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We develop a simple theory of the electromagnetic response of a d-wave superconductor in the pres-
ence of potential scatterers of arbitrary s-wave scattering strength and inelastic scattering by antiferro-
magnetic spin fiuctuations. In the clean London limit, the conductivity of such a system may be ex-
pressed in "Drude" form, in terms of a frequency-averaged relaxation time. We compare predictions of
the theory with recent data on Y-Ba-Cu-0 and Bi-Sr-Si-Cu-0 crystals and on Y-Ba-Cu-0 films. While
fits to penetration-depth measurements are promising, the low-temperature behavior of the measured mi-

crowave conductivity appears to be in disagreement with our results. We discuss implications for d-

wave-pairing scenarios in the cuprate superconductors.

I. INTRODUCTION

A remarkable series of recent microwave experiments
on high-quality single crystals of Y-Ba-Cu-0 (Refs. l —5)
has been taken as evidence for d-wave pairing in the
high-T, oxide superconductors, complementing NMR,
photoemission, and superconducting quantum interfer-
ence device phase coherence data supporting the same
conclusion. In particular, there is thus far no alternate
explanation for the observation of a term linear in tem-
perature in the Y-Ba-Cu-0 penetration depth, ' other
than an unconventional order parameter with lines of
nodes on the Fermi surface. Several initial questions re-
garding discrepancies between this result and previous
similar measurements, which reported a quadratic varia-
tion in temperature, have been plausibly addressed by
analyses of the effect of disorder, which have suggested
that strong scattering by defects in the dirtier samples
can account for these differences. ' '"

We have recently attempted to analyze the dissipative
part of the electromagnetic response, i.e., the microwave
conductivity 0., within the same model of d-wave super-
conductivity plus strong elastic scattering, to check the
consistency of this appealingly simple picture. ' We
found that the conductivity could be represented in a
Drude-like form in which the normal Auid density and an
average over an energy-dependent quasiparticle lifetime
entered. For microwave frequencies small compared to
the average relaxation rate, the conductivity was found to
vary as T at low temperatures approaching ne /mhom
at zero temperature. Here 50 is the gap maximum over
the Fermi surface. At higher microwave frequencies, the
interplay between the microwave frequency and the
quasiparticle lifetime was found to lead to a nearly linear
T dependence over a range of temperatures. While some

of the qualitative predictions of this model are in agree-
ment with experiment, the low-temperature T predic-
tions for the low-frequency microwave conductivity differ
from the linear-T dependence reported.

The main purpose of this paper is to explore further
the overall consistency of the d-wave-pairing plus reso-
nant scattering model predictions for the 1ow-

temperature behavior of the electromagnetic response of
the superconducting state. We will also examine the elec-
tromagnetic response over a wider temperature regime by
phenomenologically including the effects of inelastic
spin-fluctuation scattering. In the process we intend to
provide the derivations of results reported in our previ-
ous short communication, ' and address various ques-
tions raised by it:

(l) To what extent can the microwave conductivity in a
d 2 2 superconducting state be thought of in direct anal-

X

ogy to transport in a weakly interacting fermion gas with
a normal quasiparticle fiuid density nq (T) and a relaxa-
tion time r(co) characteristic of nodal quasiparticles?

(2) Can the temperature dependence of the microwave
conductivity be used to extract information on the quasi-
particle lifetime?

(3) What is the characteristic low-temperature depen-
dence of the quasiparticle lifetime for resonant impurity
scattering in a d» superconductor and how does it

x -y

affect 0?
(4) What happens at higher temperatures when inelas-

tic processes enter?
(5) What happens to a,(T,Q), A, (T,Q), and the surface

resistance R, ( T, Q) at higher microwave frequencies'?

(6) To what extent can a model with a d &, gap plus

scattering describe the observed penetration depth and
conductivity of the cuprates? Can the response of a
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d»-wave state be distinguished from that of a highly

anisotropic s-wave state?
The plan of this work is as follows. In Sec. II, we

derive the expressions necessary for the analysis of the
conductivity and penetration depth of a superconductor
in the presence of impurities of arbitrary strength within
BCS theory. In Sec. III, we examine several useful limit-
ing cases of these results analytically. In Sec. IV, we in-
troduce a natural definition of the quasiparticle lifetime
which allows the conductivity to be cast in a "Drude-
like" form with a temperature-dependent carrier concen-
tration n (T). Then we describe results obtained from a
model for inelastic scattering by antiferromagnetic spin
fluctuations and include these in a phenomenological way
so as to describe the canductivity over a wider tempera-
ture regime. In Sec. V, we compare results for the
penetration depth, conductivity, and surface impedance
with data on high-quality samples, including both (i) scal-
ing tests of the d-wave plus resonant scattering theory at
low temperatures, and (ii) fits over the entire temperature
range. In Sec. VI we present our conclusions concerning
the validity of the model and suggestions for future work.

II. ELECTROMAGNETIC RESPONSE: FORMALISM

We first review the theory of the current response of a
superconductor with general order parameter b, k to an
external electromagnetic field, with collisions due to elas-
tic impurity scattering included at the t-matrix level. '

We expect such a theory to be valid at low temperatures
in the superconducting state, if inelastic contributions to
the scattering rate fall off sufficiently rapidly with de-
creasing temperature. This is the case in the model we
discuss most thoroughly, namely a d» state with an

electronic pairing mechanism. In such a case, as the gap
opens, the low-frequency spectral weight of the interac-

neE (q, Q)—
mc

A(q, Q),

where A is the applied vector potential. The response
function is related simply to the retarded current-current
correlation function, with

tion is suppressed and the dynamic quasiparticle scatter-
ing decreases. The scattering rate in the superconducting
state contains two factors of reduced temperature T/T,
for electron-electron scattering, and one for the available
density of states in the d-wave state, and therefore varies
as (T/T, ) at low temperatures. At temperatures of or-
der 0.3—0.4T, the dynamic scattering has decreased by
one or two orders of magnitude from its normal state
value, at which point elastic impurity scattering dom-
inates the transport. In this low-temperature region, the
gap is well formed and its frequency dependence occurs
on scales larger than T, . Thus it is appropriate to model
this system within a BCS framework. Furthermore, since
the dominant quasiparticle density is associated with the
nodal regions, we assume that the qualitative features of
the temperature dependence of the transport will be
unafFected by the details of the band structure, and con-
sider a cylindrical Fermi surface with density of states
No, and an order parameter b, k

=b,o( T)cos2$ confined to
within a BCS cutofF of this surface. A more complete
theory capable of describing the higher-temperature re-
gime where inelastic-scattering processes become impor-
tant is discussed in Sec. IV.

If an electromagnetic wave of frequency 0 is normally
incident on a plane superconducting surface, the current
response may be written

j(q, Q) = —Z(q, Q) A(q, Q)

K (q, Q)=([j,j]")(q,Q)

kk f dg T g tr[g(k, co„)g(k,co„—Q )]
mc i 0 ~0+i0+

(2)

where k+ —kkq/2 and co„=(2n +1)n T and Q =2m re
are the usual Matsubara frequencies. The approximate
equality in the last step above corresponds to the neglect
of vertex corrections due to impurity scattering and
order-parameter collective modes. The former vanish
identically at q =0 for a singlet gap and s-wave impurity
scattering, ' while the latter are irrelevant if the order pa-
rameter corresponds to a nondegenerate representation of
the point group. As usual, in the last step we have per-
formed the analytical cantinuatian i Q ~Q+i0 . The
single-particle matrix propagator g is given as, e.g., in
Ref. 16 in terms of its components in particle-hale space

iso„r +/kB+4k&'
g(k, co„)=-

co +g' +)Ek[

where the ~' are the Pauli matrices and 5k is a unitary or-

I

der parameter in particle-hole and spin space. The renor-
malized quantities are given by co„=ro„—Xo(ro„),

+X3(ro„), and Ek =b k +X&(ro„), where the self-

energy due to s-wave impurity scattering has been ex-
panded X=X;r'. The renormalization of the single-
particle energies gk measured relative to the Fermi level
is required for consistency even in the s-wave case, al-
though it is frequently neglected because in the Born ap-
proximation for impurity scattering such renormaliza-
tions amount to a chemic a1 potentia1 shift. For a
particle-hole symmetric system, these corrections can be
important for arbitrary scattering strengths, but are small
in either the weak or strong scattering limit. ' ' We
therefore neglect them in what follows, and postpone dis-
cussion of the particle-hole asymmetric case, where these
effects can become large, to a later work.

A further simplification arises for odd-parity states and



10 252 P. J. HIRSCHFELD, W. O. PUTIKKA, AND D. J. SCALAPINO 50

certain d-wave states of current interest, where a
reaction or other symmetry of the order parameter leads
to the vanishing of the o8'-diagonal self-energy X,. In this
case, the gap is unrenormalized (Ek =b.k), leading to a
breakdown of Anderson's theorem and the insensitivity
of the angular (e.g., nodal} structure of the gap to pair-
breaking sects.

Rather than solve the self-consistent problem in full
generality, in most of what follows, we focus on two cases
of special interest: (i) s-wave pairing with weak scatter-
ing, for purposes of comparison; and (ii} d-wave pairing
without h„renormalization for weak or resonant s-wave
scattering. In case (i), the self-energies XO=I ~Go and
X1=—I NG1 are the familiar integrated Green's func-
tions from Abrikosov-Gor'kov theory, where I ~ is the
scattering rate at T; attributable to impurities alone, and
we have defined G, —:(i/2nNO)Xk Tr[~ g ]. The Green's
function (3) and the self-energies must be calculated to-
gether with the gap equation,

b(k)=TQQVkk Tr[(rl/2)g(k', co„)],
n k'

where Vkk. is the pair potential. In Secs. II and III, all
calculations are done self-consistently within weak-

coupling BCS theory, which yields 50/T =2 14
pure d» state. When comparing with experimental

data in Secs. IV and V, we adopt larger values of ho/T,
of 3 or 4 to simulate strong-coupling corrections.

We now continue the derivation of the response on a
level suSciently general to subsume both cases (i) and (ii)
above. If we neglect gk renormalizations, the self-
energies are given in a t-matrix approximation by

I GO
—IG

2+ G2 G2 2+ G2 G2
(4)

where I':—n;n l(~NO) is a scattering rate depending only
on the concentration of defects n;, the electron density n,
and the density of states at the Fermi level, No, while the
strength of an individual scattering event is characterized
by the cotangent of the scattering phase shift, c. The
Born limit corresponds to c »1, so that I'/c =I'~,
while the unitarity limit corresponds to c =0. To evalu-
ate Eq. (2), we first perform the frequency sums, then per-
form the energy integrations as in Ref. 15, yielding in the
general case

ReE(q, Q) =— f k:Icf dco tanh —tanhp ReI+ (co, co Q)—1 ne dg Pco (co —Q)
2 mC 2' 2 2

+ tanh +tanh ReI++ (co,co —Q)
Pco P(co —Q)
2 2

1 ne
ImiC(q, Q) = ——" f k:k f dco tanh —tanh

2 P1c 271 2 2

Xlm[I++(co, co Q) I+ (co,—co Q—)]
' . — (6)

Z(Q, T)= i 4rQ
' 1/2

c [o,(Q, T ) —icT~(Q, T ) ]

Here o.
1
—i o 2 is the complex frequency- and

temperature-dependent q =0 layer conductivity. It is
customary to write the imaginary part of the conductivity
in terms of a frequency- and temperature-dependent in-
ductive skin depth A,(Q, T),

In calculating the surface impedance of the cuprate su-
perconductors, it is important to take into account the
anisotropy of these layered materials. ' Here we are in-
terested in the response associated with currents which
flow in the ab layers. The wave vector in the ab plane is
determined by the long wavelength of the microwaves
and hence can be set to zero. Furthermore, the short
quasiparticle mean free path in the c direction Ineans that
the surface impedance is determined by the conductivity
of a Cu02 layer. Thus the surface impedance in this case
is given by

c
4nQA, (Q, T)

At temperatures a few degrees below T„cr2 »o, so that
the surface resistance R, is given by

Sm. Q A, (Q, T)o,(Q, T)
R, =ReZ(Q, T) -=

C4

and the surface reactance X, is

4mQA(Q, T)
s c2

(10)

Thus microwave surface impedance measurements pro-
vide information on the inductive skin depth A,(Q, T ) and
the real part of the conductivity o,(Q, T} In the previ-.
ous section, we have dropped the subscript 1 and denoted
the real part of the conductivity simply by cT(Q, T), and
in the limit Q~O, A,(0, T) is just the London penetration
depth.
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~ = 1
I++(co,co'3=

ko+

@+(@++~+)+~k+(~k+ ~k+ }

(to++to+ 40+(0+

At q =0, the energy-integrated bubbles I++, and I+
are given by'

Here co =—co(co+iaO+), hk =—Ek(co+iaO+), and

go ——sgncoQco —b, k with a=El.
We first consider the dissipative part of the response,

reflected in the q =0 conductivity
P(Q) =—(c/Q)In''(q =O, Q). Combining Eqs. (6), (11),
and (12) yields

and

I+ (a),co') = +
0+

co' (co++co' )+E'k (Ek+ —b, 'k )

(Co+
—ko- Co+ko-

cr; (Q).= f dco[tanh[ —,'pco] —tanh[ —,'p(co —Q)] j2mQ

XS,J(co,Q},

(12) where

~'+(~++~'+)+~'k+(~k+ —~'k+ )
S,"(co,Q) =Im k;kj2~ (Co+

—Co'+ }

1 1

fo+ ~o+

co' (co++co' }+6'k (Ek+ —E'k )+
2 &2

(ko+ —ko- }

1 1

(0+ gp—
(14)

S;~(coQ), Im=f k; k~
@+ co+ Co+ Co+

and primed quantities are evaluated at co —Q. For d-
wave pairing there is no gap renormalization, so that
Ez =b,k and the kernel SJ reduces to

III. LIMxTJNG CASES

We are primarily interested in the low-temperature,
low-frequency conductivity required to discuss experi-
ments in the microwave regime. Since the microwave en-
ergy is generally lower than the temperatures of interest,
it is useful to replace

1 1+
Co+ go-

ReK; (0,0)

Q22ne f d tanhpco f dQk;g R
mc o 2 2~ ' J g

(16)

In the special case of isotropic s-wave pairing and Born
scattering this reduces to the well-known result '
Re@ (0,0)

f dco tanh
mc o 2

Q2

(U' —a2) [&U2—~'+ i r„XRe,

with v =op+4/5.

(15)

We also require an appropriate expression for the Lon-
don limit Meissner kernel ReE(0, 0) to evaluate the
penetration depth. Taking Q~O in Eq. (5), we ob-

19,20

[tanhPco/2 —tanhP(co —Q )/2] /(2Q )

by its small Q/T limit —c}f/c}co, providing an exponen-
tial cutofF above the temperature T in the integral (12).
At low temperatures T(&b, tohe temperature depen-
dence of the conductivity depends strongly on the life-
time of the low-energy quasiparticle states, determined by
the self-consistent solution to co=co—X0 and
Ek =b k

—X„where Xo and X, are given by Eq. (4}.
In an ordinary superconductor with weak scattering,

only the exponentially small number of quasiparticles
above the gap edge contribute to absorption. Resonant
scattering, such as occurs in the case of a Kondo impuri-
ty in a superconductor, is known to give rise to bound
states near the Fermi level, reflected in a finite density of
states at co=0 and leading to absorption below the gap
edge. A similar phenomenon occurs in unconventional
superconductors, with the difference that, whereas in the
s-wave (Kondo) case the bound state "impurity band" is
isolated from the quasiparticle density of states above the
gap edge, in unconventional states with nodes the "bound
state" lies in a continuum, and the lifetimes of all states
are finite. ' Nevertheless the energy range between
zero and the gap edge ho may be partitioned crudely into
two regimes, separated by a crossover energy or tempera-
ture T* dependent on the impurity concentration and
phase shift. Below co =T, the scattering rate—21mXo(co) is large compared to co, and the efFects of



10 254 P. J. HIRSCHFELD, W. O. PUTIKKA, AND D. J. SCALAPINO 50

self-consistency are important. The physics of this re-
gime is similar to gapless superconductivity as described
by the well-known Abrikosov-Gor'kov theory of pair
breaking by magnetic impurities in ordinary supercon-
ductors. The low-temperature thermodynamic and trans-
port properties are given by expressions similar to analo-
gous normal-state expressions, with the usual Fermi-
surface density of states Nz replaced by a residual density
of quasiparticle states no=%(co~0) in the superconduc-
tor. Above T*, self-consistency can be neglected, and
transport coeScients are typically given by power laws in
temperature reflecting the nodal structure of the order
parameter. We note that this "pure" regime will corre-
spond to the entire temperature range if the impurity
concentration is so small that T*~0.

In this paper we focus primarily on the case of reso-
nant scattering in an attempt to describe the physics of
Zn doping in the cuprate superconductors. While Zn im-
purities are believed to have no, or very small, magnetic
moments, they nevertheless appear to act as strong pair-
breakers. ' A possible explanation for this strong
scattering could be associated with the fact that an inert
site changes the local-spin correlations of its nearest and
next-nearest neighbors. These changes can lead to
strong scattering and even to bound-state formation '

for the holes of the doped system. With this in mind,
here we assume that a Zn impurity may be approximated
by an isotropic potential scatterer with a large phase shift
close to rr/2.

The essential physics of gapless transport in unconven-
tional superconductors was discussed in the context of
heavy fermion superconductivity by Hirschfeld,
Vollhardt, and Wolfle and Schmitt-Rink, Miyake, and
Varma. Although both works presented calculations for
model p-wave states, most conclusions reached regarding
p-wave states with lines of nodes continue to hold for the
d-wave states in quasi-two-dimensional materials of in-

terest here. For example, the normalized density of states
X(co)—:—ImGc(co) is linear in energy for the pure sys-

tem, and varies as n0+aT for T «T' for an
infinitesimal concentration of impurities. Neresesyan,
Tsvelick, and Wenger have recently called into question
the existence of the residual density of states n0 in a
strictly two-dimensional system. We believe nevertheless
that both the underlying three-dimensional character of
the layered cuprates, as well as the extremely low temper-
ature at which the difference between the logarithmic
term and the slow power-law behavior found in Ref. 32
becomes significant, make such considerations irrelevant
for our purposes.

All quantities of interest in the gapless regime may be
obtained by expanding co (and b, k if necessary) for
co~ T', with the result co=i(y+bco )+ace, where y, a,
and b are constants. T* itself may be shown to be of or-
der y. In the case of a d» state over a cylindrical Fer-

rni surface, y satisfies the self-consistency relation
y=I no/(c +no), where no=2/mK(iso/y), with K is
the complete elliptic integral of the first kind. For small
impurity concentrations such that I «A0, one finds

n o
—-(2y /m 50)ln(4b, o/y ). In the Born limit,

c &&l, y =I Nn0, and both y and n0 therefore vary as
-b,oexp( —b,o/1~). In the resonant scattering case of
primary interest, on the other hand, @=I /n0 and for
small concentrations the residual scattering rate is deter-
mined by (y/b, o) =(m.l )/[2501n(4b, o/y)]. The con-
stants a and b are found to be —,

' and —1/(8y), respec-
tively. Thus for strong scattering both y and the residual
density of states no vary as (I b,o)' up to a logarithmic
correction. This is important because it means that low-
energy states may be strongly modified, even though the
impurity scattering rate, which varies as I near T„ is
insuScient to suppress T, significantly. In the usual
Born limit, on the other hand, gapless effects become im-
portant only when I z-—A0, implying a large T, suppres-
sion. As the normal-state inelastic-scattering rate, of or-
der T, in temperature units, is much larger than the
impurity-scattering rate in clean samples, we expect that
impurities are in any case relatively ineffective in
suppressing T, until the elastic-scattering rate at the
transition becomes a significant fraction of the inelastic
one (see Secs. IV and V).

These estimates enable an immediate evaluation of Eqs.
(13) and (15) in the gapless regime,

2
T,o„(Q~O, T)=croo 1+ (18)00

where ooo=ne /[mmbo(0)] for a d 2 2 state. The first

term in Eq. (18) is a remarkable result pointed out by
Lee, namely that the residual conductivity
o(Q~O, T~O) of an anisotropic superconductor with
line nodes on the Fermi surface is nonzero and indepen
dent of impurity concentration to leading order. It arises
technically from the first term on the right-hand side of
Eq. (14), and is present in principle regardless of the
scattering strength. Physically this reflects a cancellation
between the impurity-induced density of states and the
impurity quasiparticle scattering lifetime. The linear
variation coib, o of the d-wave density of states is cut off
when co drops below the impurity scattering rate ~
Therefore, at low energies there is a finite impurity-
induced density of states which varies as (b,or) . At low

temperatures such that T & v ', the effective relaxation
rate which determines the conductivity is proportional to
the density of states (b,or) ' multiplied by r, giving b,o

'

independent of the scattering strength. Very recently it
was pointed out that a generalization of the present
theory to include a finite scattering range results, in the
limit of sufnciently large range or disorder, in a residual
conductivity which scales with the scattering time
(21 )

—
1 34

In Figs. 1 and 2 we illustrate the effect of varying the
phase shift and impurity concentration on the T depen-
dence of the conductivity with a full self-consistent nu-
merical evaluation of Eqs. (13) and (15) for a d» state.

The intrinsic gapless behavior represented by Eq. (18) is
clearly visible in the resonant limit, c =0, but in the Born
limit, c &&1, the same limiting behavior is effectively
unobservable for small concentrations at Q=O. Instead,
the conductivity tends to a value o.0=ne /2I I except
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o
b
b

0.0 0.1 0.2 0.3

the result expected for the conductivity of noninteracting
fermions with density of states N(ro) and one-body relax-
ation time r(co), and is reminiscent of the Drude-like ex-
pression used by Bonn et al. to analyze their data. How-
ever, as pointed out in Ref. 12, the co dependence of the
superconducting density of states tends to induce a strong
energy dependence in r(co) in either the strong or weak
scattering limits. For a d & ~ state we find

(n. I 6o)/[2' ln (4ho/co)], c =0
(4I Neo/n ho)ln(4b o/co), c » 1

leading to the pure limit conductivity result for
Q « I'6 /T, T « T„

FIG. 1. Normalized low-T conductivity, cr/ooo vs the re-

duced temperature T/T, for microwave frequency 0=0. The
solid lines correspond to resonant scattering, c =0, I /T, =0.01,
0.003, 0.001, and dashed line corresponds to c =0.3,
I /T, =0.01.

o„„(Q=O,T)=

2 T ', 4~o—cro ln, c =0
0

J

o'p~ c Po 1

In the opposite limit Q » I'6 /oT, T« T, we find

(21)

o„„(Q)= f de N(co)
J

1

Q —i /r(co)
(19)

where r '(co)= —21mXo(co), for any choice of phase
shift. Note that N(co) is the density of states for a pure
superconductor normalized to N(0) and varies as ~co/bo~

for a d» state at low energies. Equation (19) is exactly

at exponentially small temperatures, where it again ap-
proaches cr oo, due to the narrow width

y -hoexp —ho/I z of the gapless range in this limit.
For T&T'=y, we take co —co=Xo(co) rather than

Xo(co), and keep only the leading singular terms in Eqs.
(13) and (15) as I ~0, arriving at the remarkably simple
expression,

o„„(Q,T)= '

ne rr I' 4~oln, c =0
m 2Q2 T

ne2 4n I x T 4bo1n, c&)1 .
m 3Q ho

(22)

XN(ro)Im
1

Q i /~ co—
(s-wave, Born),

(23)

It is instructive to compare the form of the previous re-
sults with the more familiar form of those expected for an
s-wave superconductor with weak potential scattering.
We begin with Eqs. (13) and (14), and proceed as before
in the pure regime, neglecting self-consistency in Xo and

XI. We find
r

lM
o„„(Q)= 2f de

m 6 Bco

o (o I. I N/TC, =0.01

C)0 ()b o@ca
b

C)
D

n/T. =0 where now however the quasiparticle relaxation time in
the s-wave superconducting state is given by

(2r) '= —ImXo(co) —(5/co)lmXI(co),

and N(co)=co/1/co 6. This relaxat—ion rate has a simi-
lar form to that found, e.g., by Kaplan et al. for the
electron-phonon quasiparticle relaxation in ordinary su-
perconductors. In the limit 0~0, T~O, we find

0.0 0.1 0.2 0.3 o„„(Q)= )le 6 g/z—e lnr T
' n (24)

FIG. 2. Normalized low-T conductivity, o. /ooo vs the re-
duced temperature T/T, in the Born limit, I N/T, =0.01,
O,/T, =0, 0.001,0.01.

which is similar in form to the well-known Mattis and
Bardeen result.

The hydrodynamic limit results Eqs. (21) predict a T
behavior' for resonant scattering or a constant
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behavior for weak scattering for the low-T conductivity
of a d-wave superconductor under the assumptions set
down above. Neither of these is consistent with the
linear-T variation reported in experiment, which would
correspond to the assumption of a constant relaxation
time v. Thus the low-temperature experimental results
appear to be inconsistent with the simplest d-wave mod-
el. ' However, diferent physical relaxation mechanisms
than those considered here could change the low-
temperature behavior.

The crossover regime between the hydrodynamic [Eq.
(21)] and collisionless [Eq. (22)] limits is an interesting
one which we investigate further here. In Fig. 2, we illus-
trate this crossover in the Born limit for a d» gap,x -y

demonstrating that the result 0 ~oo holds only in the
hydrodynamic regime 0« I &. This is a point of some
importance, since experiments on Zn-doped samples ap-
pear to indicate a residual conductivity 0(T~O) which
scales inversely with impurity concentration, reminiscent
of the zero-frequency Born result Eq. (21). On the other
hand, Fig. 2 shows that this behavior disappears at mi-

crowave frequencies comparable to those used in the ex-
periments. It therefore appears unlikely to us that an ex-
planation in terms of weak scattering can be compatible
with the observations reported in Refs. 4 and 5.

In Fig. 3, we plot the low-temperature conductivity for
the case of resonant scattering to display the same cross-
over. It is interesting to note that a quasilinear behavior
is in fact obtained over an intermediate range of tempera-
tures when the frequency becomes comparable to the
scattering rate, but this behavior does not appear to hold
very far from A=I .

To close the discussion of the low-energy behavior of
the conductivity, we give analytical results for the
frequency-dependent conductivity at zero temperature.
In this case the factor [tanhPco/2 —tanhP(co —Q)/2] ap-
pearing in Eq. (13) reduces to a window function limiting
the range of integration from 0 to Q. The result may be
expanded for small values of the integration variable,
yielding in the resonant limit

C)

b
0
~o

C)

P4
O

O
O

0.0 0.1 0.2
n/v,

0.3 0.4

FIG. 4. Normalized conductivity, 0./o. pp vs the reduced fre-

quency 0/T, for T =0, and I /T, =0.001,0.01,0. 1.

Oo[c1 +1/24( Q/y) ln '(460/y)], Q«y
ne' ~'r, 4~o21n, Q&&y .20' y

(25)

In Fig. 4, we plot the frequency dependence of the T =0
conductivity in the impurity-dominated regime.

A full analysis of surface impedance measurements re-
quires, in addition to the conductivity 0, a knowledge of
the inductive skin depth A,(Q, T), which reduces in the
limit Q~O to the usual London penetration depth A,(T).
The 0=0 penetration depth in a d 2 2 state in the pres-

ence of resonant impurity scattering has been calculated
by several authors. In the gapless regime T&T', the
linear-T behavior characteristic of a d-wave system is
destroyed, and one finds the result
k=ko+~AoT /(6ybo), where Ao=')/mc /4nne is the

pure London depth, and the renormalized zero-T
penetration depth is given by"

(Ao —A~)/Ao —-[y/(mba)]ln(460/y)=I /(2y) .

At higher temperatures T* ~ T && T„ the penetration

C)

o

b

0.0 0.1 0.3 0.0 0.2 0.4
( /T, c

0.6 0.8

FIG. 3. Normalized low-T conductivity, o. /o. pp vs the re-
duced temperature T/T, in the resonant limit, for c =0,
I /T, =0.001, and 0/T, =0,0.0032,0.01.

FIG. 5. Normalized zero-temperature London penetration

depth, A, ( T=O)/A, p vs the reduced scattering rate, I /T p in the
resonant scattering limit, c =0.
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cOo

conductivity of a d-wave superconductor, with
'(co)= —2 ImXO(co) and N(co) the superconducting

density of states. In this limit the penetration depth for a
d» state is given by

'2
A,(0)
iL( T)

=1—f dco N(co) (27)

0)
0)
o

.018 Then using [A,(0)/A, (T) J =1 n—(T)/n to define a nor-
mal quasiparticle Quid density, 0 may be written as

Q)

0.0 0.1 0.2 0.3

FIG. 6. Normalized London penetration depth, A,(T)/A, o vs

the reduced temperature, T/T, for resonant scattering,
I /T, =0.0008, c =0, and 0/T, =0,0.002,0.018.

(T)e 10„„(Q)= Im
m Q t Tco

where the average ( ) is defined by

coN co N A co

coN co N

(28)

(29)

depth crosses over to the pure result,
A(T) =Ao[1+in2(T/do) J. For completeness, we show in
Fig. 5 the increase of the zero-temperature London
penetration depth for large values of the scattering pa-
rameters in the Born and unitary limits. These results are
in agreement with those of Kim, Preosti, and Muzikar. 9

The presence of low-energy quasiparticles can induce a
strong frequency dependence to the low-temperature in-
ductive skin depth A,(T, Q), which can in some cases
mimic shifts in low-temperature power laws. Some of
these effects were explored in the context of heavy fer-
mion superconductivity. Here we observe that the
skin-depth temperature dependence can be suppressed if
the microwave frquency is large enough such that Qr & 1.
In this case, it is necessary to use the penetration depth
measured at Q rather than the limiting low-frequency
penetration depth, to extract the conductivity from sur-
face resistance data. A simple expression for the
frequency-dependent penetration depth A,(T,Q) may be
obtained in the pure regime, T & T', by neglecting self-
consistency in the imaginary part of the conductivity as
well,

(To),+ iL(TO)
A( TQ) Ao

In the limit where Qr(co) « 1, Eq. (28) reduces to
o„„=n (T)e'(r)/m.

For a d» gap, n (T) varies linearly with tempera-

ture at low temperatures. Thus if the average lifetime
(r) were constant, o „„would vary linearly with T at low
temperatures. However, the impurity scattering lifetime
is frequency dependent due to the frequency dependence
of the single-particle density of states. In Fig. 7 we show
plots of ~ '(co) versus co for the case of a d 2 2 gap and

various values of the scattering phase shift. In the unitar-
ity limit we have

2T, N(T
HI'b, o

(30)

co& T
2co ln (4b,o/co)

1

r(co)

CV

o

Thus in the "gapless" regime, co& T', the impurity-
scattering rate saturates at 2T' and in the "pure" regime,
co & T, r varies linearly with co to within logarithmic fac-
tors. In this limit, as discussed in Sec. II, the conductivi-
ty rises with increasing temperature as T times logarith-

X JdruN(ru}
o
o

ho/Te=3

(Q~)
1+(Q~)

(26)

In the collisionless limit Q~&&1, the response of the sys-
tem is perfectly diamagnetic in this approximation,
A,(T,Q)~A, O. In Fig. 6, we explicitly illustrate the effect
of increasing the microwave frequency on the skin depth
of a clean d 2 2 superconductor.

IV. SPIN-FLUCTUATION MODEL
FOR QUASIPARTICLE RELAXATION

+ o
&o

o
o
o
0 (
o

0.0 0.1 0.2 0.3 0.4 0.5

FIG. 7. Impurity relaxation rate 1/T, Hco) vs the reduced
frequency co/50 for I /T, =0.01,0.001 and c =0 (solid lines),
and I /T, =0.01, c =0.2 (dashed line).

As discussed in Sec. III, in the "pure" limit where
T'«T«T„we find a Drude-like form (19) for the
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mic corrections. This type of behavior is characteristic of
a d 2 2 gap and resonant impurity scattering. One power
of T comes from n (T) and the other from (r); both ul-

timately reflect the linear co variation of the single-
particle energy density of states.

At higher temperatures, inelastic scattering and recom-
bination processes determine the quasiparticle lifetime.
In models in which the d & 2 pairing arises from the ex-

change of antiferromagnetic spin fluctuations, ' it is natu-
ral to expect that antiferromagnetic spin fluctuations

!

(3/2) U
Vq, ro =

1 —Uyo (q, co)

Here U is a renormalized coupling, and

(31)

rather than phonons provide the dominant inelastic re-
laxation and mechanism. Calculations of the quasiparti-
cle lifetime have been carried out for a two-dimensional
Hubbard model in which the spin-fluctuation interaction
is taken into account by introducing an effective interac-
tion

~a(s( ) y 1+ t e t u ee+ a+6+ 5
2

6'p +q
E'p +6p +q Ap+—1—

4 E.+~Ep

~p+q~p+~p+e~p+—1—
4 E.+qE.

f (Ep+q ) f(&p—)

ro (E~+—q E)+—iO+

1 f(E —
) f(E —

)

re+(E + +E )+iO+

f(Ep+q )+f (Ep ) —1

(E +
—+E )+iO+

(32)

is the BCS susceptibility with E =Qe +b, , where e = —2t(cosp, +cosp )
—p. With the interaction given by Eq.

(31), the lifetime of a quasiparticle of energy co and momentum p in a superconductor at temperature T is given to lead-
ing order by

1

N, 1 —f(co)
dvlmV(p —p', v)5(co —v E) 1—+ [n(v)+1][1 f(co —v)—]

0 co(co v)

0+ vImV p —p', v v —~—
Ep 1—

e+ /6'
f

[n (v)+ 1][f ( v —co) ]
co(v —co)

+j dv lmV(p p', v)5(re+—v E, ) 1+ — n(v)[1 f(co+v)]—
0 co(co+ v)

(33)

Here n (v) and f(co) are the usual Bose and Fermi fac-
tors, and a quasiparticle renormalization factor has been
absorbed into V. The second term of Eq. (32) corre-
sponds to a process in which two quasiparticles recom-
bine to form a pair with excess energy emitted as a spin
fluctuation. The first and third terms describe scattering
processes associated with the emission or absorption of
spin fluctuations, respectively.

Quinlan, Scalapino, and Bulut numerically evaluated
Eq. (31) to obtain the quasiparticle lifetime using parame-
ters for U, t, and the band filling which had previously
provided a basis for fitting the nuclear relaxation rate of
Y-Ba-Cu-0 (Ref. 43) and gave a normal-state quasiparti-
cle lifetime r '(T, ) of order T, . The tetnperature depen-
dence of the inelastic quasiparticle lifetime for a d 2

gap with 260/T, =6 to 8 was found to be in reasonable
agreement with the higher-temperature transport lifetime
determined by Bonn et al. At reduced temperatures
below T/T, of order 0.8, the d 2 2 gap is well-established

and the occupied quasiparticle states are near the nodes.
Setting p to its nodal value and re= T, Quinlan, Scalapi-
no, and Bulut found that the temperature dependence of
the numerical calculations of the quasiparticle lifetime
varied as T, reflecting the available phase space.

Figure 8 incorporates results for ( r) obtained by set-

C)
C3

C)
C)

0.0 0.2 0.0 0.6 0.8 3.0
T/T,

FIG. 8. Relaxation rate including inelastic scattering
1/T, (r) vs the reduced temperature T/T, for I /T,
=0.0008,0.009,0.018, c =0, 50/T, =3 (solid lines) and
I /T, =0.0008,c =0,60/T, =4 (dashed line).

ting the scattering rate equal to the sum of the impurity
and inelastic rates. This procedure neglects the real parts
of the self-energy as well as vertex corrections arising
from the dynamic processes. Nevertheless, it shows the
qualitative behavior of (r) versus T/T, . Combining a
simple parametrized fit of the numerical results of Ref. 42
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FIG. 9. Normalized conductivity including inelastic scatter-
ing, cr/ooo vs the reduced temperature T/T, in the resonant
limit, c =0 for 0/T, =0.018, c =0, and 1 /T,
=0.0008,0.009,0.018.
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FIG. 10. Reduced conductivity peak temperature, T~/T, vs
0/T, for I /T, =0.001,0.01, c =0, and Ao/T, =3 (left axis);
normalized peak conductivity o.(T~,Q)/a. ( T„O) vs 0/T, (right
axis).

for r,„(T) with the unitary elastic-scattering rate, corre-
sponding results for o (T) versus T/T, are shown in Fig.
9. Here the peak in o(T) arises from the rapid drop in
the dynamic quasiparticle scattering rate as the gap opens
below T, and spectral weight is removed from the spin
fluctuations. The low-temperature T dependence im-
plies that at these energies, the quasiparticle scattering
rate is increasing as the temperature is lowered due to the
linear decrease in the single-particle density of states and
the fact that ~ is proportional to this density of states in
the unitary scattering limit. ' As the microwave frequen-
cy 0 is increased, the temperature T~, at which the peak
in o(Q, T) occurs, increases. At the same time the peak
value decreases. Adding the numerical results for the
inelastic-scattering rate r;„(T) to the unitary elastic
scattering rate and evaluating Eq. (25) for various mi-
crowave frequencies, we find that T~ /T, and
o(Q, T~)/o(0, T, ) vary with Q as shown in Fig. 10.

V. ANALYSIS

Quantitative comparison of the simple theory present-
ed here with existing data is useful but dangerous. We re-
mind the reader that many features of the model are cer-
tainly oversimplified, including but not limited to the
neglect of the real Fermi-surface anisotropy, higher-order
impurity-scattering channels, and strong-coupling correc-
tions. However, we do not expect inclusion of these as-
pects of the physics to qualitatively alter the nature of the
temperature power laws in the response functions at low
temperatures in the gapless and pure regimes. At higher
temperatures T & T„ it is natural to expect that real met-
al effects will produce nonuniversal behavior in the super-
conducting state even if the normal state is a strongly re-
normalized Fermi liquid. With these remarks in mind,
we proceed as follows. We first attempt to fix the
impurity-scattering parameters within the resonant
scattering model by comparison to the penetration depth
data of Bonn et ol. on Zn-doped samples of Y-Ba-Cu-O.
It turns out the fit obtained is relatively good in this case,
although the scattering rates in the case of the Zn-doped
samples are not fixed with high accuracy because of un-
certainties in the zero-T penetration depth. As discussed
below, a different kind of scaling analysis can be per-
formed on the thin-film data of Lee et ol.

As one knows from the heavy fermion superconduc-
tivity problem, claims to determine the gap symmetry by
fitting a theoretical prediction to a single experiment on a
single sample should be treated with caution. It is ex-
tremely important to correlate results on different kinds
of measurements on difFerent samples. The results of the
British Columbia group afford an excellent opportunity
to do this kind of crosschecking. We therefore adopt for
the moment the "best" results for the scattering parame-
ters in the pure and Zn-doped samples from the penetra-
tion depth analysis, and use them to compare calculated
conductivities and surface resistances with the data of
Bonn et al. 5 The behavior of the temperature-dependent
conductivity is much richer than that of the London
penetration depth, so it will be important for the con-
sistency of the theory to see which aspects can be repro-
duced by the d-wave plus resonant scattering (plus inelas-
tic scattering) model.

In Fig. 11, we show one possible fit to the UBC
penetration depth data. The curves represent the
theoretical penetration depth A,(T) normalized to the
pure London depth A,o for different values of the resonant
scattering parameters I' as given. The value ho/T, =3 is
chosen from the fit of the asymptotic pure d» penetra-
tion depth EA,(T)=Aoln2(T/bo) to the intermediate
linear-T regime in the pure data (symbols). The value
I /T, =8 X 10 is then chosen by fitting the curvature of
the T contribution at the lowest temperatures. As the
absolute scale of the experimental A,(T=O) is uncertain,
we have chosen to add constant offsets to the various data
sets to try to achieve reasonable fits. Figure 11 shows
that it is possible to find a consistent choice of such
offsets, since the scattering rates used for the two Zn-
doped data sets, I /T, =0.018 and 0.009 are in the ratio
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FIG. 11. Comparison of d-wave penetration depth with

penetration depth data on Y-Ba-Cu-0 single crystals (Ref. 5).
Normalized penetration depth, A,( T)/A, o vs the reduced temper-
ature T/T, for I /T, =0.018,0.009,0.0008 and c =0. Data for
pure Y-Ba-Cu-0 crystal (circles), 0.15% Zn (diamonds), and
0.31% Zn (squares).

2:1 as are the nominal Zn concentrations 0.31 and
0.15%%uo. However, a roughly equally good fit may be ob-
tained using scattering rates of, e.g., I /T, =0.03 and
0.006, which would then not be consistent with the
theoretically predicted scaling of I' with the impurity
concentration n, . Clearly there is a relatively large range
of acceptable scattering rates corresponding to the two
Zn-doped curves, possibly a factor of 2 or more. A deter-
mination of the zero-temperature limiting penetration
depths of pure and Zn-doped samples from, e.g., @SRex-
periments, is needed to fix these values more precisely or
rule out such a fit,

A procedure for fixing the zero-temperature penetra-
tion depth relative to the single-crystal data without new

experiments has been suggested by Lee et al. They as-
sume that the data for their Y-Ba-Cu-0 films follow a
universal curve given by the form of the single-crystal
penetration depth in the intermediate-temperature re-
gime, as suggested by the resonant scattering analysis.
Using data on several films, they show that such a scaling
is indeed possible, and assign zero-temperature penetra-
tion depth values to several films on this basis. This al-
lows an internal consistency check of the resonant
scattering hypothesis, wherein one may check to see that
the measured coefficients of the T term in the penetra-
tion depth, equal to ci =m A,p/(6yhp) for a d» state and

resonant scattering, scale appropriately with the zero-
temperature penetration depth renormalization,

(Xp —Ap)/Ap-—[y/(crap)]in(4bp/y) = I /(2y) .

Since a given film in the resonant scattering limit is
characterized simply by its impurity concentration
through the parameter y, using the above expressions it
is possible to check scaling without knowledge of the ac-
tua1 defect concentration. For example, in Fig. 12 we

FIG. 12. Normalized T=0 normal fluid density 1 —{A,o/ko)
vs the reduced coefficient of T' term, Ao/(c&60) in the d»

-y

plus resonant scattering model. Each cluster of points
represents one Y-Ba-Cu-0 61m from Ref. 45.

plot (Xp —A,p ) vs 1/c2 for two "difFerent" films measured
in Ref. 45 actually the same film before and after anneal-
ing (films A and A ' of Ref. 45). Each cluster of points in
Fig. 12 represents a single film, the individual points cor-
responding to de'ering assumptions regarding other con-
stants, such as the absolute value of the pure penetration
depth, which enter such an analysis. It is seen that the
agreement with the theoretical scaling is remarkably
good, and that this agreement is not particularly sensitive
to varying assumptions on the subsidiary constants.

Next we explore whether an equally good fit is possible
for the resistive part of the conductivity which was also
measured in Ref. 5. As we have seen, even in the "pure"
limit T & T* the conductivity depends on the quasiparti-
cle lifetime. At low temperatures, elastic scattering from
impurities determines this lifetime. At higher tempera-
tures, however, inelastic-scattering processes become im-

portant and we use a simple parametrized fit to the nu-
merical results for the inelastic-scattering rate r (T) ob-
tained by Quinlan, Scalapino, and Bulut. As previously
discussed, the parameters of the spin-Guctuation interac-
tion used in this work were used in fitting the NMR data
and the overall strength was adjusted to give ~;„'(T,) of
order T, . The total scattering rate is taken as the sum of
the elastic and inelastic rates. Using the usual expression,
for the surface resistance R, in terms of the real part of
the conductivity o. and the penetration depth,
8, =(gn 0 A, o )/c, Bonn et al. extracted the conduc-
tivity for the same samples whose penetration depth is
plotted in Fig. 11. In Figs. 13 and 14, we show the con-
ductivity plotted for these samples calculated using the
elastic-scattering parameters taken from Fig. 10 and the
inelastic-scattering results frown Fig. 8. Although the
size, position, and scaling with frequency of the prom-
inent maximum in the conductivity are reproduced quali-
tatively, it is clear that the low-temperature behavior of
the data does not correspond to the predictions of the
model. In Sec. II, we pointed out that, while a o. —T



50 d-WAVE MODEL FOR MICROWAVE RESPONSE OF HIGH-T, . . . 10 261

~ CV

b

b ~

Hz
I /T, =.0008
0/T, =.018

~ i 348 GHz

pure

O

O~ bl

b

b ~

34.8 GHz
pure
I /T =.0008
0/T, =.018

I—

0
b

34.8 GHz
.15% Zn
I /T, =.009
0/T, =.01 8

O

0.0 0.2 0.4 0.6 0.8 1.0 1.2

FIG. 13. Normalized theoretical conductivity o /o, (T, ) vs

the reduced temperature T/T, for impurity parameters
I /T, =0.0008 and c=0, including inelastic scattering for
0/T, =0.002 and 0.018 (solid lines). Data points are normal-

ized conductivities of Y-Ba-Cu-0 single crystals from Ref. 5 for
microwave frequencies 3.88 GHz (circles) and 34.8 GHz (trian-

gles).

behavior can be obtained in the pure regime if Q~= 1, it
is not generic to the theory; by contrast, the data for at
least the "pure" sample and 0.15% Zn appear to follow a
low-temperature linear-T law for all the samples shown.
A similar behavior is observed in Y-Ba-Cu-0 thin films
and Bi-Sr-Si-Cu-0 single crystals.

The further diSculty apparent from the data shown in
Figs. 13 and 14 is the rather large residual value of the
conductivity as T~O exhibited by all data sets. While
the d-wave theory predicts a residual absorption, the lim-

iting ooo= ne /mn ho of the theory is an order of magni-
tude or so lower than that extracted by the British
Columbia group. ' While quahtatively different physical
scattering mechanisms than those considered here, or a
completely different picture for superconductivity in the
cuprates might be responsible for the deviations from
theory apparent in the data, we prefer to reserve judg-
ment until further data is available. Very recent results
from the British Columbia group ' indicate that twin
boundaries are responsible for the large residual conduc-
tivities heretofore observed; the best untwinned samples
appear to have residual conductivities consistent with the
predicted "universal" result o ~o oo (or o ~0) within ex-
perirnental resolution. In Fig. 15 we show data for a
twin-free, high-purity Y-Ba-Cu-0 crystal compared to
the same theoretical prediction used for the low-
frequency conductivity displayed in Fig. 13. It is evident
that the residual conductivity in the untwinned has been
dramatically reduced, and the low-temperature fit to the
d-wave theory correspondingly improved. Clearly high-

I—

t
Il)

34.8 GHz
.31% Zn
I /T0=. 018
0/To=. 01 8

I I~ ~

bo

0.0 0.2 0.4 0.6 0.8 1.0 1.2

FIG. 15. Effect of detwinning. Normalized theoretical con-
ductivity o/cr&(T, ) vs the reduced temperature T/T, for im-

purity parameters I /T, =0.0008 and c =0, including inelastic
scattering for Q,/T, =0.002 (solid line). Data points, are nor-
malized conductivities of detwinned Y-Ba-Cu-0 single crystal
from Ref. 5 for frequency 4.1 6Hz.

0.0 0.2 0.4 0.6 0.8 1.0 1.2
c

FIG. 14. Normalized theoretical conductivity o/cr&(T, ) vs
the reduced temperature T!T, for impurity parameters
I'/T, =0.0008,0.009 and 0.018 with c =0, including inelastic
scattering for 0/T, =0.018 (solid lines). Data points are nor-
malized conductivities of Y-Ba-Cu-0 single crystals from Ref. 5
for frequency 34.8 GHz, for samples nominally pure (circles),
0.15% Zn (triangles), and 0.31% Zn (squares).
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FIG. 16. Normalized surface resistance, R, /R, ( T, ) vs the re-
duced temperature T/T, . Theory for 0/T, =0.002 and impur-
ity parameters I /T, =0.0008, e =0, including inelastic scatter-
ing, for 50/T, =3 (solid line) and 50/T, =4 (dashed line). Data
from Ref. 5, 3.88 GHz, nominally pure Y-Ba-Cu-0 crystal.

quality Zn-doped samples of this type are also desirable.
For completeness we also calculate and display the sur-

face resistance R, (T) for various values of the scattering
parameters in Fig. 16. Here again, we see that the low-
temperature behavior of the theory is in disagreement
with the data. This reflects the much lower residual
conductivity predicted for our model, as well as the T
power-law dependence. In addition, in order to repro-
duce the dramatic decrease in R, which is observed below
T„we need a large b,o/T, =4 ratio. It is also important
in making this comparison to recall that the drop in R,
just below T, rejects less the collapse of the inelastic-
scattering rate which enters the conductivity o than the
divergence of the penetration depth near T, (recall

R, -A, ). The data suggests that the magnitude of the gap
opens more rapidly than usual. This type of behavior has
been found in model calculations based on the exchange
of spin Quctuations including processes not considered
here. ' It is also possible that critical effects in a range
of up to several degrees near the transition may lead to a
divergence more rapid than in the usual mean-field
case.

VI. CONCI. USIONS

In this paper we have calculated A,(Q, T) and o (0, T)
within the framework of a BCS model in which the gap
has d» symmetry, and both strong elastic impurity-

scattering and spin-fiuctuation inelastic-scattering pro-
cesses are taken into account. %e have sought to address
a set of basic questions raised in the Introduction. Here
we summarize what we have learned.

(1) The microwave conductivity of the layered cuprates
can be written in a Drude-like form

Here nq (T) is the normal quasiparticle fluid density and
the brackets denote the frequency average defined in Eq.
(28). The inverse quasiparticle lifetime r (co, T) is the
sum of the elastic impurity-scattering rate and the inelas-
tic spin-fluctuation scattering. The form of Eq. (28) de-
scribes the transport properties of nodal quasiparticles
which have a relaxation time r(co, T) and a density of
states E (co ).

(2) In the hydrodynamic limit Q(r) « l, o (T)
=nq~(T)e (r) /rn Thi.s is just the form that Bonn et al.
used to extract a quasiparticle lifetime from their conduc-
tivity data. Here we have shown that ( r ) corresponds to
an average over a frequency- and temperature-dependent
lifetime. Figure 8 shows a plot of (r) ' versus T for typ-
ical parameters.

(3) We find that for a d & 2 gap, o'(T-+0) goes to a
constant o~=ne /mob, o independent of the impurity
concentration (for small concentrations). If we take

'( T, ) = T, from dc resistivity measurements, and
2b,o/kT, =6, then ooo/o(T, )=1/3' so that the limiting
value of 0.

0o is about an order of magnitude smaller than
o ( T, ). As the temperature increases, o ( T) grows as T .
For T)T*, this can be understood as arising from the
fact that both n (T) and (r) in the resonant scattering
limit vary linearly with T. Note that we also find that for
T&T', a(T) o~ varies as—T . If, in the pure limit
T)T', (r ) were a constant, then o ( T) would increase
linearly with T. However, this is not the case for the
model we have considered. The predicted variation of
o(T) with T is in disagreement with the presently avail-
able data at low impurity concentrations, but the predict-
ed residual conductivity appears to be consistent with re-
cent measurements on untwinned samples. %hether
other scattering mechanisms can give rise to the linear-T
behavior is not at present understood. The effect of
particle-hole asymmetry is of particular interest in the
context of our observation that a constant relaxation time
at low temperatures in pure samples is needed to produce
a linear temperature dependence. The analytic properties
of the self-energy of a particle-hole symmetric supercon-
ductor formally preclude such a result, however. An in-
vestigation of particle-hole asymmetry effects and the
effects and the effects of higher-order partial wave
scattering is in progress.

(4) At higher temperatures, inelastic-scattering pro-
cesses become important and give rise to a scattering rate
which increases initially as (T/T, ) . As shown in Fig. 8,
this leads to a minimum in (r) ' at a particular value of
T/T, .

(5) At higher microwave frequencies where Q(r) —1,
there is a crossover from the hydrodynamic to the col-
lisionless regime, and the relationship of o(T, Q) to the
quasiparticle lifetime involves an average of
r(a&, T)/[1+02m (co, T)]. In this regime, the conductivi-
ty can exhibit a quasilinear variation with T. %e have
shown in Fig. 10 how the temperature T and magnitude
o.(Q, T~ )/o(T, ) of the peak conductivity varies with Q.
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We have also found that at higher microwave frequen-
cies, quasiparticle screening leads to a reduction in
A,(T,Q). At a fixed temperature A,(T,Q) can approach
A,(0,0) as Q increases. We have used the full frequency
dependence of A,(T,Q) and a&(T, Q) in calculating the
surface resistance R, ( T,Q) shown in Fig. 16.

(6) In Sec. V, we explored the extent to which the d»
wave plus scattering model can describe the surface im-
pedance observed in YBa2Cu306 95 and its Zn-doped vari-
ants. It appears (Figs. 11 and 12) that the temperature
and impurity dependence of the penetration depth can be
fit within the framework of this model. It will be interest-
ing to compare the results for the Q dependence of
A,(T,Q) with experimental results which will soon be
available. ' The measured values of 0 &(T,Q) shown in
Fig. 14 for the pure and 0.15% Zn samples appear to
have a linear low-temperature variation in contrast to the
T2 variation predicted from the model. Nevertheless, as
shown in Figs. 11 and 15, a simple d-wave model plus
scattering provides a reasonable overall fit to both the
real and imaginary parts of the conductivity. One can
ask whether alternative models such as an anisotropic s-
wave pairing could provide similar fits to the data. In the
absence of impurity scattering, the penetration depth and
the low-frequency microwave conductivity o ( T) will both
vary exponentially at temperatures below the minimum

gap value. In addition, if the minimum gap value is
finite, o(T~O) will vanish as exp —(5;„/T). An ex-
treme example of an anisotropic s™wavegap is given by
taking for b, the magnitude of the d 2 2 gap,
ho(T)~cos2$~. In this case, the results in the pure limit
for A,(T) are identical to the d» results. However, the

addition of impurities can lead to a qualitatively different

behavior for the anisotropic s-wave case. As discussed
in Sec. II, both ro„and Ez are renormalized by impurities
in the s-wave case. In particular, potential scattering acts
to average the gap over the Fermi surface, thus reducing
the peak value of the gap and increasing the minimum
value. Thus, even if one took the extreme anisotropic s-
wave case in which the gap has nodes but does not
change sign, impurities would lead to a finite effective gap
and an exponential rather than T crossover of the low-
temperature dependence of both A,( T) and o ( T). If "in-
ert" defects like Zn impurities are found to have a mag-
netic character, however, distinguishing s- and d-wave
states becomes more difficult. Further measurements of
the low-temperature dependence of the surface im-
pedance in pure and impurity doped cuprates along with
the detailed comparisons with theoretical models are
necessary to determine the symmetry of the pairing state.
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