T = 0) = 0.1]
for the temperatures indicated. The phonon line shape is
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FIG. 3. Phonon spectral function for a By [wo = Ao(T =

0),g§1ng/Ao(T = 0) = 0.1] phonon in a superconductor
with d,2_,2 pairing symmetry for various values of T'/T. as
indicated in upper part of figure.
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drastically affected by the satellite which takes spectral
weight away from the phonon when the peak of the spec-
tral function is close to the phonon position. The phonon
linewidth grows as the peak of the spectrum moves up in
energy with decreasing T and is hardened. The linewidth
and frequency shifts reach a maximum when the peak
and phonon positions coincide and then the linewidth
decreases and the phonon softens as T' — T..

V. CONCLUSIONS
AND COMPARISON WITH EXPERIMENT

In this section we combine the previous results and
examine the phonon linewidth as a function of temper-
ature for the case of two phonons which lie at approxi-
mately 285,340 cm™?! for the By, channel and 464,500
cm™! for the A;4 channel in BSCCO and YBCO, respec-
tively. Using our previous fits to the electronic Raman
scattering in BSCCO, we obtained a value of the energy
gap at T = 0 to be A¢(T = 0) = 287 cm~ 1.7 There-
fore the normalized optical phonon frequency is given by
wo/Ao(T = 0) ~ 0.99,1.62 for the By4, A1y phonons,
respectively in BSCCO, while for YBCO the ratio is ex-
pected to be slightly higher. We can immediately make
the following statement. Since the interference effects of
the phonon with the satellite peak can only occur for a
phonon which is located at T = 0 below the peak in the
imaginary part of the self-energy, there should be no in-
terference effects on the A;, phonon since it lies above the
peak in the spectrum at 7' = 0. Thus its renormalization
should be a monotonic function of temperature. How-
ever, that is not the case for the B;4 phonon. Anoma-
lous behavior of the B, 4 renormalization as seen in Fig. 3
arises due to the interference between the phonon and the
rapid rise of the self-energy near 2A¢(7T'), which passes
through the phonon frequency at T/T. ~ 0.9. Another
remark is in order. In order to make an accurate fit to the
data, the magnitude of the coupling constant needs to be
addressed. As we have seen in Sec. IV, it controls the
strength of the satellite and its subsequent effect on the
phonon line shape. Little is known about the coupling
constant® and thus we can only make general statements
on the behavior of the phonons. The magnitude of the
effect cannot be predicted.

Inspecting Fig. 1, the q = 0 part of the self-energy,
at each phonon frequency, we see that the B4 phonon is
broadened and softened at T = 0 compared to 7. while
the A4 phonon is broadened but lies right at the point
where the real part is changing sign. This term most ac-
curately describes what is seen in the phonons in YBCO.
A rapid rise of the B,y phonon linewidth below T¢ has
been seen,®!5 reflecting the interference of the peak in
the self-energy and the phonon [see Eq. (6) and Fig.
3]. The B;, phonon additionally is mostly softened to
lower frequencies. For the A;; phonon, the frequency
shift is seen only to slightly higher frequencies.'® This is
due to the real part of the self-energy crossing zero at
the phonon position. It also demonstrates that a phonon
can harden even if it is located below 2Ag, which is in
agreement with experiment. However, the A;, phonon
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narrows just below T., reaches a minimum width, and
then broadens at lower temperatures. This could be a
result of a competition between the effects of ¥ and 4%,
but without information concerning the magnitude of the
coupling constant, finite momentum transfer, or impurity
scattering this remains an open question.

In addition, we have the contribution arising from
nonzero ¢, Eq. (14), which indicates that this contribu-
tion to the self-energy is reduced compared to its value
at T, and decreases as T2 and T for low temperatures
in the Byy and A,, channels, respectively (see Fig. 2).
This term most accurately describes the experiments in
BSCCO. The linewidth of both the By, and A;4 phonons
decreases monotonically with temperature, which points
to the lack of contribution coming from satellite effects.
This is in agreement with a smaller electron-phonon cou-
pling seen in BSCCO as in YBCO as derived from the
asymmetry of the Fano line shape (see Ref. 8). The
linewidth decrease in the B;4 channel can be fit with
a T® dependence while a term linear in 7' can be fit to
the A;4 phonon which is the same dependence as in the
normal state. Both behaviors are consistent with Eq.
(16). This is to be compared with the predictions of an
isotropic s-wave theory lines, which are identical for each
channel (~ e~2/T). The theory for a gap of B;, charac-
ter shows a marked symmetry dependence resulting from
the interplay of gap and vertex symmetry. While it is ar-
guable whether an exponential temperature dependence
can also fit the B4 data,® the lack of change of the expo-
nent of the A4 phonon linewidth is a direct consequence
of the energy gap anisotropy. Therefore it will appear
that the A;4, phonon will be unaffected by superconduc-
tivity. Since the Bi, phonon has the same symmetry of
a dg2_y2 gap, its linewidth will show the greatest change
due to the onset of superconductivity.

In conclusion, within the accuracy of the experiments,
we have seen that the changes in the phonon line shape
as a function of symmetry can be explained with a choice
of the gap which has (at least predominantly) B;4 char-
acter, supporting recent comparisons made on electronic
Raman scattering on BSCCO. However, without knowl-
edge of the magnitude of the coupling constant, the im-
portance of finite ¢ and satellite effects remains an open
question. Of course other choices of gaps which have a
small but finite minimum value, e.g., anisotropic s-wave
or s + id, would give similar results to the d,z_,2 choice
for the gap. Both the electronic and phonon contribu-
tions to Raman scattering below 7, can be explained by
simply invoking the symmetry of the vertex which cou-
ples to the symmetry of the gap. More detailed experi-
ments would be extremely useful to pin down the magni-
tude of the e-ph vertex and subsequently the role of the
satellites, and the role of impurities and the mechanism
and magnitude of the coupling remain to be explored.’:1*
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