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Quantum statistical mechanics of vortices in high-temperature superconductors
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Starting from the vortex equation of motion, we construct an effective Euclidean action and formulate
the quantum statistical mechanics of the vortex system. The formalism is applied to the calculation of
various thermodynamic quantities such as the specific heat and the magnetic susceptibility of the vortex
lattice. Furthermore, we investigate the e8ect of quantum Quctuations on the vortex-lattice melting
transition.

I. INTRODUimxON

A realistic description of the phenomenology of high-
temperature superconductors requires one to go beyond
the mean-field level and to take fluctuations into ac-
count. ' The special material parameters of the oxide
superconductors, their large transition temperature T,
implying a short (in-plane) coherence length g, as well as
the large effective-mass anisotropy ratio M/m
=1/e »1, strongly enhance the importance of thermal
fluctuations, leading to phenomena such as the melting of
the vortex lattice or the appearance of giant creep.
Quantitatively, the importance of thermal fluctuations is
determined by the Ginzburg number 6 cc T, /e, which is

about six orders of magnitude larger in the oxides than in
conventional superconductors. From a more general
point of view, fluctuations need not be based on a thermal
source but can be of quantum origin as well. The obser-
vation " of a strong magnetic relaxation at very low
temperatures has demonstrated the importance of quan-
tum effects in the phenomenology of high-temperature
superconductors. The theoretical analysis of these exper-
iments in terms of the quantum creep theory' ' shows
that the relevant parameter determining the importance
of quantum efFects is the dimensionless sheet resistance
Q=(e /A')(p~/d}, where pN is the (in-plane) normal-
state resistivity and d is the layer separation (for the case
of Hall tunneling' the parameter is Q = 1/dn, g with n,
the superfluid density). Again, this parameter is by or-
ders of magnitude larger in the high-T, superconductors
as compared with the corresponding quantity in conven-
tional superconductors. The question can then be posed
whether the quantum creep phenomena are the only
manifestation of quantum effects in the copper oxide su-
perconductors. In this paper we show that quantum fluc-
tuations can play an important role in the statistica1
mechanics of the vortex system, suggesting that the usual
classical statistical mechanics description should be re-
placed by the more general quantum formulation in many
cases.

Below we analyze the consequences of quantum effects
for the statistical mechanics properties of the vortex sys-
tem. We calculate the contribution of (quantum) fluctua-
tions to thermodynamic quantities such as the specific
heat of the vortex system and the reversible magnetiza-
tion, and we determine their effect on the melting transi-
tion, particularly on the shape of the melting line. A
short account of the latter topic has been presented in
Ref. 15. Results on the specific heat and on the reversible
magnetization have been obtained recently by Bulaevskii
and co-workers. ' ' Here we extend their result for the
specific heat obtained for a layered superconductor in the
high-field limit in various directions: we determine the
corresponding expression for a dissipative dynamics in
the low-field case (the same result applies to the continu-
ous anisotropic situation} and we consider the case of a
pure Hall-type dynamics where the vortex system devel-
ops undamped modes (Tkachenko modes). In the dissipa-
tive situation the low-temperature specific heat picks up a
linear-in-T contribution from the vortex system, whereas
for the Hall dynamics we obtain a T' contribution for
the single-vortex fluctuation regime. These terms have to
compete with the specific-heat contributions from various
other sources such as impurities or the quasiparticle con-
tribution from states within the vortex cores, rendering
the experimental identification of the vortex part in the
specific heat difficult. Second, we present a derivation for
the reversible magnetization which takes dispersive
efFects in the vortex dynamics into account. Within a
mean-field (London) theory the reversible diamagnetic
response is predicted to follow the logarithmic behavior
—4' ~ 1nH in the intermediate-field regime. Quantum
fluctuations lead to a reduction in the diamagnetic
response and we find good agreement between the
theoretical analysis and the experimental results. ' Re-
garding the melting transition we find that quantum fluc-
tuations do play a role at low temperatures and high
magnetic fields and we obtain good agreement between
experimentally measured melting lines and line shapes
calculated on the basis of the Lindernann criterion.

We are then in a situation where we wish to explain a
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variety of different experiments (quantum creep, reversi-
ble diamagnetic response, vortex-lattice melting transi-
tion) within one theoretical framework invoking quantum
Suctuations in the explanation of these phenomena. As
quantum effects are quantified by the parameter Q we can
check for the consistency of our approach by using only
one set of parameters in the description of the different
experimental results and we will show below that this
goal indeed can be reached.

The inclusion of quantum fluctuations requires one to
go beyond the static description and to adopt a dynamic
formalism. In Sec. II we give a brief introduction to the
quantum statistical mechanics of the vortex system in a
type-II superconductor. We extend the classical formal-
ism based on the continuum elastic theory for the vortex
lattice and involving the conSgurationa1 energy to a dy-
namic formalism based on the (Euclidean) action. The
dynamic component in the action is obtained via the vor-
tex equation of motion and we briefly discuss the struc-
ture of the latter, including the possibility of a Hall com-
ponent in the vortex motion as well as the occurrence of
dispersive efFects in the transport coefficients. In Sec. III
we apply this formal&sm to the calculation of the specific
heat C„of the vortex system and we determine the mag-
netic "susceptibility" dM/dln8. Our analysis of quan-
tum statistical effects differs from that of Bulaevskii and
co-workers' ' as we account for dispersive effects in the
transport coeScients. The latter are expected to be
relevant in clean-limit superconductor s such as the
copper oxide materials. In Sec. IV we concentrate on the
melting transition of the vortex lattice and calculate the
corrections to the melting line arising from the quantum
component in the vortex motion within the Lindemann
approximation. We critically examine various (approxi-
mate} expressions for the melting line in comparison with
experimental data' on the melting line covering a large
range in magnetic field and involving different materials
such as YBa2Cu207 (YBCO), 's 0 and
Bi2Sr2CaCu2Qs (BiSCCO). We find that satisfactory
agreement over a large field range can be obtained if the
suppression of the order parameter on approaching the
upper critical Seld line H, as well as quantum effects are

2

included in the determination of the melting line.

II. FORMALISM

the free-energy functional P[u] takes the form
[k (K k ) K~ (ky k )]

1 dk~ d KV[u]= —f f [c„(k)[K.u] +c«[K~ u]
2 2n' (2~)2

+c44(k) [k,u] ], (2)

with c»(k), c«, and c44(k) denoting the (dispersive)
compression, shear, and tilt moduli. The K integration
in (2) runs over the two d-imensional Brillouin zone,
K &Kaz=~4n/ao, ao=+40/8 is the vortex lattice
constant, and the integration over the k, component is
limited by the condition ~k, ~

(k„=1/max(d, sg). For
the configuration Bj~c the elastic moduli are given by (see
Ref. 2 and references therein)

c44(k) =c~(k)+c~(k),
g2 1c~(k)=
4~ I+A, (K /s +k, )

60 K /e
c~44(k)= e ln

2a 2 1+g2K2 /s2+ g2k2

(4)

+ ln 1+1

A,2k,2

(k)= I+A, k /e o (k}
I+A, k

A,2k 2

I+A Ksz

(8m A, )

where the line energy scale so is given by

40
4m',

(8)

with @0=bc/2e the unit of flux. Close to the Brillouin-
zone boundary the tilt modulus is dominated by the
single-vortex-line tension s&(k, )=aoc44(k, ) and for a
strongly layered material the (s-independent) electromag-
netic term in c44 gives the dominant contribution. The
classical statistical mechanics of the vortex system is
given by the partition function

Z= f$[u]exp[ —P[u]/T] .

We consider either a uniaxially anisotropic or a layered
type-II superconductor characterized by the planar
penetration depth A, and the planar coherence length g,
~=1(,/g && 1. The anisotropy is described by the
effective-mass ratio s =m/M, with m denoting the pla-
nar mass and M the effective mass along the (z) axis of
the material, and d is the layer spacing. The starting
point for the classical description of the vortex statistical
mechanics is the free-energy functional within the contin-
uum elastic approximation. Denoting by u(r) the dis-
placement Seld of the vortex system and adopting the
usual Fourier representation

u(k)= fd'r e '"'u(r), (1)

In order to go over to a quantum statistical description
of the vortex system we have to replace the free-energy
functional by the Euclidean action 4'[u], which now also
involves a dynamical contribution. This dynamical term
is related to the vortex equation of motion via the usual
Euler-Lagrange variational principle and thus we can Snd
the desired action functional once we know the expres-
sion for the vortex equation of motion.

A microscopic derivation of the vortex equation of
motion in the presence of scattering has been given by
Kopnin and Kravtsov ' and by Kopnin and Salomaa.
In the resulting equation the driving Lorentz force
(40/c}jXn is balanced against the friction force g&v„
and the Hall force a&v„Xn,
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40
jXn=grv, +a&v, Xn . (10)

In (10) the vortex velocity v„ is defined with respect to
laboratory frame of reference. In the low-frequency limit
the transport coefficients gl and o.

&
take the form

eo 3 /2 $
coo(8)1 „

9t = p, — dOsin 0
c ' 2 o 1+[coo(8)r„]

the level spacing ~0. Substituting co, ~co0 and—en ~p, =2eIqlo~ in the expressions for the coefficients
qi and al, we recover the result (10) with the transport
coefficients (11)derived from microscopic calculations.

Let us briefly discuss the various types of motion a vor-
tex can perform on the basis of (10). In most cases the
parameter co07 4(1 is small and the equation of motion
is dominated by the dissipative term with the viscous
drag coefBcient gl given by the Bardeen-Stephen expres-
sion

4o 3 ~yp [coo(8)r„]
oI = p, — d8sin 0

c ' 2 o 1+[coo(8)r„]
+0+N

2

2mc g'
(15)

j=0 IIE+O.~n XE, (12)

Here, coo(8) —UFc}sb(R)/2s~sin8 is the level separation
between the quantized states in the vortex core (see, e.g.,
Caroli, De Gennes, and Matricon }, which depends on
the angle 8 enclosed by the quasiparticle momentum and
the vortex axis. The order parameter b, (R) carries the di-
mension of energy (5„=fiUF /ego). Furthermore,

p, =2eI+oI is the superffuid density, r„ is the scattering
relaxation time, UF is the Fermi velocity, and c.z the Fer-
mi energy. The main contribution to the integral in (11)
arises from large angles. In the following we will ignore
the angular dependence of co0 and use the estimate
ficoo= T, /e~. Note that no term of the form ri'iv, appears
in (10)—such a term would lead to a deceleration of the
superflow even for vortices at rest.

We present a simple (heuristic) argument for the form
of the vortex equation of motion (10) in the presence of
scattering. The argument is based on the requirement
that the resulting vortex velocity v„has to be consistent
with the carrier motion inside the vortex core. ' The
latter is described by the generalized law of conductivity
in the presence of both an electric (E) and a magnetic
field (B); for BIIn and j,E I n we can write

and the vortex moves at right angles with respect to the
external current density j. On the other hand, in very
pure material such that coor„»1 [note that this corre-
sponds to the superclean limit l »g(sz/6), where

l =UFO'„denotes the mean free path and 6 is the gap pa-
rameter; this condition guarantees the existence of well-
defined quasiparticle states in the core] the Hall term be-
comes the dominant one with

aI= P, =Mn,
c

(17)

where the last equation applies in the limit T—+0. In this
case we recover the Magnus force as the only force acting
on the vortex,

with O.
N the normal-state conductivity of the materia1.

Equation (15) describes well the situation at low fields
and low temperatures, whereas corrections become im-
portant near the transition temperature and for high
magnetic fields. ' ' In the limit al «ril, Eq. (10) then
simplifies to

40
'QI"U = jXn

c

with 40
p, (v, —v„)Xn=0, (18)

V0'
=ATTN and cTy —0'N

II
1 + 2 ~

l + 2
(13)

and the conductivity is given by o x, =e n ~„/m (n is the
free-carrier density}. The relaxation time r„accoutns for
all the scattering processes and the parameter v=co, ~, re-

lates to the Hall efFect with co, =eB /mc the cyclotron fre-

quency. Rewriting the electric field E in terms of the vor-
tex velocity v„,E=BXv„/c, and taking the cross prod-
uct of (12) with Non/c, we obtain the force equation

c'0 .jXn=qIv, +alv, Xn,
c

(14)

with the two transport coefficients i)i=mhnv/(1+v )

and ai = Mnv /(—1+v ) describing the dissipative and
the Hall component of the inotion (we have used
o ic@oB/c =vrfinv). For an electron in a magnetic field
B the parameter v is determined by the cyclotron motion
and hence involves the cyclotron frequency co, =eB/mc.
On the other hand, the corresponding frequency for an
electron orbiting within the core of a vortex is given by

Wo coos, (1 ico7„)—
(1 ico~, ) +(coo—~„)

40 (~or, )'
a, (co)= p,c (1 i'~, ) +(coos—„)

(19)

which thus is dragged along with the superflow, the typi-
cal situation for a vortex in an uncharged superffuid (v, is

the velocity of the superfluid with respect to the laborato-
ry frame of reference).

The more conventional situation in a superconductor
involves a large dissipative and only a small Hall com-
ponent in the vortex motion. However, in the oxide su-

perconductors the smallness of g and sz and the largeness
of I =UF~, and 5 place these materials close to or even
within the superclean limit with a non-negligible or even
dominant Hall component in the equation of motion.

The results (11) apply to the quasistatic limit of the
vortex motion. At finite frequencies dispersive effects
lead to a reduction of the transport coeKcients,
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The above results are valid for frequencies co &2b, /A' and
hence the dispersive efFects are relevant in relatively clean
material with T, r„/A & 1, such as, for example, the high-
temperature superconductors. Away from the superclean
limit (i.e., for coo~, && 1 }or for high frequencies (co~, && 1 }
the dissipative term dominates and we recover the
Bardeen-Stephen result (15) with a dispersive conductivi-
ty crn (co) of the Drude type.

With the results (10) and (19) for the equation of
motion we can easily construct an expression for the Eu-
clidean action ef[u]. The displacement field u(v ) is fi/T-
periodic on the imaginary time axis and we can go over
to the Matsubara representation with

T AI2T i co„&u„=u(co„)=— cire " u(r)
sl2T— (20}

and the Matsubara frequencies co„=2nnT/A. The Eu-
clidean action 4'[u] then takes the form

=—g {'T[u„)+P[u„]j,
n

with the dynamical term V[u„] given by

k'T[u„]=—f [@co„u„(k)+g(co„}leo„lu„(k)
(2m )'

(21)

Z= f$[u] exp[ —4'[u]/R], (23)

replacing its classical analogue (9).
The determination of the partition function (23) is

+a(co„)co„zXu„(k)]u „(—k),
(22)

and the elastic term P[u„] given by (2) above. The
Matsubara expressions for the transport coefficients are
obtained from the real-frequency expressions (19) via the
substitution d,~ ico~—lco„l for a dissipative dynamics,
whereas for a Hamiltonian dynamics the rule is
c},~ iconic—o„The t.ransport coefficients ri(co„) and
a{co„}are simply the lattice equivalents of the single-
vortex expressions (19), ri=r)1/ao and a=aI/ao. Fur-
thermore, we have introduced a (nondispersive) mass
term (p) for our later convenience here. The Euclidean
action (21) allows us to formulate the quantum statistical
mechanics of the vortex system on the basis of the parti-
tion function

complicated by the friction term which describes the cou-
pling of the system to a reservoir. We can write the par-
tition function Z as the product

f2)[u) exp[ —4'/fi]
f2)[u] exp[ —40/R],

u exp —0/fi

with

d3k
$0[u]= f, g {pleo„l u„(k)u „(—k)

(2n )3

(24)

+f [u„(k)]) (25)

GT1+
@co~

(26)

The elastic energies of the longitudinal and transverse
elastic modes are

sL(k)=c„(k)K +c~(k}k, ,

sr(k)=cssK +c44(k)k, .
(27)

The partition function Z of the vortex system then takes
the form

ri(co ) s1+" "+
A QsL sr „=~ pleo„l @co„

g(co„)

y l~. I p,~'„

a'(co„)
+

P n
(28)

Using the result (28) we can find the free-energy density

f= —[&lnZ]/&. Going over to the real-frequency axis
via analytic continuation we obtain the following Snal ex-
pression for the free-energy density:

the action for a set of conventional harmonic oscillators.
Here, f [u„(k}]is the free-energy contribution of the k
mode as given by Eq. (2}. The first factor in (24) does not
depend on the measure and the second factor is easily cal-
culated to be

Z,=fn[u) exp[ —~,[u)/~)

d'SC= —Tf f f ln 2sinh Imln{ [@co +a~ icosi(co)][pco +—er icoq(co)] co a—(co)] . (—29)
277 Bz (2~) o 2T Bdl

In order to obtain the corresponding result for a single
vortex line we have to drop the K integration in (29) and
to make the substitutions c[L,~z-~e&k„p~pI, g~gI,
and a~a~. The {dispersive) line tension s&(k, ) has been

given above; see Eq. (5). The above results are valid for
the case of dispersive transport coefficients g(co) and a(co)
as long as the generalized susceptibility (Green's func-
tion) has no singularities in the upper half plane for the
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complex co variable. For example, the power-law disper-
s1on

g(co„)=g(0)[1+( imp„ i /0) ]

1 Te6=—
2 H, (0)sg (0)

T
8 sap(0)g(0)

(30)

and the quantum sheet resistance Q

with integer I & 1 violates the causality principle since it
does not satisfy this requirement.

Before turning to the quantum statistical mechanics of
the vortex system we introduce here the two dimension-
less parameters quantifying the importance of the
thermal and of the quantum fluctuations: These parame-
ters are the Ginzburg number G,

2

(KBz/s) =(s sp/2)ln(B„/8)

with B„=H,2 and we obtain the final result

2~m 1 1 T
sapi ln(B„/8) T$

(34)

The analogue of the Debye temperature Tg is given by
the thermal time t,h =rtlc66EBz of the overdamped vor-
tex motion

fi Q d g(0) nf (0) g(0)
&26 sap

'
ap l

Taking the parameters for YBCO and choosing a field
8 —1 T the temperature scale takes the value
T)=10 T, . In strongly layered superconductors the
fluctuations change their character at the crossover field

(31) s2 dB„=B2D=~0 ln (36)

Here, the thermodynamic field H, (0), the coherence
length g(0), and the energy scale ep(0) are all Ginzburg-
Landau (GL) values extrapolated linearly to zero. Typi-
cal values for the Ginzburg number G and for the quan-
tum sheet resistance Q in the high-temperature supercon-
ductors are 6=4X10 and Q=0.2 for the anisotropic
YBCO material [we choose g(0)=13.5 A, A,(0)=1000 A,
s= —,', d =12 A, and we estimate pN =10 Qcm close to

T, ; with decreasing temperature Q ~ pN( T) ~ T is re-
duced; at low temperatures Q =0.01 consistently explains
the magnitude of quantum creep' ] and G =4 for the lay-
ered BiSCCO superconductor [g(0)=20 A, A,(0)=1600
A, s = —,', d =15 A]. The value for Q remains essentially

the same as in YBCO. The relative importance of
thermal and quantum fluctuations is measured by the ra-
tio v 6 /Q and using the usual expressions relating the
penetration depth and the conductivity one finds

&6 1 dl

Q 2&2ne, g (0). (32)

111. QUANTUM STATISTICAL MECHANICS

We now can make use of the result (29} for the free-
energy density and calculate the thermodynamic proper-
ties of the vortex lattice. Here we concentrate on the
specific-heat density C„=—T d f /dT2 and on the mag-
netic "susceptibility" y=B(1/4~ d f/d82). In o—rder
to find the specific-heat density we use the result (29} in

its single-vortex version [only the explicit temperature
dependence in (29) is relevant here]. The specific heat is
determined by the low-frequency part of the spectrum
with Ace & T, such that dispersive effects are irrelevant at
low temperatures. For the dissipative case (a&=0) we
obtain

4 TBg( ~ ~ „dk,
C„= dx, (33)

m &~'p p sinh x sz 's (k )k

where k =1/max(d, sg) and the lower cutoff in the k,
integral is provided by the bulk elastic modes. In the
continuous anisotropic limit the relevant line tension is

and the result (34) only applies to the low-field regime
8 (8„,where the vortices retain their line nature. For
large magnetic fields 8 )8„ the vortex specific heat has
been calculated by Bulaevskii and Maley' and we quote
their result

5m 1
1

B T
12 dap 82D T$

(37)

[ —icoa1i+ e (k) ]u(k) =0, (38)

where N denotes the elastic matrix of the vortex system.
For the superclean limit the Hall term —icoalz replaces
the more familiar dissipative term —icog1. The latter
produces the overdamped longitudinal and transverse
modes icoL =sL lg and icoz =czlg, whereas we obtain
the propagating modes

co = (/ EL e r /a (39)

for the Hamiltonian case (38}. The transverse Hall force

Using parameters typical for BiSCCO we obtain
BzD-—0. 1-1 T. Note the different field dependence
~ ~B /lnB and a: lnB for the results (34) and (37). The
temperature dependence is given by the product Tl(T),
where the mean free path is expected to increase with de-
creasing temperature, l ~ 1/T, from simple high-
temperature extrapolation, and to saturate at a finite
value at low temperatures, producing a linear-in-T
behavior for the specific heat.

An interesting situation arises in the superclean limit
where the Hall term dominates the dynamics of the vor-
tices. In this case the overdamped vortex motion changes
to a Hamiltonian one and the interacting-vortex system
develops propagating modes, the analogue of the phonon
modes in the usual crystalline solid. These modes are the
analogue of the Tkachenko waves, which are the
eigenmodes developed by the vortex system in uncharged
superfiuids where the vortex motion is dominated by the
Hall term. The normal modes are easily obtained from
the equation of motion
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mixes the longitudinal and transverse components,

icosi ez'K +(el s—T)K K

cL K„+c&K„
(40)

In the single-vortex limit we have sL =e,r and u„/u„=i
The dispersion of the Tkachenko waves is quadratic for
the K~0 bulk modes and turns linear for K & I /A, due to
the dispersion in c»(k). In the single-vortex regime the
dispersion is again quadratic, %co=(sos /mn)k2 for the
continuous anisotropic situation relevant for YBCO (here
we concentrate on this material where experimental evi-
dence for the realization of the superclean limit exists ).
In the limit of zero dispersion the free energy (29)
simplifies to

(41)

T QTe/T y2C„=
2 dy

aod sinh y
(43)

with the analogue of the Debye temperature for the vor-
tex system

m ~o~ ~ c Tc
2

=0.2T,2 d n 8~2 ~G g(0)d n

and where we have inserted parameters appropriate for
YBCO in the last equation. Finally, for T & To we enter
the classical regime where all the modes are excited and
we find the classical limit C„=1/aod.

The vortex translational specific heat calculated here
competes with various contributions, e.g., the one due to
the normal cores, which is linear both in temperature T
( & %coo) and in the field B,

C„,=(K~/d)(T/e~)(B/H, 2),
or the one due to the phonons C„~=(Kn/d)(T/8D),
where Kz and Oz denote the planar Debye wave vector
and the Debye temperature, respectively. The relative
contribution of the various terms can easily be obtained
by comparing the relevant volume per degree of freedom

and the general expression for the specific heat takes the
orm

2
&V'&L, er . ,&V &L, &T

C = sinh
2n' az (2~) 2aT 2aT

(42)

With C„~T ~", where d is the dimensionality of the sys-
tem and n the exponent characterizing the dispersion
c0~ k", we obtain the following qualitative behavior for
C„. At extremely low temperatures the bulk modes dom-
inate and with d =3,n =2 we obtain C„~T ~ . With in-
creasing temperature the dispersion in the elastic moduli
becomes relevant and we enter a complicated crossover
regime. Only at temperatures T&(d/eao) To does the
situation simplify again when the single-vortex modes
start to dominate and we obtain (d = l, n =2)

+ —a&+
1 (0)
P &r

(45)

The frequency integral has effectively been cut ofF by the
mass term pea„and we take a closer look at the possible
origin of such a term. A well-known contribution to the
vortex mass is of electromagnetic origin producing a
mass p~ =(4o/4ncg) . The corresponding cutofF fre-
quency AQ=fi+riilp. ~v„=Pic/A, then is of the order of
10~ K. A second contribution to the vortex mass is due
to strain fields induced by the vortex, ' ' generating a
vortex mass ps& which is of the same order as that pro-
duced by the electromagnetic coupling. The frequency
cutofF produced by the vortex mass then turns out to be
rather high, beyond the regime of applicability of the
transport coefficients as given by (19). We should expect
that at frequencies matching the energy gap of the super-
conductor the vortex motion is highly dissipative due to
the creation of quasiparticles and a reasonable cutoff on
the frequency integral in the free-energy density f then is
given by the gap energy, RQ-25. Below we will treat
the cutofF RQ=vh as a parameter when we compare our
results to experimental observations. It is then con-
venient to introduce the dimensionless expression.

Qr„g = (46)

with v serving as the remaining fitting parameter in the
comparison to various experiments [with n =2.5X10 '
cm we obtain K+=0.15—0.2 A ', note that in (46) the
temperature dependencies of r, and Q are canceled out].

Let us go on and perform the integration over the vari-
ous k modes in (45). For a strongly layered material the
tilt modes are very soft and the longitudinal and trans-
verse elastic modes (27) are dominated by the compres-
sion and shear energies. Vfe thus can use the approxima-
tions sI =B /4m', and sr=(B /16m', )K /Kaz, which

and the temperature scale involved, e.g., the comparison
between the vortex contribution for the Hamiltonian case
and the phonon contribution involves the small parame-
ter a lao, where a is the lattice constant of the crystal.

Second, we turn to the reversible magnetic properties.
Here we concentrate on the low-temperature limit, where
we can replace the summation over Matsubara frequen-
cies by a simple integration. It is then convenient to go
back to the partition function (28) and find the appropri-
ate expression for the T =0 free-energy density f. The
ffuctuation contribution to the magnetization is deter-
mined by the high-frequency part of the spectrum, allow-
ing us to drop the Hall term and to use the high-
frequency limit q(m„) = ri(0)I ~ co„~r for the friction
coefficient. The factors appearing in the product in (28)
reduce to a set of undamped harmonic-oscillator modes
with frequencies [(e~L~T+2)(0)/r„)/p]' . Replacing the
sum over Matsubara frequencies by a simple frequency
integration we obtain

z K 1 g0
2m (2~)2 2 p
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properly account for the dispersive effects. The integra-
tions in (45) are restricted to the regions ~k, ~

&irld and
K &I|.'az. Finally, the magnetization M is given by the
thermodynamic relation M =B/4' d—f It}Band we ob-
tain the fluctuation contribution

1.5

@0 aa
ln

32~g H2

@o v '+ iBIBg B+ 1+
2g2 pit (1+BIB )1/2 4B

1/2

1.0

where

(47) mean-field (L)

mean-field (GL)

with q-fluctuations

4irA,
Q @

c2
0 +r

0.0
0 1 2 3 4 5 6 7 8

IT]

40
32772A2

4o v B 4+3B/Bg
16~2/2 /It~ Bg ( 1+.B/B )3/2

1

(4+BIB )'"

The experimentally measured susceptibility takes the
form FIG. 1. Diamagnetic "susceptibility" y=BM/BlnH versus

magnetic field for a BiSCCO single crystal at T=35 K. The
data (solid squares) are from Bulaevskii et al. (Ref. 17). The
dotted line is the mean-Geld London result. Including correc-
tions due to the vortex cores (Ref. 42) leads to a reduction of y
with increasing Geld (=15% at 7 T). Including the effect of
(quantum) fluctuations we can account for the data if we choose
the parameter v=2. 5, which is consistent with theoretical ex-

pectations and with other experimental findings (quantum

creep, melting).

(49)

and we find that quantum Auctuations tend to suppress
the magnetic susceptibility at large fields. Recent mea-
surements of the (low-temperature; T =35 K) reversible
magnetization in BiSCCO single crystals' show a
marked decrease of the magnetic "susceptibility" y with
increasing magnetic field, amounting to —50% of the
mean-field value at fields of the order of 7 T (see Fig. 1).
These findings are in general agreement with the result
(49) if we choose v=2. 5, producing a cutoff frequency fiQ
of the order of the gap energy. Note that additional
mean-field-type corrections due to the finite extent of the
vortex cores also produce a decrease in the susceptibility
with increasing magnetic field. In our analysis (Fig. 1)
we have taken this e8'ect into account and have found
that, while it does contribute to the suppression of the di-
amagnetic response, it cannot explain the experimentally
measured suppression of g.

Comparing our results with those of Bulaevskii
et aI. ,

' the main difference is found in the treatment of
the vortex dynamics. Whereas in our approach we ac-
count for dispersive effects (and consequently have to
deal with a linear divergence in the frequency summa-
tion), Bulaevskii et al. base their calculations on a non-
dispersive friction coefficient (resulting in a mere logarith
mic divergence in the frequency summation). As a result,
the frequency cutoff poses less of a problem in the ap-
proach of Bulaevskii et al. On the other hand, it seems
that a consistent explanation of various experiments
(quantum creep, diamagnetic response} relies on taking
these dispersive effects into account. Indeed, the expres-

IV. VORTEX-LATTICE MELTING

Various analytical and numerical methods have been
applied to the problem of vortex-lattice melting,
particularly in view of application to the high-
temperature superconductors. A very simple and direct
approach to the melting phenomenon is given by the Lin-
demann criterion, ' stating that the lattice melts when
the mean displacement amplitude (u2)'/ of the lattice
constituents reaches a fraction cL (1 of the lattice con-
stant ao,

=c'a'I. 0
rn

(50)

For the vortex lattice we have ao=(4o/B}' and the

sion for the quantum parameter Q used in (46} is identical
to the expression used in the description of quantum
creep at low temperatures, where the theoretical results
compare favorably with experimental data ' if we use
for pN the normal-state resistivity extrapolated from high
temperatures. Furthermore, this approach is in agree-
ment with measurements of the flux-flow resistivity by
Kunchur, Christen, and Phillips who find a Bardeen-
Stephen result with pz extrapolated from high tempera-
tures. A rather large value for the sheet resistivity (close
to the quantum limit, p~!d =e /fi) has to be assumed'
in order to explain the experimental data on the basis of
nondispersive transport coef6cients.
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Lindemann number cL typically is in the range

cL =0.1—0.3. The quantum corrections to the mean

squared displacement field ( u ),h are again dominated by
large frequencies and we can drop the Hall term in the
action. The mean squared displacement amplitude (u )
comprising both thermal and quantum Buctuations of the
vortices then is given by

f2)[u]g~u„~i exp[ —S[u]/Aj
(u') =

u exp — u
(51)

d~k 1=Tx f (2n ) g(co„)~co„~+c66K +c44(k}k,

1

rI(oi„)lto„ I+cii(k)K +c44(k)k,

(52)

sl(k, )
c66K +c44(Kaz)k, ~ k,2= k,2 .

ao
'

a02
(55)

The (single-vortex) elastic energy competes with the dy-

The n =0 term produces the well-known thermal contri-
bution and a simple estimate is given by the expression

' 1/2

( 2)
2ao G ~bt

v ~sso Pu, 1 t b——

which becomes large in the oxide superconductors due to
the large value of the Ginzburg number G. Here,
b =B/H, z(0) and t =T/T, denote the scaled magnetic
field and temperature and P,h=2. 5. Also, we have taken
the suppression of the order parameter close to the upper
critical field into account, leading to an increase in the
screening length A, ~A, ' =A, /[1 —b/(I —t)]. This
correction factor becomes important at low temperatures
and high magnetic fields and shifts the melting line to-
wards smaller field values; see the discussion below. Note
that the K integration for the thermal component is dom-
inated by the Brillouin-zone boundary and the relevant
k, modes are determined by the competition between the
shear and the tilt energy, k, =n /cao. A more careful cal-
culation gives the result

( g) vG vbt 1

v3~ 1 t 1 —b/(—1 —t}

[I-b l(1-t)]'"
which mainly changes the numerical parameter P,h=5. 6
in (53).

The quantum contribution ( u ) is deterinined by the
remaining terms in (51}with nAO The int.egral is again
dominated by the large K values near the Brillouin-zone
boundary where c»(Kuz }=c66,hence the transverse and
longitudinal modes contribute with similar weights.
Here, we concentrate on the continuous anisotropic case
(YBCO), where the elastic energy is dominated by the
single-vortex contribution, i.e.,

namic term ri(co„)~to„~ and we find

arctan
4 T 1 0

o Vrttlco, leo

' 1/2

(56}

~ith +so/rit ~co„~ (g/v 2 we can expand the last factor
in (56) and obtain

( p) 4T ~ 1

d „o 'tIi(co„) ~co„~
(57)

Note that in (57) the k, integration equally weights all of
the allowed range 2n/d, whereas k, =n/eao are the
relevant modes in the thermal part (53). Again, the sum-
mation over Matsubara frequencies has to be cut off at
high frequencies co„=f1-vh/A and hence the number of
terms N=fiQ/2n T contributing to the frequency sum-
mation in (57) is of the order unity. The final result for
the quantum part of the displacement amplitude takes
the form

(58)

The quantum contribution (u ) is independent of the
magnetic field and using parameters appropriate for
YBCO we can estimate its magnitude to be of the order
of P.

The final step in the determination of the melting line
is the application of the Lindemann criterion to the dis-
placement amplitude (u )'~ . The important question
then is whether the (quantum} smearing of the vortex
core as determined above can be felt by the neighboring
vortices and thus becomes relevant for the melting transi-
tion or not. For the finite-frequency response relevant
here we have to base our discussion on the time-
dependent Ginzburg-Landau theory. The motion of
the vortices sets up screening currents which involve both
a quasiparticle (jz) and a London contribution (jL ),

c3=0'x(~ ) (59)

j„4nA,'cr„(co„)(a)„) (co„~r„

jL, c' 1+l~. l~, 4'(T) (60)

For vanishing frequencies (e.g., for the thermal com-
ponent of (u ) }the response is always dominated by the
London current density jL and vortices within the screen-
ing length A, are mutually afi'ected by their motion (see
Fig. 2); on the other hand, for high frequencies the Lon-
don currents are relevant only at low temperatures and

The transverse component of this current decays on the
length scale A, , the screening length for the transverse
component of the gauge-invariant vector potential
Q= A (@o/2n)Vy,—whereas the longitudinal part is
screened on the charge imbalance length ' IE-g(0),
the screening length of the gauge-invariant scalar poten-
tial 4=/+(4o/2mc)B, y. The ratio of the two current
densities is given by
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(o)

0 u

FIG. 2. Dynamical response of the supercurrent flow ( ~ Q)
encircling a moving vortex. (a) For temperatures away from the
transition the supercurrent is able to follow the motion of the
vortex. (b) At temperatures close to the transition the vortex
fluctuations are screened at a short distance due to the norma1

current flow driven by the scalar potential in the core region.

unaffected.
A second remark concerns the form (58) of the quan-

tum component of the displacement field. Whereas the
thermal component explicitly contains the shear modulus
the quantum component does not. The reason for this
difference is easily understood by noting that the thermal
fluctuation amplitude is determined by the potential of
the other vortices, whereas (within the present approxi-
mation) the quantum amplitude is determined by the
dynamical term alone. Nevertheless, the quantum Quc-

tuations also add to the smoothing of the intervortex po-
tential and thereby to the reduction of the shear modulus
which ultimately leads to the melting of the vortex lat-
tice.

From the above discussion we conclude that away
from the transition temperature T, both thermal and
quantum contributions do contribute to the melting tran-
sition of the vortex lattice; however, due to their difFerent
nature with difFerent weights in general. Straightforward
application of the Lindemann criterion then is, strictly
speaking, only possible at T =0, where the transition is

purely quantum, or at high temperature, where it is pure-
ly classical, whereas in the intermediate regime a weight-
ed sum of the static and the dynamic components is more
appropriate. Here we ignore this complication and take a
simplified approach invoking only one Lindemann num-
ber for both quantum and classical contributions. Com-
bining (53) and (58) with equal weights and using the Lin-
demann criterion (50) we have to solve the following
equation for the melting line b (t),

(u') G v'b
I t+q&b [I b/(1 ——t)]j

g~ P 1 t b— —

the normal current density jz becomes dominant close to
T, . In the latter case the motion of the vortex cores is
screened by the normal current flow around the core (the
relevant scale is the charge imbalance length lz } and the
neighboring vortices are not affected. Hence we conclude
that the quantum motion of the vortices can be felt by the
neighbors, and thus is relevant for the melting transition,
only at temperatures away from the transition, where the
superconducting order parameter has become apprecia-
ble. Related to this problem is the question of the dissi-
pation close to T, . Assume, contrary to the above ar-
gumentation, that the vortex motion remains coupled to
the London currents upon approaching T, . We then
can express the vector potential Q through the
vortex displacement u, Q= —(u V)Q -cud o/R, where
Qo= —NPXR/2mR is the vector potential set up by a
static vortex. The dissipation produced by the normal
currents j~= 0~(co„)ic—o„ iQ flowing outside the core re-
gion (R ) lz) is given by oNE -crN@ou co„/R c,
which upon integration over R &IE gives the result
I' -o N@ou co„/lEc for the dissipated power. The non-
vanishing of P on approaching T, then is due to our
wrong assumption that the vortex motion is still coupled
to the London currents close to T, . Hence, close to T,
the vortex motion is screened by normal currents on the
length scale IE and the transverse component of the vec-
tor potential {which drives the London currents) remains

2 (61)

with

40
(1+&1+4SO/t )'

with the temperature variable

{63}

&t0=el

1/2
C —1

T
(64)

and the suppression parameter S
1/2C

)llih
S =q +CL (65)

g
q

= 0~, =2.4
G

" KF(

The terms up to linear order in v b produce the well-

known high-temperature form b ~(i t) /t for th—e
melting line. The terms linear in b account for the
suppression of the order parameter close to 8,2 and for
the quantum contributions to (u ). The term of order
b accounts for the mixing of the latter two corrections.
Neglecting this higher-order term we can solve for b and
obtain a compact result for the new shape of the melting
line
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The main features of the result (63}are the following. (i}
Taking into account both the order-parameter suppres-
sion close to H, z as well as quantum fiuctuations of the
vortices in the determination of the melting transition
leads to a shift of the melting line towards smaller tem-
peratures and fields, and (ii) the form of the melting line
cannot be expressed via a simple power law in (1—T/T, )

but adopts the more complicated dependence given by
(63). In the limit 8~0 the simple thermal result
b ~(1 t) —is recovered, whereas a linear dependence on
8 is obtained at low temperatures,

from the simple 1 —t Ginzburg-Landau temperature
dependence valid only close to T, . Also, we have used a
transition temperature T, =90.5, which is within the G
region of the value T, =90.0 quoted in Ref. 18. With
these measures an optimal fit is obtained providing satis-
factory agreement with the data below a field of -3 T.
Combining the thermal result by Houghton, Pelcovits,
and Sudbd (54) with the quantum corrections (58) into a
Lindemann criterion and solving the resulting equation
numerically, very good agreement with the experimental
data is obtained within the entire field range up to 10 T if
we choose a Lindemann number cL =0.30 and take for

82

'-= 8r
S'

8~0
1

S

(66)

12 I

The effects of quantum fluctuations thus become impor-
tant at temperatures away from T, and for large magnet-
ic fields H. In a more accurate analysis we should use for
the thermal component the result of Houghton, Pelcov-
its, and Sudbd as given by (54) and solve the resulting
equation self-consistently. In fact, this will be the ap-
proach taken below when comparing the present theoret-
ical results with experimental data. However, no closed
expression for the melting line can be obtained in this
case.

In order to compare our theoretical results with experi-
ments we proceed in two steps. We first discuss the accu-
racy of the various available theoretical results in com-
parison with the experimental data on the melting line as
measured via a resistive technique' on a very clean
YBCO single crystal. Second we will compare our line
shape with available data on the melting line for different
materials and measured with different techniques.

The observation of a sharp resistive transition in a very
clean untwinned single crystal of YBCO provides strong
evidence for the existence of a first-order melting transi-
tion. A sharp first-order melting line up to fields of 10 T
and followed by a continuous transition at even higher
field values 10&B (16T has been observed' recently in
such a clean crystal. Choosing the parameters
A,(0),g(0), e, and p~ as cited above we have G =4X 10
and Q=0.2. The remaining adjustable parameters are
the Lindemann number cL (required to lie within the
range 0.1-0.3) and the parameter v determining the
cutoff frequency 0; see (46). Note that within our ap-
proach the upper critical field H,z(0) is not a free param-
eter: Combining the measured ' slope dH, 2/dT= —1.9
T/K with the value T, =90 K we obtain an extrapolated
upper critical field H, z(0)=170 T. Figure 3 shows a sim-

ple (T, /T —1) fit, valid close to T„as well as the more
elaborated thermal result obtained by Houghton, Pelcov-
its, and Sudbef calculated on the basis of (54). In both
cases a Lindemann number cL =0.27 has been used as an
optimal fit parameter. As expected the more accurate re-
sult by- Houghton, Pelcovits, and Sudbgf shifts the melting
line towards smaller temperatures and fields. As the data
extend up to 20 K below the transition we had to correct
the (1—t) dependence in (54) by the more accurate ex-
pression (1—t )/2, thus accounting for the deviation

10-

78 82
T(K)

86 90

FIG. 3. Melting lines calculated via the Lindemann criterion.
The result of different degrees of accuracy in the theoretical

treatment is shown and compared with the shape of the melting
line as obtained by Safar et al. (Ref. 18}(the solid symbols mark
a sharp first-order transition, whereas the open symbols refer to
the continuous transition observed at higher magnetic fields

8 ) 10 T). The mean-field transition temperature was chosen
T, =90.5. The thermal power-law behavior B ~ (T, /T 1)2—
has a very limited range of applicability (dash-dotted line). The
more elaborate result by Houghton, Pelcovits, and Suds (Ref.
5) takes the renormalization of the elastic coeiicients close to
the upper critical field line into account and leads to a consider-
able improvement (dashed line; the Lindcmann number

cL =0.27 has been chosen such as to provide a good fit to the
high-temperature data). The shape for the melting line which
additionally accounts for quantum fluctuations gives very good
agreement over the entire field range if we choose a Lindemann
number cL =0.30 and take v=4 (solid line). The crossover to a
continuous transition at high fields (B & 10 T) lies outside the
realm of the present description, which ignores the effects of
disorder. Finally, a simple power-law fit 8 ~ (1—T/T, ) gives
an exponent a=1.35 (dotted line). Note, however, that this
power-law form lacks any theoretical basis and represents only
a fitting ansatz. The inset shows a11 four curves in a double-
1ogarithmic representation.
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fluctuations the high-temperature superconductors are
not the best candidates for the observation of a quantum
melting transition and for the realization of a quantum
vortex liquid. Quantum fiuctuations become more
relevant at low temperatures and high magnetic fields;
hence, in order to realize a pure T=0 quantum transi-
tion, a conventional superconductor with a smaller upper
critical field provides more favorable experimental condi-
tions. Furthermore, quantum effects are enhanced by a
high resistivity and a short cutoff in the quantum param-
eter Q; thus amorphous thin films close to the
superconductor-insulator transition are in fact good can-
didates for the observation of a quantum melting transi-
tion and results have been reported recently for amor-
phous Nb3Ge films. ~

Second, we compare our theoretical result (63) with a
variety of experiments determining the melting transition
in other crystals and materials and based on different
measuring techniques. In Fig. 4 we present a comparison
with two more YBCO single crystals exhibiting the
characteristics of a first-order melting transition. ' Fur-
thermore, we compare our line shape with the data of
Schilling, Ott, and Wolf, who have suggested an alter-
native procedure for an accurate determination of the ir-
reversibility line based on magnetometry in the static lim-
it and who have applied this method in their study of
different materials such as YBCO (Fig. 5}, and BiSCCO
(Fig. 6). ' The parameters describing the individual melt-
ing lines are given in the figure captions. For YBCO we
consistently find a Lindemann number cl =0.25-0.30
and a cutoff parameter v=4. Concentrating next on the
layered BiSCCO superconductors, we can apply the re-
sult (63}at low magnetic fields, B (Bzn [see (36)], where
the melting line still can be described within a three-
dimensional (3D) anisotropic continuum elastic theory.
For large fields B & BzD the fiuctuations of the vortex lat-
tice become two-dimensional in nature and the descrip-
tion of the vortex-lattice melting is better approximated
by starting from a 2D dislocation-mediated Berezinskii-
Kosterlitz-Thouless transition. Due to the very large an-
isotropy the value for the Ginzburg number 6 is greatly
enhanced in BiSCCO as compared to YBCO, G=4.
Note that here the Ginzburg number 6 should be under-
stood as a useful combination of parameters determining
the strength of thermal fluctuations in the vortex lattice
rather than the width of the critical regime. Whereas 6
is greatly enhanced by the strong layering, the quantum
resistance g remains essentially unchanged as compared
to YBCO. The increased importance of the thermal over
the quantum fluctuations in BiSCCQ can be traced back
to the different ways the relevant k, fluctuation modes
enter the formulas for the displacement amplitude. The
quantum parameter q becomes vanishingly small and we
cannot determine a value for v. We obtain good agree-
ment with the data of Schilling, Ott, and Wolf ' within
the field range 8 ~ 0. 1 T if we choose a Lindemann num-
ber ct =0.2, the only remaining free parameter (see Fig.
5). The result cL =0.2 for the Lindemann number is in
good agreement with the Monte Car1o simulations of the
melting line by Ryu et al. based on a model appropri-
ate for BiSCCO. For larger values of the magnetic field

with the field B measured in tesla. Quantum fiuctuations
smear the vortex core over a distance which is roughly
equal to the spatial extent of the vortex core itself.

Due to the competition between thermal and quantum

the parameter v=4. A value cL =0.3 for the Lindemann
number has also been obtained for the quantum melting
transition in a Wigner crystal by Ceperley. We note
that the simplified (closed-form) result (63) with the two
parameters cl and q already provides a good fit to the
melting line. The changeover from a first-order melting
to a continuous glass transition observed in this crystal'
and taking place at a field 8 =10 T suggests that the
effect of disorder becomes more important in the high-
field-low-temperature regime. Note that the crossover
to the glass transition at high fields is outside the realm of
the present description.

In our previous work' the suppression of the order pa-
rameter close to the upper critical field line was neglect-
ed. This led us to overestimate the effect of quantum
fluctuations on the melting line in YBCO. In fact, only
part of the suppression parameter S appearing in (63) can
be attributed to the efFect of quantum fluctuations,
whereas the larger contribution to S actually arises from
the suppression of the order parameter.

In the past it has become common ' ' ' ' to fit the
form of the irreversibility or melting line in terms of a
simple power law in 1 —T/T, . One should note, howev-

er, that the ansatz B ( T) ~ (1—T/T, )' lacks any
theoretical background and even the most simple thermal
result already exhibits a different temperature depen-
dence. Nevertheless, one can argue that close to T, such
an ansatz (with a=2} should capture the main tempera-
ture dependence of the melting line and this is actually
the case; however, the range where a satisfactory agree-
ment with the experimental data can be obtained is only a
few kelvin wide (the situation is better for the BiSCCO
material; see below}. Somewhat surprisingly, taking a as
a fit parameter good agreement is obtained between the
simple power-law form 8 ( T) ~ (1—T/T, )' and the data
over the entire experimental temperature range (see Fig.
3). For the above example' the optimal power-law fit is
obtained by choosing a=1.35. The arbitrariness in this
fitting procedure, however, becomes clear when noting
that an equally good agreement with the data can be ob-
tained if one uses the variable (1—t )/2t instead of 1 t;—
in this case the optimal exponent has to be changed to
A ~ 1.22.

The crossover between the thermal- and the quanturn-
dominated melting transition takes place at the reduced
field b =1/q . Using the value H,z(0)=170 T and q=4
(i.e., v=4} as extracted from the above comparison with
the experimental data we obtain a crossover field 8 =10
T. For large fields 8 )8 the transition is dominated by
quantum fluctuations and the resulting high-temperature
phase is a vortex quantum liquid. Making use of the
above analysis we can rewrite the mean squared displace-
ment field in the simple form

&u'& =g' +0.7 (67)8
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the two-dimensional nature of the material starts to man-
ifest itself and our 3D result (63) cannot be applied. The
approximate power-law fit gives the exponent a=2.5.
The exponent a) 2 can be understood by noting that the
thermal result is roughly described by the dependence
[(I t —)It] which differs from the simple power law
(1 t) —as t drops far below T, . Besides substituting the
more accurate (1—t )l2 dependence for the simple 1 t-
dependence in (54), we have also used the renormalized
value Ta =88 K for the transition temperature 3'~ in-

stead of the experimentally measured transition tempera-
ture T, =84.5 as the Ginzburg-Landau parameters extra-
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FIG. 5. Melting line calculated via the Lindemann criterion

taking quantum fluctuations into account (solid line). The data
points are the result obtained by Schilling, Ott, and %"olf (Ref.
20) for a YBCO single crystal (T, =91.6). The shape of the
melting line is well described by the parameters cL =0.25 and
v=4. The dotted line is the approximate power-law fit
8 ~(1—T/T, ) with a=1.46. The inset shows the same data
within a double-logarithmic representation.
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FIG. 4. Melting lines calculated via the Lindemann criterion
taking quantum fluctuations into account (sohd lines). The data
points are the results as obtained by Safar and co-workers (Refs.
7, 18, and 19). The width of the symbols roughly corresponds to
the experimental precision in the determination of the melting
line based on the observation of a hysteretic trace in the resis-
tivity. For the data of Ref. 7 the parameters are T, =92.3,
cL =0.29,v=4, and the power-law approximation (dotted lines)
to the melting line is characterized by an exponent a= 1.4. The
data have been shifted by +2 K along the temperature axis.
The parameters for the data showing both a first-order melting
transition at low fields 8 5 10 T and a continuous phase transi-
tion (open squares) at high fields (Ref. 18) are
T, =90.5, cL =0.30,v=4, and the power-law approximation to
the melting line provides the exponent a = 1.35. The upper part
of the melting line {open squares) is strongly influenced by the
disorder and we cannot describe this effect within the present
theoretical considerations. The data have been shifted by —2 K
along the temperature axis. Finally, the data obtained from a
very clean crystal (Ref. 19) (a T, =90.8 has been chosen) show-
ing a hysteretic transition up to a field of 15 T are described by
the following set of parameters: cl =0.28,v=3, and a=14.
The inset shows the corresponding data (Ref. 19) on a double-
logarithmic scale. The parameter sets obtained for the different
crystals are roughly consistent.
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FIG. 6. Melting line determined via the Lindemann criterion
(solid line) for a strongly layered BiSCCO single crystal. The
data points are the result obtained by Schilling, Ott, and Wolf
(Ref. 21) ( T„=88.0). The shape of the melting line is dominat-
ed by thermal fluctuations and is well described by the single
remaining parameter cL =0.20. Since quantum fluctuations are
not important for this case, the parameter Q~, cannot be ex-
tracted. The dotted line is the approximate power-law fit with
an exponent a=2.5. The inset shows the same data in a
double-logarithmic representation. For large magnetic fields
8 &8» two-dimensional fluctuations become important. This
high-field part of the melting line lies outside the region of ap-
plicability of the present 30 theory.
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polate to Tz rather than to T, (more precisely, Ts
denotes the temperature where the fluctuation-corrected
lower critical field line extrapolates to zero }. With
these measures we obtain a very good agreement between
the experimental data ' and the thermal theory of
Houghton, Pelcovits, and SudbrP over a temperature
range as large as -40 K. This result has to be compared
with the case of YBCO where the thermal theory cannot
provide a satisfactory agreement over a temperature
range more than 5 K wide. The difference between the
anisotropic YBCO and the layered BiSCCO supercon-
ductors can be consistently explained by taking quantum
corrections into account, which are predicted to be
relevant for YBCO but not for BiSCCO.

The above analysis has been based on the assumption
of a constant (i.e., field- and temperature-independent)
Lindemann parameter cz. Simple scaling arguments
valid for the thermal case in the London regime in fact
do support this idea. However, even for the thermal case
the regime where the London theory can be applied [i.e.,
where the suppression of the order parameter as de-
scribed by the correction factors 1 b/(1 —t) in—(54) is ir-
relevant] is very limited: inspection of Fig. 3 shows this
region to extend only a few K below T, . The same
analysis for the BiSCCO sample ' shows that the London
theory provides good results within a temperature region
extending about 20 K below T, . Within the Ginzburg-
Landau region the suppression of the order parameter be-
comes relevant and the simple scaling arguments fail.
Similarly, including quantum fluctuations we have to re-

place the free-energy functional by the Euclidean action
which again does not exhibit the simple scaling of the
London free energy. In this situation we can make some
progress by referring to the Monte Carlo analysis of the
melting transition in BiSCCO carried out by Ryu
et al. , from which one would expect cz to increase
slightly with field, implying an additional upward curva-
ture of the melting line. Transferring this result to the
case of YBCO (Fig. 3), one then would expect the quan-
turn fluctuations to play an even more important role in a
correct explanation of the data.

V. CONCLUSION

In this paper we have presented a quantitative analysis
of the quantum fluctuations in the vortex system of high-
temperature superconductors. Starting from the vortex
equation of motion, we have derived the effective Eu-
clidean action for the vortex system, which replaces the
elastic free energy as the basic functional when going
over from the classical to the quantum statistical
mechanics. %e then have used this formalism in order to
calculate the specific heat and the reversible magnetic
"susceptibility" of the vortex lattice at low temperatures.
Second, we have determined the effect of quantum fluc-
tuations on the shape of the melting transition of the vor-
tex lattice.

The calculation of the vortex specific heat has been
based on the determination of the translational fluctua-
tion energy. For a dissipative dynamics the vortex con-
tribution to the specific heat is linear in T at low tempera-

tures and shows a field dependence ~ ~B /InB for low
and ~ 1nB for high magnetic fields. For the Hall dynam-
ics relevant in superclean material the specific heat is
determined by the Tkachenko waves; in the single-vortex
regime the result is linear in field and shows a T' tem-
perature dependence. These results have to be compared
with the specific-heat contribution from the normal core
regions which also scales linearly in T but shows a
linear dependence on field (for the superclean situation
the minigap ficoo suppresses this linear term at low tem-
peratures T (irido). A third contribution to the specific
heat and related to the presence of vortices in the system
is due to fluctuations of the order parameter (self-
fluctuations ) and we have not considered this term here.
In addition, these vortex contributions compete with the
quasiparticle and the phonon specific heat, where the
quasiparticle contribution also can exhibit a power-law
dependence in T, e.g., C„, ~ T for the quasiparticles in the
vortex cores and C„~'r (T ) if the gap itself exhibits
line (point) nodes. In summary, then, it appears to be
rather difficult but not impossible to single out the vortex
contribution to the specific heat.

The low-temperature magnetic "susceptibility"
g=BM/BlnH is predicted by mean-field London theory
to be a constant in the intermediate field regime
0.01H,i&H 50.3H,z. Taking the suppression of the or-
der parameter (vortex cores} into account results in a
reduction of y with increasing field. However, this effect
alone cannot explain the experimentally observed reduc-
tion in y with increasing field, ' which amounts to
-50% at a field of 7 T (BiSCCO, T =35 K). Taking
quantum fluctuations into account we can explain this de-
crease in y using a set of parameters consistent with
theoretical and experimental expectations (including also
those obtained from quantum creep phenomena).

The description of the melting transition has been
based on the Lindemann criterion, saying that the lattice
melts when the mean squared displacement amplitude be-
comes of the order of the lattice constant. We have ar-
gued that away from the transition temperature T, the
quantum fluctuations do contribute to the melting pro-
cess and hence should be included in the calculation of
the mean squared displacement amplitude of the vortex
lattice. The comparison between theory and experiment
can be done at different levels of accuracy and we have
tested the various thermal theories against our result in-

cluding also quantum effects: The most simple thermal
expression 8 o- (T, /T —1) turns out to give only a very

poor agreement with the experimental data. A consider-
able improvement has been obtained by using the more
accurate thermal result by Houghton, Pelcovits, and
SudbrP which takes into account the suppression
~(1—8/H, 2) of the order parameter on approaching
the upper critical field line H, 2. A further improvement
between the thermal theory and experiment has been ob-
tained by additiona11y accounting for the saturation of
the Ginzburg-Landau parameters g and A, at low temper-
atures as described by the temperature dependence
(1—T /T, )/2 This modified th.ermal theory then has

provided good agreement with the experimental melting
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line as measured in a BiSCCO single crystal over a very
large temperature range T, /2& T & T, . In order to ob-
tain good agreement with the experimental melting line
measured in various YBCO single crystals we had to in-
clude sects of quantum fluctuations, which is consistent
with theoretical expectations. Whereas the thermal dis-
placement amplitude scales with (the square root of} the
Ginzburg number ( u ),h ~ v G, the quantum contribu-
tion (u ) ~ Q is proportional to the quantum parameter
Q. The Ginzburg number 6 differs by roughly three or-
ders of magnitude between the Y- and Bi-based materials,
whereas the quantum parameter Q remains essentially
unchanged. Hence in BiSCCO the thermal fluctuations
are clearly dominant and the thermal result of Houghton,
Pelcovits, and Sudbs( is well applicable within the 3D re-
gime 8 &BzD. On the other hand, in YBCO, quantum
fluctuations do contribute to the mean squared displace-
ment field and should be taken into account for an accu-
rate description of the melting line. Note that the param-
eters used in the explanation of a variety of quantum phe-
nomena in the vortex system of high-temperature super-

conductors (quantum creep, reversible magnetization,
melting) are consistent overaH.

In the above analysis we have neglected the effect of
quenched disorder and have treated the melting transi-
tion in a pure system. The presence of weak quenched
disorder is expected to assist the quantum fluctuations in
the suppression of the melting line towards smaller tern-
peratures and fields. The quantitative treatment on an
equal footing of both these effects remains an interesting
task.
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