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The motion of a hole doped into the antiferromagnetic CuO& plane is studied by means of a perturba-
tion theory on the basis of the d-p model. The existing perturbation theories are improved by calculating
the perturbation corrections up to the third order of the transfer integrals and also by taking account of
various spin-exchanged states explicitly. The calculated results show that the third-order perturbation
correlation cannot change the qualitative properties of the hole motion and that the spin-exchanged
states play a vital role in determining the band structure of the hole motion. The obtained lowest band
of the hole is split off far away from upper excited bands and corresponds to spin-singlet states which
consist of antiparallel spins of neighboring Cu d and 0 p orbits. The bottom of the lowest band appears
at the same position in the reciprocal space as that obtained on the basis of the t-J model. Nevertheless,
its bandwidth is much larger than that predicted by the t-J model, revealing quite different processes of
the hole motion between the d-p and t-J models. The simplification of the d-p model by assuming an
infinite Coulomb interaction Uz on Cu sites gives rise to a large quantitative change in the band struc-
ture for a set of realistic parameter values. This result is argued in connection with slave-boson theories
of the d-p model.

I. INTRODUCTION

Since the discovery of the cuprate oxides with high su-
perconducting transition temperatures T„many theoreti-
cal works on the Cu02 plane have been accumulated.
This is because the Cu02 plane is the common frame of
the high-T, cuprates and is considered to be responsible
for the electronic properties of those cuprates. ' To un-
derstand the electronic state in the Cu02 plane, Emery
has proposed the d-p model, where Cu 3d and two 0 2p
orbits are taken into account, and the strong Coulomb in-
teractions between electrons play an essential role in
determining the electronic state. This many-body system
has been investigated by use of various sophisticated
methods, such as exact diagonalization of the Hamiltoni-
an for small clusters, perturbation theory, effective t-J
Hamiltonian, slave-boson technique, and equation of
motion for Green's function. ' These theories succeeded
in revealing various aspects of the many-electron system.
However, applicabilities of these theories to a realistic d-p
system still remain to be further investigated.

Among these methods, the t-J model was studied most
frequently. This model was first proposed for an effective
Harniltonian of the single-band Hubbard model. Zhang
and Rice extended this idea to the case of the multiband
d-p system. Their scenario to describe the motion of a
hole doped into the d-p system is as follows: As was pro-
posed experimentally, the electmnic state in the cuprates
corresponds to the charge-transfer (CT) type where one
hole exists in every d 2 2 orbit on Cu ions in the un-

doped system and additionally doped holes enter into p
orbits on 0 ions. For a state with a doped hole, we first
consider combinations of p orbits on four 0 ions sur-
rounding a central Cu ion. Among these combinations,

only the one with the same symmetry as that of d 2
X JP

can hybridize with d 2 2. The lowest-energy state is

realized if the p hole in the state of this combination and
the central 1 hole have antiparallel spins to enter into a
bonding state. A local spin-singlet state thus formed can
coherently move through an effective transfer integral t
and exchange interaction J. This scenario has been
traced and applied to the d-p model by many authors.
Some of them supported the validity of the t-J Hamiltoni-
an but the others did not. Aiming to fix the realistic
state of the doped hole on the basis of a firm ground, we

go back in the present paper to the original d-p model
and investigate this system by means of a perturbation
theory, in which transfer integrals are expansion parame-
ters.

The first perturbation calculation of the d-p system was
done by Zaanen and Oles. They derived an effective
Hamiltonian for the motion of a p hole within the
second-order perturbation theory. On the basis of this
effective Hamiltonian, they obtained the hole energy
band in an assumed linear chain consisting of alternate d
and p orbits by making a mean-field approximation for
Cu spins. Matsukawa and Fukuyama also made a
second-order perturbation calculation to obtain the ener-

gy band of the doped hole in the realistic two-
dimensional d-p lattice. Although both calculations
could demonstrate how the doped hole can move, they
are still too crude to clarify the characteristics of the hole
motion in the Cu02 plane. In the present paper, we im-
prove the perturbation theory for the state of the hole
doped into the d-p system with an antiferromagnetic spin
structure in the following two respects: (i) We calculate
the perturbation corrections to the energy of a hole state
up to the third order of the transfer integrals between
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neighboring d and p, and p and p orbits. The study of the
third-order perturbation correction is important for test-
ing the reliability of our low-order perturbation theory of
the d-p model.
(ii) Within this accuracy, we take also spin-exchanged

states into account, which will be shown to play a vital
role in determining low-energy states of the hole.

The present paper is constructed as follows. In the
next section, we introduce our d-p model and briefiy sum-
marize the properties of the d-p system with a doped hole
in the absence of the transfer integral terms. Section III
is devoted to get matrix elements between various hole
states by use of the perturbation theory. These matrix
elements are used in Sec. IV to construct the effective
Hamiltonian. Results of numerical calculations are given
in Sec. V. In Sec. VI, the present perturbation theory is
discussed, being compared with other theories of the hole
motion. Finally, conclusions are given in Sec. VII.

II. MODEL HAMILTONIAN AND PRELIMINARIES
TO THE PERTURBATION CALCULATIONS

1,$

+ g g g V n,",n~, .
Iid, jpI s,s'

1P $

(2)

&i =g g g ( t; i' b,", b~, +h. c. )+g g g Pf b&,tb&, .
Iid, jpI s Iip, jp') s

(3)

Here, d and p, p'=x, y are the abbreviations of d 2 2, px y & x
and p~, respectively, unit cells are numbered by i =(i„,i~ ),
b;", and n;", (=b,", b;, ) with —v=.d, x andy are, respective-
ly, the annihilation and number operators of a hole with
spin s occupying the v orbit in the ith unit cell, Fd and Fp
(=e„=ez) are the bare energy levels of holes, Ud and Up
(=U„=U~) are the on-site Coulomb interactions, V is
the Coulomb interaction between neighboring d and p
holes, t; 's are transfer integrals between the orbits iv
and jv', and finally { J means pairs of neighboring or-
bits. Vfhen the phases of the orbits are chosen as usually,
we have only the two independent transfer integrals
t;; = —

tdp and ~t;;" —=t, to which other transfer integrals

We consider a single Cu02 plane, in which Cu and 0
are alternately situated along two, say x and y, directions
perpendicular to each other. Until the antiferromagnetic
ordering of Cu spins will be taken into consideration in
Secs. IV and V, the unit cell is chosen to be the one in a
lattice with no specific magnetic ordering, which contains
Cu at (0,0), 0 at (a/2, 0}, and 0 at (0, a/2), a being the
lattice constant. (See Fig. 1.) The electron orbits relevant
to our problem are 3d 2 2 on Cu, 2p„and 2p on 0 ionsx —y
intervening two Cu sites in the x and y directions, respec-
tively. The total Hamiltonian of this d-p system is as-
sumed to be expressed in the hole picture as

H=HO+H),

Ho=+ edbdtbd, +g g e bt„'tbt„'

1,$ 1P S

+—,
' g Ud n „n;,+—,

' g g U~n„n,

8
)
i -tdp

FIG. 1. Unit cells of the CuO& plane. The small shaded cir-
cles represent Cu atoms with the orbit d 2 &. The large black

x —y
circles represent 0 atoms with the orbit p„ in the x direction
and 0 atoms with the orbit py in the y direction. The bold and
thin lines represent the transfer integrals with the magnitudes

~td~~ and ~t~~~, respectively. The arrows attached to Cu sites
represent their spins in the antiferromagnetic (AF) state. The
square given by the bold lines is a unit cell assumed in the plane
with no specific magnetic structure, while the square given by
the thin dashed lines is a unit cell assumed in the plane with the
AF state.

are related as shown in Fig. 1.
Before going into details of the perturbation calcula-

tions in the following sections, we here summarize the
properties of the d-p system in the absence of both
transfer terms. Corresponding to the CT-type state in
the cuprates, the ground state is assumed to have one
hole per each Cu ion. This ground state is denoted by
~g ), while other states, which have any charge distribu-
tions different from that in ~g), are denoted by ~e)'s.
Then, the energies of ~g ) and ~e ), F. and E, , are written
as

Eg =NFd,

E,'=E,'+g Ie„+-,'U, ((n, &, + &n,
"

&,
—l) I

1,V

(4)

+V y y (e&, I&n,'&, —&n,'&, I
Iid, jpI

+ V y y (n,'&, I & n~ &,
—(n', &,I,

Iid, jpj

where, & n,") ~„,~
represents the expected value of g, n ~

in the state g (or e)), and N is the total number of Cu
ions. By use of Eq. (5},the CT energy (i.e., the energy re-
quired for transferring a hole in a Cu site into a neighbor-
ing 0 site) is shown to be given by

60= —ed+@ + V.
Since our aim of this paper is to investigate states with
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the doped hole, the states ie )'s, which will be considered
hereafter, are confined to be those with (N+1) holes. By
taking into account the experimental results, the lo~est-
energy states of ie )'s thus defined are assumed to have
the extra hole on one of the 0 ions in addition to one hole
per each Cu ion. From Eq. (5), we easily find that these
2J-fold lowest-energy states have the energy

E =E +5 +2V.
The states ie ) 's are specified by both the charge distri-

bution and the spin configuration. All of those states
construct a complete set of orthogonal bases of the sys-
tem with (N + 1 ) holes. The transfer terms mix

~
e ) 's

with each other. To calculate the energy changes of low-

energy states by the presence of the transfer terms, we
further separate ie)'s into two groups, i.e., one group,
which contains only degenerate states with the lowest en-
ergy E, and the other group, which contains excited
states. The states belonging to the former group are
denoted by ia )'s, while the states belonging to the latter
group are denoted by ~P)'s. In the following calcula-
tions, we assume that the differences between E (=E~ )

and Ep's are suSciently larger than the transfer integrals

I &&~ I
and

I &z& I
Ep being the energy of an excited state iP)

in the absence of the transfer terms. Applying the pertur-
bation theory' to our system, we express the effective
matrix elements in the subspace spanned by the states

~
a ) 's as follows:

00 (H, ) p(H, )pp (H, )p
H =(H ) + g„=i [E—(Ho)p p ][E—(Ho)p p ] [E (Ho)p —

p ]

(8)

(9)

with

E=E —E (10)

(Ho)p p =(Ep Eg) (E—
p

E—g), —

where E is the total energy of the state with a doped hole in the presence of the transfer terms, and 5,, is Kronecker's

delta. It is noted here that H ~ s given by Eq. (9) are functions of E, which is one of the eigenvalues of the matrix with

the matrix elements H 's themselves.

III. TRANSFER-INTEGRAL EXPANSION FOR THE MATRIX ELEMENTS

In this section, we derive the expressions of some representative matrix elements H s by use of Eq. (9). The derived
matrix elements will be used in the next section to build the whole of the matrix, which determines the hole motion.
When some of

~
a ) 's have the doped hole in the v ( =x or y) orbit on an 0 ion in the ith unit cell but have different spin

configurations, such the states are represented by iiv). Then, the matrix element between ~iv) and i'v'), H;, ;.„,thus
defined can be expressed in terms of spin operators not only of the doped hole but also of Cu d holes. All perturbation
corrections to the matrix elements H;;., are calculated up to the third order of tdp and tpp.

A. The diagonal matrix elements

It is convenient for us to calculate separately the perturbation corrections from different types of ionic clusters (em-
bedded in the lattice) in which all ions necessarily pertain to perturbation processes. In Fig. 2, we show such the clus-
ters, which contribute to H;„;„. In each of the clusters, we look for possible excited states iP) s, which are created by
transferring holes. For these iP) 's, we calculate (Ho )pp's by use of Eqs. (11) and (5), and also various matrix elements in

Eq. (9), (H p)'s and (Hp& )'s corresponding to possible transfers of holes. " After substituting the obtained quantities
into Eq. (9), we arrive at the following expression of H;„;„:

—2 —2

E —b,o
—U + V E+ho —U„+ V

—2 (b) -2 ' (g)

+(4N —8) . +6
E ~0 E ~o+ V

(a)

(E —b, o
—U + V)(E —ho+ V)

—2td t ' —2td t(e); -2 — (f')

+(4N 8) . +—4 ~

(E —bo) (E —b,o+ V)
o(

) + (l,o)) ) . (12)
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In this equation, S; and s are, respectively, the spin operator of the Cu d hole in the ith unit cell and that of the itinerant
doped hole, whereas the constant terms, which do not contain spin operators, have been defined to give no effect on the
spin space. On the right-hand side of Eq. (12), the quantity in t I' ', for example, means the contribution from the
cluster (b} in Fig. 2, and its multiplication factor to the bracket is the number of the same type of clusters as that in (b).
The clusters (b) and (e) are disconnected to the 0 ion with the doped hole. This allows the numbers of clusters belong-
ing to (b} and (e) to be (4N —8), which will be derived in Appendix A. A symmetry consideration on the Cu02 plane
proves

Hiy, iy +0( i& [i+(0,1)j } (13)

B. The matrix elements between the nearest-neighboring x and y orbits

' (m)

(n) —2—
dp pp

t

(E 50+ V)(E —b—0)

td t+ (4N 12)—
(E—b )

The clusters, which contribute to H;„;„,are shown in Fig. 3. We make the perturbation calculations similar to those
in Sec. III A for the clusters in Fig. 3 to obtain

-2 —2 '(h)

8+50—Ud+ V E—60+ V
—2— ' (i)

+ ( —,
' —2S;.s)

(E—b,0
—U„+V)(E —50+ V)

—2— —2— '(k)

—2—
td t

' (1) —
td t+2. "'", + "" (-'+2S," )

(E—60+ V) (E—60+ V)
—2— (p)

+3 dp pp
t

(E 50+ V )(E—6—0)

=&((S(»[i+(),0)j S[i+(0.))j)

where the factor (4N —12) also will be derived in Appendix A.
Making symmetry considerations, we can easily prove the following equations:

H[i+(0, 1)jx, iy +I( [1+(0,1)j~ i~ [i+(1,1)j } ~

(14)

H[i+(1,0) jy, [i+(0,1)jx +1( [i+(1,1)j & [i+(0,1)j & [i+(1,0) j } ~ (16}

ix, [i+(1,0) jy +1( [i+(1,0) j & [i+(1,1)j & i } (17}

C. The matrix elements between the second-neighboring v orbits in the v direction

The clusters that contribute to H[; (, 0)j, ;„are shown in Fig. 4. The perturbation calculations for these clusters re-
sult in

I i —(1,0) Ix, ix

—2 —2

( —,'+2S; s)+ ( —,
' —2S,"s}

E—6 +V 8+6 —Ud+V

'(q) T

+2 2tdptpp
( —,'+2S; s)

(E—b,0+ V)
—= 'T2(S(} .

(18)

We again make a symmetry consideration to get

H[i —(0, 1)jy, iy
—%2(S;) .

D. The matrix elements between the second neighboring v orbits in the v'(A v) direction

The clusters that contribute to HI;+(0 1)~

- are shown in Fig. 5. Making parallel perturbation calculations and sym-
metry considerations, we get
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H
I i+ (0, 1)I x, ix

—2—
P PP {2+2(S(+S(i+(1p}j S((+(0 1)j (1+(1 1)j

' j
(E—60)(E—bp+ V)

+3( 1& [i+(1 0) j
& (i+(0, 1) j & (i+(1,1) j

0( 1+( )0)jy iy %3(Si,S[i+(1,0)[,S(i+(0 1)[,S(;+(1 1)j )

(20)

(21)

E. The matrix elements between third-neighboring v orbits

—2—
{I+2(S +S[ +(0, 1) j

}'sj
(E bp+—V)(E —b,p)

= 'T4(S;,S(;+(0 1)j },H
I i+( —1, 1)I x, ix

(i+(0, 1)jx,[i—(1,0)jx +4( i~ (i+(0, 1)j } ~

(i —(1,1}jx,ix +(i—(0, 1)jx, (i —(1,0)jx +4(Si~ (i —(0, 1)j } ~

The clusters that contribute to HI;+( 1,) Ix;x are shown in Fig. 6. Parallel procedures to those in the above give

(t)

(22)

(23)

(i+(1,—1)jy, iy H(i+(1,0)jy, (i —(0, 1)jy +4( i&S(i+(),0)j } (26}

F. The matrix elements between the fourth-neighboring v orbits

The only cluster which contributes to HI (10))y is shown in Fig. 7. For this cluster, we get
—2— (Q)

(E —b,p)(E bp+ V)— (27)

I i+(1,—1)Iy, Ii —(1,0) Ix I i —(1,1)Iy, ix

H
I i+ (1,0) Iy, I i —(1,0) I x I i —(0, 1) I x, iy

H
I i+ ( —1, 1) I x, I i —(0, 1))y I i —(1,1) I x, iy

H(i+(0, 1)jx, (i —(0, 1) jy +5(Si) (28)

The matrix elements given by Eqs. (12) and (14) con-
tain terms proportional to N. As will be proved in Ap-
pendix B, those terms should give the perturbation
correction to the unperturbed energy Eg of the undoped
d-p system, (E Es }, Es being—the total energy of the
undoped system in the presence of the transfer terms. "
In the following calculations, therefore, we drop out all
terms proportional to N from the expressions of the ma-
trix elements by replacing Ez in Eqs. (8), (10), and (11) by
E +(E E). Then, E i—s given by

E =(E +F +2V)+E, (29)

where E is an eigenvalue of the new matrix independent
of N.

IV. HOLE MOTION
IN THE ANTIFERROMAGNETIC STATE

Spins of neighboring Cu d holes interact with each oth-
er through the superexchange interaction J, which is of
the fourth order of the transfer integrals. ' ' '" The in-
teraction J orders Cu spins antiferromagnetically in the
undoped and doped systems. We are, therefore, interest-

ed in the motion of the hole doped into a p orbit in the
antiferromagnetic (AF) background of Cu d spins. The
unit cell of the AF state is chosen to be the one which is
shown also in Fig. 1. This new lattice is separated into
sublattices specified by spins f and $. In the 1 sublattice,
cells are numbered by i =(i„,iy ) with ix+ iy =21, & being
any integers, and all d holes are assumed to have t spins,
while in the L sublattice, cells are numbered by i=(i„,iy )

with i„+iy 2l+1, and all Cu d holes are assumed to
have l spins. Without loss of generality, we assume that
a hole with 1 spin is doped into the AF d-p system. (No-
tice that the doped-hole states with f spin and with J
spin are energetically degenerate in the AF background. )

Then, the doped hole on one of 0 ions can transfer to
neighboring Cu d orbits in the 1 sublattice. Therefore, it
is convenient for us to choose unit cells so that the ith
unit cell in the 1' sublattice contains the orbits id, ix, iy,

I i —(1,0)Ix(:—ix ) and {i —(0, 1)}y(=—iy ), and the ith
unit cell in the J, sublattice contains only the id orbit.

As has been studied in the preceding section, the doped
hole can itinerate in the crystal not only through the
direct transfer term t but also through the indirect
transfer terms given by the perturbation corrections.
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e
b q

FIG. 2. Types of clusters that contribute to H;„. The small
shaded circles represent Cu sites with d 2 z occupied by a

hole, while the large black circles represent 0 sites with p„and
p„occupied by no hole. The large shaded circles represent the
0 site with the ix orbit occupied by the doped hole. The bold
and thin lines represent the transfer integrals, which are all used
in the perturbation processes. The bold dotted lines represent
the Coulomb interactions V, which afFect the perturbation
corrections. It is noted that the clusters (b) and (e) are discon-
nected to the 0 site with the doped hole.

FIG. 4. Types of clusters that contribute to KI ~ (I p)j„; .
The large shaded circles are 0 sites with the ix orbit occupied
by the doped hole. Their second neighboring, large black cir-
cles are 0 sites with the Ii—(1,0) jx orbit to which the doped
hole transfers. For other symbols, see Fig. 2.

FIG. 5. Type of clusters that contribute to Ht;+(p J))
~ The

large shaded circles are 0 sites with the ix orbit occupied by the
doped hole. Their second neighboring, large black circles are 0
sites with the (i+(0,1)jx orbit to which the doped hole
transfers. For other symbols, see Fig. 2.

n

FIG. 6. Type of clusters that contribute to HI;+(»jI„~ .
The large shaded circles are 0 sites with the ix orbit occupied
by the doped hole. Their second neighboring, large black cir-
cles are 0 sites with the I i+ ( —1,1)jx orbit to which the doped
hole transfers. For other symbols, see Fig. 2.

0

FIG. 3. Types of clusters that contribute to H;~;„. The large
shaded circles are 0 sites with the ix orbit occupied by the
doped hole. Their nearest neighboring, large black circles [the
upper one in the case of (m)] are 0 sites with the iy orbit to
which the doped hole transfers. Note that the cluster (p) con-
sists of two subclusters, which are disconnected from each oth-
er. For other symbols, see Fig. 2.

FIG. 7. Type of clusters that contribute to KI; (I ojI„;„.The
large shaded circle is the 0 site with the ix orbit. Its second-
neighboring, large black circle is the 0 site with a Ii —(1,0)jy
orbit to which the doped hole transfers. For other symbols, see
Fig. 2.
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This itineracy is done with and without fluctuating spins
of d and p holes. This means that all of the states with
various p orbits occupied by the doped hole and various
spin configurations produced by the hole itineracy can be
included by the group ~a)'s, which has been defined in
Sec. II.

In order to find ~a)'s relevant to our interest, we first
consider the case where the doped hole can itinerate only
in a unit cell, say the ith unit cell, of the 1 sublattice.
Within the third-order perturbation approximation, the
hole itineracy in this case produces the following twelve
states:

~ix 1)—= ~id 1,ix 1, {i+(1,0) j d 1 ),
~iy 1 ) —= ~id f, iy 1, {i+(0,1)jd 1 ),
~ix 1 ):—~id 1', {i—(1,0) jx $, {i—(1,0) jd J, ),
~iy1) = id/, {i—(0, 1)jy $, {i—(0, 1)jd l ),
~ix2):—

~
id 1,ix 1, {i+ (1,0) j d 5 ),

~iy2) = ~id $, iy1, {i+(0,1)jd 1),
~i%2) —= ~id 5, {i—(1,0) jx 1, {i—(1,0) jd 1 ),
~iy2) = ~id 1, {i—(0, 1)jy1, {i—(0, 1)jd 1 ),
~ix3) = id $, ix 1, {i+(1,0) jd 1' ),
iy3):—id $, iy h, {i+(0,1)jd 1 ),
~ix3) = id 1,{i—(1,0) jx 1, {i—(1,0)jd 1 ),
~iy3) = ~id 1, {i—(0, 1)jy $, {i—(0, 1)jd1) .

(30)

In the above definitions, ~ivy) represents the state, which
has the pth spin configuration and the doped hole in the
v orbit around the ith unit cell belonging to the 1 sublat-
tice. ~ivs, i'v's', i"v"s"), on the other hand, represents
the state in which the orbits iv, i'v', and i"v" have holes
with spins s, s', and s", respectively, and all other d holes
have the same spin directions as those in the AF state. In
the states ~iv1)'s, any d-hole spin is not exchanged by
any other spins, while in the states ~iv2)'s and ~iv3)'s,
some of d-hole spins are exchanged by other d-hole spins
or the doped-hole spin. In this paper, the former states
are called spin-unexchanged states and the latter states
are called spin-exchanged states.

We second consider the case where the doped hole in
the ith unit cell is released to transfer into p orbits in
neighboring unit cells. Since local states around the
doped hole have their own spin configurations, some of
the hole transfers leave spin configurations distort from
that of the AF state. Successive operations of such the
transfers result in many different states in which d-spin
directions are different from those in the AF state even in
regions far from the doped hole. The resultant states can
gain the transfer energies to attain their low energies but
cannot become coherent states of the hole motion spread
over the crystal. Contrary to these hole transfers, other
hole transfers conserve or repair spin configurations
around the ith unit cell to be that in the AF state. In oth-
er words, the doped hole itinerates in the crystal by ac-
companying spin configurations distorted only in a

definite region around the mobile hole. Such hole
transfers result in coherent states of the hole motion. It
is noted here that these coherent states are not entirely
free from the incoherent states discussed above. This is
because they still mix with each other by repairing wrong
directions of d spins via spin-exchange and higher-order
perturbation processes. In this paper, we focus our atten-
tion on the coherent states by neglecting effects of the in-
coherent states. Then, a hole transfer between p orbits
can be regarded as a transfer from one state ~ivy) into
another state ~i'v'p, ') in our approximation. The above
considerations prove that the group of ~a)'s consists of
the states ~iviM )'s with any i, v, and iu, whose total number
is 12(N/2).

Our effective Hamiltonian in the subspace spanned by
~iviM ) 's can be expressed as

8=g g g Hive, i'v)J, '8 ivpBi'v'p. '

11 VV PP

=g g QH,„„„(k)B,„(k)8,„(k) .
k vv' PP'

(31)

Here, 8;„„is the annihilation operator of the state
~
ivp )

and H;,„;,„. is the matrix element between ivy) and
~i'v'p, '). Their Fourier components have been defined by

8„&(k)=&2/N g 8;„~e (32)

—ik (R,—R, )

vp, v'p'(k) =g ivp, i'v'p'
1

(33)

where R; is the position vector of the ith unit cell belong-
ing to the 1 sublattice and a wave vector k is in the first
Brillouin zone of the AF state shown in Fig. 8. As the re-
sult, an eigenvalue E of the matrix H(k)
( = {H,„„„(k)j ) gives the energy of a coherent state of
the hole motion, while a linear combination of 8,„(k) s

corresponding to the eigenvalue gives the annihilation
operator of the coherent state.

For our arguments, it is convenient to decompose the
matrix H(k) into the submatrices H„„(k)'s as follows:

H(k)={H „.(k)j (p, p'=1, 2, and 3),

H„„.(k)—:{H,„,„.(k)j (v, v'=x, y, x, and y) .

(34)

(35)

Hii(k) has the matrix elements between only the states
with the ground configuration of Cu d spins and, there-
fore, the eigenvalues of Hii(k) give the energies of the
hole motion accompanying no spin fluctuation. On the
other hand, the eigenvalues of Hi&(k) and Hi&(k) give the
energies of the localized states, which cannot itinerate in
the AF background without the aid of spin fluctuations.
(See Appendix C.) The nonvanishing matrices' H„„.(k)'s
with p or p'= 1 mix those itinerant and localized states so
that even the states with the spin configurations p =2 and
3 can have dispersions.

To derive H(k) or H„„(k)'s, we first calculate by use of
Eqs. (12)—(28) the matrix elements of the spin Hamiltoni-
ans H;; 's between the spin states p = 1, 2, and 3 to ob-
tain H; „;..„'s, and second substitute 0; „; „ into Eq.
(33) to arrive at H,„.„.(k)'s. The obtained results are
summarized in Appendix C. The final procedure we
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FIG. 8. First Brillouin zones of the CuO& plane. The zone in

the CuO& plane with no spin structure is given by the bold lines,

while the zone in the Cu02 plane with the AF state is given by
the dashed lines. The calculations of the hole bands were done

along the thin lines.

FIG. 9. Energy bands of the hole motion. The solid lines are
the energy bands, which were calculated by taking account of
the perturbation corrections up to the second order of the
transfer integrals tQp and Epp The dotted chain line is the lowest

band, which was calculated by taking account of the perturba-
tion corrections up to the third order of t 's. The parameter
values used are given in (36). Energies are in units of eV.

must do is to look for the eigenvalues E's of H(k). When
we get E's within the accuracy up to the second order of
t 's, we can neglect all E 's in the expressions of matrix
elements. This is because E should begin with the first
order of tpp if E can be expanded in powers of t 's. When,
on the other hand, we improve the accuracy up to the
third order of t 's, we get E in the following way. We
neglect E's in all third-order terms, but we expand E's in
the denominators of all second-order terms in powers of
E's to retain the terms up to the first order of E. E's in
the resultant expressions of the effective matrix elements
are replaced by the expected value of the Hamiltonian for
t~~%0 but tz~ =0, which is taken in the eigenstate with
the eigenvalue E. We can perform these procedures by
using iteration method.

V. RESULTS OF NUMERICAL CALCULATIONS

Some authors' estimated theoretically the values of
the parameters in Eqs. (2) and (3). Among them, Hybert-
sen, Schliiter, and Christensen' obtained for La2Cu04, a
prototype of the cuprate oxides, the following energy
values in units of eV:

~p ~gg 3 6 tQp 1 3 tpp

U&=10.6, U =4.0, and V=1.2 .
(36)

(Hereafter, the same units are used for all energy values. }
These values give further ho defined by Eq. (6) and the
exchange constant J ' ' '" as

ho=4. 8 and J=0.07 . (37)

Our numerical calculations of the doped-hole states were
done around these parameter values.

First, we show in Fig. 9 the energy dispersions of the
doped hole, which were calculated with the accuracies up
to the second and third orders of t's. Observing the band
structure which was calculated in the absence of the

third-order perturbation correction, we can find the fol-
lowing properties: The band structure consists of a group
of 11 upper bands and the lowest single band, which is
split off far away from the upper bands. Most of their
band widths, including the lowest-band one, are less than
I. The lowest-band width is reduced considerably com-
pared with that expected by a tight-binding model, which
neglects the spin-exchanged states. (See also Fig. 11.}
However, our band width is still much larger than J
given in Eq. (37},which has been already found to give
the order of the band width in the t demode-l. ' ' The
lowest band exhibits a local top at k=(m/a, O) but the
bottom at (n/2a, n/2a). This result means, in accor-
dance with the result obtained by other methods, ' ' that
extra holes in the d-p system enter into band states
around (m/2a, n/2a) in the lowest band so long as the
concentration of doped holes is small. All the above
qualitative properties of the lowest band are unchanged

by the third-order perturbation correction. However,
this correction shifts upward energies of the lowest-band
states by about 1 at most for the parameter values given

by Eq. (36).
To see how the lowest band depends on tz~ and t, we

show in Fig. 10 the dispersions of the lowest band for
some choices of their values. This figure teaches us the
following: When t& is increased under a constant tpp the
lowest band is rapidly pushed downward to be split off
from upper bands. The t term lifts the degeneracies of
the lowest-band states on the wave-vector line from
(m/a, O) to (m/2a, m /2a ) and is responsible for appear-
ance of the band bottom at (w/2a, m/2a). When t is

decreased to become negative, the band bottom moves to
(n./a, O). Here, we are aware that ~E~'s of the lowest-
band states calculated for the parameter values given by
Eq. (36) become larger than b,o. Nevertheless, we expect
that the present perturbation calculation can give reliable
band states enough to clarify the properties of the
doped-hole state. We will discuss again in the next sec-
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tion the applicability of the perturbation theory to the d-p
model with such the values of t s.

The origins of the above-mentioned characteristics of
the lowest band can be revealed by going into detail of
wave functions of the band states. In Table I, we give the
weights of the states ~vp, ;k)'s, ~a(vp„k)~ 's in some
lowest-band states. It can be found in this Table that

~
vl; k ) 's and

~
v2; k ) 's have comparable weights, but the

weights of ~v3;k)'s are much smaller than those of
~vp;k)'s with p= 1 and 2, irrespective to k. The lowest-
band states, therefore, contain spin-singlet states local-
ized around Cu sites in the t' sublattice in their large
parts. This spin-singlet nature of a doped-hole state has
been already proposed by Zhan and Rice. In order to
sec the important role of the spin-exchanged states

~
v2; k ) 's in the formation of the lowest-band states, we

show in Fig. 11 the band structure, which was calculated
by neglecting all spin-exchanged states

~
v2; k ) 's and

~v3;k)'s. It is remarked that the lowest band in this
figure is very different from that in Fig. 9. Figure 11
gives also the energy levels of the hole states, which were
calculated by taking account of the spin fluctuations but
by forcing all off-diagonal matrix elements of H»(k) to
be zero. All hole states in this assumed case do not ex-
hibit any dispersion in the absence of the third-order per-
turbation correction. This is because the states

~ ivp ) 's

with @=2 and 3 can itinerate only by repairing the Que-

tuating d-spin directions in those states but such the
itineracy can become possible only in the third-order per-
turbation processes in the present theory. Nevertheless,
energies of the lowest-band states E are still fairly close to

TABLE I. Weights of the states ~vp;k)'s in some lowest-
band states. The obtained ~a(vp;k)~~'s do not depend on v. The
parameter values used are the same as those in Fig. 9.

(0,0)
(m/a, 0)
{m/2a, ~/2a )

la(»;k) I'

0.095
0.091
0.126

I 0(v2;k) I

0.153
0.156
0.122

~a(v3;k)l'

0.002
0.003
0.002

FIG. 10. Transfer-integral dependence of the lowest band of
the hole motion. All lines were calculated by taking account of
the perturbation corrections up to the third order of t 's. The
dotted chain lines were obtained for tz~

= 1.3; among these lines,
the lines from the lowest to the highest correspond to

happ
/ tpp 0 5 0 25 0.0, and —0.25, respectively. The doubly

dotted chain lines were obtained for t»=0. 65; among these

lines, the lines from the lowest to the highest correspond to

tpp /
happ

1 5 1 25 1 0 snd 0 75 respectively. Energies are in

units of eV.

(0,0) (z/a, o) (~/2a, a/2a)

FIG. 11. Energy bands of the hole motion in the two as-
sumed cases under no third-order perturbation correction. The
solid lines are the energy bands calculated in the absence of the
spin-exchanged states. The dotted lines show the energy levels
of the hole states, which were calculated by allowing the spin-
exchanged states but neglecting a11 off-diagonal matrix elements
in H»(k). The lowest, middle, and top dotted lines correspond,
respectively, to the lowest level of all energy levels, the bottom
and top levels of the group of the upper levels. The parameter
values used are the same as those in Fig. 9. Energies are in units
of eV.

energies of the lowest-band states in Fig. 9. This proves
that the formation of a spin-singlet state, rather than the
motion itself of the spin-singlet state, dominates the ener-

gy lowering of the lowest band. The small weights of
~v3;k)'s in the lowest-band states imply that effects of
the formation of a spin-singlet state is well localized
around the Cu site neighboring the 0 site with the doped
hole in the 1 sublattice.

We are especially interested in cases where some of the
parameters have extreme values so as to reduce the
present model to other simplified model. In the first case,
t~~ is assumed to be zero but other parameters remain to
have the same values as those in Eqs. (36) and (37). Then,
all matrix elements in H(k) contain only the second-
order terms of tz [See E.qs. (Cl) —(C13).] We show in

Fig. 12 the band structure for t =0. A smaH width of
the lowest band and also a large energy separation be-
tween the lowest and upper bands are reproduced also in
this case. The weights ~a(vp;k)~ 's of the lowest-band
state at (m/2a, vr/2a), which is given in Table II, show
the spin-singlet nature of the lowest band even for t =0.
These results and comparisons between Figs. 9, 10, and
12 clarify that the t& term is responsible for the appear-
ance of the spin-singlet nature but the t term also con-
tributes to the energy lowering of the lowest band. In the
second case we are interested in, both U and V are as-
sumed to be zero under the same values of other parame-
ters including b,o as those given by Eqs. (36) and (37).
Then, various energy levels of the unperturbed excited
states become one of 40 and U&

—ho, but the perturba-
tion processes are not affected by this assumption. Figure
13 shows the band structure of this case. The gross
feature of this band structure is found to be unchanged in
comparison with that in Fig. 9. The spin-singlet nature
of its lowest band is also conserved, as seen in Table II.
These results prove that a simplified d-p model without
U and V terms in Eq. (2) approximates well to the 1-p
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FIG. 12. Energy bands of the hole motion for t»=0. The
parameter values used are the same as those in Fig. 9 except for
the value of t». It is noted that the lowest band is Hat on the
wave-vector line from (~/a, 0) to (m./2a, m/2a ). Energies are in

units of eV.

model with the full terms if 60 is rechosen suitably. In
the final case, we assume Ud ~ 00 under the fixed value
4.8 of ho. As shown in Fig. 14, the lowest band in this
case is still split off' but its energies increased drastically
compared with that for Ud =10.5. This large energy in-

crease can be understood as follows: For a definite Ud,
~vttt;k)'s with p, =l and 2 mix with each other also
through perturbation processes via excited states with a d
orbit doubly occupied by holes. Since there are many
such processes, they contribute to the large energy de-
creases of the spin-singlet states in spite of a small value
of td /Ud itself. The infinite Ud makes those mixing pro-
cesses impossible. From Table II, we see that the lowest
band in this case has still the spin-singlet nature. This is
because ~vl;k) and ~v'2;k) with vAv' can still mix with
each other through the t&~ term without the aid of any
doubly occupied d orbit. In order to prove that the tz~
term is also important as well as the t&~ term in this case,
we show in Fig. 15 the band structure for U&~(x) and

happ
0 under 50=4.8. Comparing Figs. 9, 14, and 15, we

know that a d-p model with Ud~ao can not become a
good approximation to the d-p model with realistic pa-
rameter values.

Finally in this section, we mention about the origin of
the small band width of the lowest band. As has been al-
ready discussed on Fig. 11, the dispersion of the lowest
band arises mainly from the off-diagonal matrix elements
between ~vl;k)'s. On the other hand, the weights of

~
vl;k)'s in the lowest-band states are very small, because

any lowest-band state consists of many localized states
~ivl )'s and ~iv2)'s with comparable weights. These two
properties of the lowest-band states result in such the
small band width.

(n/a, O) (m/2a, z/2a} (0,0)

FIG. 13. Energy bands of the hole motion for Up= V=O.
This figure was obtained for the same values of the parameters

other than Up and V and of 60 as those given in (36) and (37).
Energies are in units of eV.

i'
0—

(0,0) (n/a, O) (n/2a, m/2a) (0,0)

FLU 0—

FIG. 14. Energy bands of the hole motion for Uz ~ 00. The
solid lines are the energy bands, which were calculated by tak-
ing account of the perturbation corrections up to the second or-
der of tz~ and Fpp The dotted chain line is the lowest band,
which was calculated in the presence of the third-order pertur-
bation correction. The used values of the parameters other than
Ud and of 50 are given in (36) and (37). Energies are in units of
eV.

TABLE II. Weights of the state ~vp;k) in the lowest-band
state with k=(m. /2a, m./2a) in some assumed cases. The ob-
tained ~a(vp;k)~ 's do not depend on v. For the parameter
values used, see Figs. 12-14.

-4
(0,0) (x/a, O) (z/2a, n/2a) (0,0)

Case

tpp =0
Up= V=O
Ud —+ oo

(a(vl;k))

0.120
0.115
0.136

[a(v2;k))

0.128
0.132
0.113

0.002
0.003
0.001

FIG. 15. Energy bands of the hole motion for Ud ~ ao and

happ
0 The used values of the parameters other than Ud and

happ

and of Lo are given in (36) and (37). Energies are in units of eV.
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VI. DISCUSSION

In the beginning of this section, we discuss the applica-
bility of the present perturbation theory to the d-p model
of the Cu02 plane. It is of no doubt that this theory
should give good calculated results so long as the transfer
integrals )Ird~~ and ~t~~ are sufficiently smaller than the
energy separations between the degenerate ground states
and other excited states, (E, E—), which is typically the
charge-transfer gap 60. In the present system, however,
there are many ground states ~a ) 's, which can mix with
each other not only through the direct-transfer terms
proportional to ~tzz~ but also through indirect-transfer
terms resulting from perturbation corrections. The mix-
ings between these many states give rise to considerable
changes of both eigenenergies and eigenfunctions. This
makes the applicability of the perturbation theory to be
more stringent. In fact, as was already seen in the
preceding section, the energy gain by forming the
lowest-band states of a doped hole exceeded some of the
(E, —E )'s for the values of rd and t~z given in Eq. (36).
Since, however, we were interested in the perturbation
corrections up to the third-order t s, E's in denominators
in the expressions of the perturbation corrections were
replaced by expected values of the t term in resulting
eigenstates, whose magnitudes are still sufficiently smaller

than (E, Eg)'s. Fur—thermore, it was found that the
third-order perturbation correction is small enough for
both qualitative and quantitative natures of the lowest-
band states to be unchanged. These will allow us to be-
lieve that the obtained characteristics of the motion of a
doped hole in the AF background are conserved even if
the accuracy of the perturbation calculation is im-

proved. '

We here compared the present theory with the pertur-
bation theories of the d-p model, which have been report-
ed until now. Zaanen and Oles, and Matsukawa and
Fukuyama did not consider spin-exchanged states
~ivy)'s with @=2,3 for degenerate ground states in cal-
culating the band states of a doped hole. Nevertheless,
we have seen in the preceding section that the spin-
exchanged states play a vital role in determining the
lowest-band states of the doped hole. They did not also
take into account the third-order perturbation correc-
tions of t 's. Our theory, however, proved that the third-
order perturbation correction cannot change essential
features of the lowest-band states.

We are especially interested in a comparison between
calculated results on the bases of the d-p and t-J models.
Comparing our lowest band of the hole motion with that
given by the t-J model, ' we found that both the lowest
bands have some common features such as their spin-
singlet nature and the appearance of the band bottom at
k=(ir/2a, ir/2a ), but they are very different from each
other in their band widths. In the t-J model, a local
spin-singlet state formed around a Cu site transfers into
one of its neighboring Cu sites by accompanying an in-
version of a d-spin direction in the AF background. For
the spin-singlet state to move coherent1y, the inverted
spin direction should be repaired mainly by the exchange
interaction J. This situation suppresses the band width

to be of the order of J in the t-J model. ' ' Zhan and
Rice supposed that J can be the superexchange interac-
tion constant. The band width in the t-J model thus es-
timated is much smaller than the lowest-band width in
our theory. Notice that our theory of the hole motion
completely neglected the exchange interaction J. From
the above arguments, we know that the t-J and d-p mod-
els give quite different mechanisms of the transfer of a lo-
cal spin-singlet state.

The d-p model is sometimes reduced to be a more
simplified model by assuming Ud~ ~. This infinite-Ud
d-p model is usually investigated theoretically by use of
the slave-boson technique, which forbids d orbits to be
doubly occupied by holes. ' As was already shown in
Sec. V, the simplification of the model by assuming

Ud ~~ causes a large quantitative change in the band
structure. This shows that the slave-boson technique is
applied to a d-p model with realistic parameter values at
the cost of accuracies.

VII. CONCLUSION

We presented a perturbation theory for the motion of a
hole doped into the d-p system of the antiferromagnetic
Cu02 plane. The present theory assumes the expansion

parameters to be the transfer integrals, and calculates the
perturbation corrections up to their third-order terms. It
was found that the third-order perturbation correction
cannot change the qualitative nature of the band struc-
ture. Some spin-exchanged states among the degenerate
ground states were confirmed to play a vital role in deter-
mining the lowest band of the hole motion.

The band structure obtained here consists of the lowest
single band and a group of all other upper bands, which
are well separated from the lowest band. The large ener-

gy lowering of the lowest band originates mainly from the
formation of local spin-singlet states by use of d and p
holes with antiparallel spins. On the other hand, the
small band width compared with the energy lowering is
due to the fact that the spin-singlet states contain only
small weights of the spin-unexchanged states, which can
propagate without distorting directions of d spins in the
AF state. The energy terms of hole transfers between
neighboring d and p orbits are responsible for the forma-
tion of the spin-singlet states, but the terms of hole
transfers between neighboring p orbits are also important
for quantitative properties of the hole states. Especially,
the latter terms lift the degeneracies of the lowest-band
states on the wave-vector line from (vr/a, 0) to
( ~/2a, m. /2a ) to give rise to the band bottom at
(n/2a, ~/2a ).

The simplification of the d-p mode1 by assuming

Ud ~ ~ was found to cause a large quantitative change
of the band structure. However, the assumption
U = V=O was confirmed numerically to cause no serious
modifications of the band structure under a suitable value
of the charge-transfer gap 60. The large difference be-
tween the band widths calculated on the bases of the d-p
and t-J models reveals that the transfer mechanisms of
the doped hole in the two models are very different from
each other.



50 TRANSFER-INTEGRAL EXPANSION FOR THE d-p MODEL OF. . . 10 139

APPENDIX A: NUMBERS OF CLUSTERS
(OR CLUSTERS INCLUDING SUBCLUSTERS)

DISCONNEC. XKD TO THE 0 SITE WllH A HOLE

+ix1,ix 1 +iy 1,iy1

4N td
=rt(E)td, +g td, t, +

P PP

8N tdptpp
(Bl)

Q2

Here, we count the numbers of the same types of clus-
ter as the clusters (b) and (e) in Fig. 2 and (p) in Fig. 3. In
the crystal with no doped hole, there are 4N clusters be-
longing to (b). When an extra hole is doped, two and six
clusters among those 4N clusters change to be the clus-
ters (a) and (c), respectively. As the result, the number of
the clusters (b) in the doped crystal becomes (4N 8). —A
parallel argument can be applied to the case of the cluster
(e). We have 4N clusters belonging to (e) in the undoped
crystal, among which four clusters each change to be
clusters (d} and (f} in the doped crystal. This results again
in (4N —8}clusters belonging to (e} in the doped crystal.
In clusters belonging to (p), on the other hand, the pair of
0 ions with the ix and iy orbits is fixed so that there are
4N clusters if any interference between 0-0 and Cu-0
subclusters were neglected. Among those 4N clusters, 12
clusters have Cu sites nearest neighboring one of 0 ions
in the fixed 0-0 pair. Since these 12 clusters belong to
other clusters in Figs. 2 and 3, we get (4N 12) clus—ters
allowed for the type of the cluster (p).

APPENDIX B: TREATMENT OF THE TERMS
PROPORTIONAL TO N IN THE MATRIX ELEMENTS

We show that the terms proportional to N in the ma-
trix elements give the perturbation correction to the ener-

gy of the undoped system. For simplicity, we consider
only the two states ~ix 1) and iiy1 ), so that the doped
hole can move only in a pair of nearest-neighboring p or-
bits without accompanying spin fluctuations. By use of
Eqs. (12) and (14), the diagonal and off-diagonal matrix
elements between the two states are shown to have the
following forms within the accuracy up to the third order
of t's:

4Nt
H,„,„,=t~, +rt'(E)t„', +('td t, +

Q2
(B2}

where, g(E), g'(E), g, and g' are constants independent
of N and are known by use of Eqs. (12) and (14). One of
the eigenvalues of the 2 X 2 matrix with these elements is
expressed by

E= tpp+—[rt(E) ri'(E—) ] tdp+(( g')t—
dptpp

4N tdp 12N
p

E—5p 4p
(B3)

Solving this equation for E by an iteration, we arrive at

E = t„—+ [q( t„}——q'( t„)I td-

+(g g')td2, t—„+(E, E,'), —

with

(B4)

(E E)=N—p
g

4td

b,0

8tdptpp

+2
(B5)

It is noted that the terms of N in Eqs. (Bl) and (B2) creat-
ed (E E) in Eq—. (B4), which becomes just the pertur-
bation correction to the total energy of the undoped sys-
tem as was already proved in Ref. 11. The same argu-
ments can be done also for the other eigenvalue. The
above consideration is to be extended to the general case
where the doped hole itinerates on all p orbits by accom-
panying spin fluctuations.

APPENDIX C: CONSTRUCTION OF
THE SUBMATRICES H» (k)'s

We summarize here the obtained expressions of
H„„(k}'s. To simplify their expressions, we define the
following quantities:

t2 t2 6t2 8t2td td td

E Lp Up + V E+Lakp Ud + V E Lmkp+ V E Lakp

4td t 16td t
+

(E b0 U+ V)—(E——b,0+ V) (E —60)

8tdptpp

(E 60+V)— (Cl)

2td 2td 6td 8td
X = + +

E 5p Up+ V E+6p Ud+ V E 6p+ V E 6p

8td t 16tdp tpp 8tdp

(E—b0 —U + V)(E 60+ V) (E b0—) (E—50+ V—)
(C2)

K =—
1

—2 —2 —2—
tdp tdp 4td t

E —b0—U + V E+ba Ud+ V (E b0 Up+ V)—(E ha+ V—)— — (C3)
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—2 —2— 22 2
dp + dp pp dp pp dp pp

E+bo U—d+ V (E 6—0 U—+ V)(E h—o+ V) (E —60+ V) (E —ho+ V)(E —bo)

—2 —2 —2— —2—
tdp dp pp

2tdp tpp

E+b,o
—Ud+ V E —ho+ V (E—bo —U + V)(E ho+—V) (E ho+—V)

12td t

(E —&o)'

(C4)

(CS)

—2

K4=- dp

E+60—Ud+ V
(C6)

—2 —2 —2—
tdp dp pp

E—b,o+ V E +b, 0
—Ud+ V (E—50+ V)

(C7)

2 tdp tppK, =K2+
(E—&o)(E—b,o

—
Uy + V)

(CS)

—2—
p pptd t

(E —b,o)(E—bo —U + V)
(C9)

—2—
P PPtd t

(E ho+ V )(E —b,o)— (C10)

—2 2t2 t 2

+ dp + dp pp dP PP

(E—bo+V) (E —bo)(E —bo —Uy+V) (E 60+V)(E —h—o)

12tdpt

(E—b,o)
(C 1 1)

4tdp tpp

E—ho+ V (E —ho+ V)
(C12)

T4=K7 . (C13)

Among these quantities, X's are self-energies, which contribute to the diagonal elements, K's are transfer energies be-
tween different orbits in same unit cells, and T s are transfer energies between two orbits in different unit cells. Then,
H„„.(k)'s are expressed as follows:

K2+ T2e' K4+ T3e2 —K2 —T2e~

+4T&c„c„ T1 (e2„+e2y ) 2T1(ex+ ey ) + T1 (e2„+e2y )

HI1(k) =

K2+ T2ey
—T1 Ie2. +e» I +4Tic c

E4+ T3e2

+ T, (e2„+e2 ) 2T, (e~+er)—
(C14)

E4+ T3e 2
—K2 —T2e~

2T1(ex+ey) +T1(e2„+e2y) +4T1cxcy

K2+ T2e~
—T, (e2„+e2 )

K2 T2e~ K4+ T3e2 2+ T2e

+ Tl(e2x +e2y ) —2T1(ex +eF ) Tl (e2x +e2y ) +4Tj c~cy
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E) K3 K5 —K3

+ T, (e»+er*) —T,e»+ T4ef —T, (e»+er') —T4e»+ T,er'

H, 2(k) =
K3E5 —K3 K)

—T, (e»+er) —T4e»+T, e» +T, (e»+e„) +T4e» T—, e»

E3 K( —K3 E5

+T4e& T&—e» +T&(e»+er) —T4e»+T&e& —T~(e»+e&)

(C15}

—E3 K5 E3 K)

+T4e»+T(ef —T((e»+er*) +T4ey T)e»—+T,(e»+er)

H, 3(k)=01,
X2 K4 —K6

'
(C16)

—K, K4

—K, E4

K6 X2
H22(k) =

K, J;, X (C17)

Hzs(k) =

K]

K7

0
—K7

E7 0

K) —K
—K7 E)

0 K7

—E7

E)

(C18)

H33(k)=X, 1 .

Here, we have used the 4X4 matrix 1 and the following abbreviations:

c„=—cos(ak„), c =—cos(ak„),
ez„=—exp(2iak„), ez»

=—exp(2iak» ),
e» =exp[i—a(k„+k„)], er =exp[ia—( —k„+k» )] ~

(C19}

(C20)
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