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In the framework of the reconnecting vortex-tangle model, flow properties of He II were studied nu-
merically. The Crank-Nicolson method was used to calculate the motion of quantized *He vortices, as-
suming smooth walls in infinitely long channels, applying periodic boundary conditions in the direction
of the flow, and with friction coefficients a=0.1 and a’=0. Flow channels with square and circular
cross sections and infinitely wide slits were studied. The superfluid velocity profile was assumed to be
flat; the normal-component velocity profile was either flat or parabolic. Special interest was paid to the
time-averaged line-length density and the average mutual-friction force density as functions of the
difference between the average normal-fluid velocity and the externally applied superfluid velocity. The
influence of the periodicity length on the calculated flow properties was determined. The results were

compared with experiment.

I. INTRODUCTION

The flow properties of superfluid helium show a rich
variety of phenomena.? The mutual friction between
the superfluid and the normal components, which is ob-
served above well-defined critical velocities, is attributed
to the presence of quantized vortices in the superfluid.
Numerical simulation of the motion of these vortices is a
powerful tool for the theoretical investigation of the flow
properties of *He II and >He-*He II mixtures.>~’ In this
paper we concentrate on the numerical study of flow
properties of He II in infinitely long channels with
smooth walls. The channel cross sections were square,
circular, and (infinitely wide) slits (Fig. 1). Periodic
boundary conditions were applied in the flow direction
(the z direction). The influence of the magnitude of the
periodicity length ! was investigated. The externally ap-
plied superfluid velocity was assumed to be constant (flat
velocity profile); the profile of the normal component was
either flat (plug flow) or parabolic (Poiseuille flow).

II. THE NUMERICAL APPROACH

A. Velocity fields

The velocity of the superfluid component v, can be
written as the sum of three contributions

(2)

FIG. 1. Cross sections of channels studied in this work. The
z axis is the flow direction, the cross sections are in the xy plane.
We distinguish (a) a square cross section, (b) circular channels,
and (c) a slit extending infinitely in the y direction. At the dot-
ted lines periodic boundary conditions were applied.
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v,=V,+v;+v, (1

in which V| represents the externally applied superflow,
which for our channels is homogeneous, and v; the veloc-
ity induced by the vortices. The contribution v, is due to
the boundary condition v, =0, which, in the case of a flat
wall, can be regarded as due to mirror vortices.

On length scales much larger than the diameter
ay=0.1 nm of the vortex core a vortex can be approxi-
mated by a line in space represented by the relation

s=s(§), ()

where £ is a parameter defining a point s on the vortex
line. In this paper we take £ as the length of the part of
the vortex line between the point in question and some
suitably chosen reference point on the line. The velocity
of a point on the line is given by

ds _ , ,

E—vs+as X(v, —v;)—a'(v,—v,) (3)
in which v, is the velocity of the normal component, and
a and o' are the friction parameters.® In this paper we
will neglect the a’ term, and we limit our calculations to
the isothermal case of a=0.1, which in pure “He, corre-
sponds to a temperature of 1.6 K.

The velocity v;, induced by the vortex lines, can be cal-
culated from the Biot-Savart expression
K (r—s)Xdr

v,-(s)=-4; 5W s 4)

where k=1.0X 1077 m/s? is the vortex strength. The in-
dex & indicates that the integral is taken along the entire
vortex line except for a region of length 8 on both sides of
the point s. The value of 8 is chosen in such a way that
the calculated velocity of a vortex ring satisfies experi-
ment; we took §=0.64a,.

In capillaries with square cross sections only flat
normal-fluid velocity profiles were considered (plug flow).
In circular capillaries the velocity profiles of the normal
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component were assumed to be parabolic (Poiseuille flow)

2
1= 4

v, =2V, PP

e, . (5)

Here r is the radius, d the tube diameter, and ¥, is the
normal fluid velocity averaged over the tube cross section

V,=0; . (6)

In slits both parabolic and flat normal velocity profiles
were studied. Due to the assumption of perfectly smooth
walls, the case with nonzero superflow and zero normal
velocity is equivalent with the case of a normal-fluid plug
flow and zero superfluid velocity. These two cases will be
treated equivalently.

We introduce the difference of v, and the applied
superfluid velocity V; as

Vs =V, —V, @)

ns

and V as its average
V=v, . (8)

In general the superfluid velocity v, contains more con-
tributions than ¥ alone [Eq. (1)], so v,, introduced in
Eq. (7), is not the local difference in the velocities of the
normal and the superfluid components, which is v, —v,.

B. The local approximation

The integral in Eq. (4) can be split in a local and a non-
local contribution. The local contribution results from
the sections of the line (adjacent to the excluded regions
of length &) where the vortex can be approximated by cir-
cle segments. The local term is given by

kIn(R /ay)
N e

with 8'=ds/d&, s =d*s/d&* and R =1/|s"| is the local
radius of curvature.

The nonlocal term represents the contribution from the
rest of the vortex line. Usually the local contribution is
an order of magnitude larger than the nonlocal one, so
the latter can be neglected (local approximation). By
multiplying the local term with a constant ¢ somewhat
larger than 1 the influence of the nonlocal contribution
can be taken into account to some extent. By comparing
the self-induced velocity in the local approximation with
a fully nonlocal approximation in a typical tangle we ob-
tained ¢ =1.1. All our calculations were performed in
this modified local approximation. In that case

s’ Xs" 9)

v, =Bs'Xs" (10)
with
B=c(k/47)In(R /a,) . (11)

This definition of B is slightly different from the one in-
troduced by Schwarz, who took B=(«k/4m)In(cR /a,),
with ¢ a constant of order 1.*

The v, term in Eq. (1) can be regarded as a nonlocal
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contribution, so in the local approximation

v, =0 (12)
leading to
v, =V +Bs' Xs" (13)

for Eq. (1). Equations (3) becomes

ds/dt=V +pBs'Xs"+as'X(v,—V,—Bs' Xs") .
(14)

In principle, all variables in (14) are functions of the pa-
rameter £. In the numerical calculations the vortex lines
are represented by an array of N, discrete points i at po-
sitions s;. Equation (14) then obtains the form

ds;/dt=V +B;s; Xs! +as; X (v, —V —B;s;Xs]') . (15)

Also the velocity v, has to be evaluated in s;. In our cal-
culations Eq. (15) is solved with a stable and accurate
Crank-Nicolson algorithm using iterations.”!® This algo-
rithm is stable even in the case of zero mutual friction. It
can be shown analytically!® that the Crank-Nicolson
method with two iterations is stable when the time step
At satisfies the condition At <a?/(4fB), where a is the
minimum distance between two neighboring points s; and
s; +1 on the discretized vortex line. The stability of the
scheme was tested by numerically calculating the motion
of vortex rings, ellipses, and many other vortex arrange-
ments. In contrast with Schwarz, who used a fixed time
step, the calculation speed was significantly optimized by
using a variable time step according to the condition
given above.

The line-length density L of a vortex tangle in a
volume () is given by

1
L——Q—fdg. (16)

The time average of L will be denoted by A; the reverse
average line distance A'/? by A. The density of the force
exerted by the normal component on the superfluid com-
ponent, the average mutual-friction force density F, is
calculated from the relation

apk
Q

It is related to the gradient in the “He molar chemical po-
tential through

Vu,=—M,F/p,, (18)

F= [ &' X[s'X(v,—v,)dE . 17

where M, is the *He molar mass and p, is the superfluid
density. The reduced average mutual friction force densi-
ty is defined as

I'=F/pkV . (19)
With Eq. (18), Vu, can be written as
Vu,=—«kM,TV . (20

For an isotropic tangle, F and L are related as follows:

F=Zakp,VL . 2n
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The factor % reflects the isotropic character of the tan-
5
gle.

C. Reconnections

When two antiparallel vortex segments approach they
will reconnect!! due to the nonlocal interaction. This
effect is suppressed in the local approximation. A param-
eter

A;=2R;/[cIn(R;/ay)], (22)

with R; the radius of curvature in point i, is introduced
which is the distance where the velocity due to an
infinitely long vortex line is equal to the local velocity.
Typically In(R; /ay) is of order 10. In the calculations a
reconnection between two points i and j was enforced
whenever the distance |s; —s;| between two points i and j
satisfied the condition

|S,-—‘Sj|<min(A,~,Aj) . (23)

In order to trace a pair of points that satisfy condition
(23) a sorting formalism was used, which typically needed
N, In(N,) calculations. It is described in detail in Ref.
10.

In a similar way a vortex was connected to the wall
whenever a point i approaches it within a distance

A,=R,/[cIn(R,/a,)] . (24)

The average A, determines the size of the boundary lay-
er, which plays a key role in the nonlinear and critical ve-
locity effects in “He II.

D. Dimensional considerations

Through the In(R /a,) dependence the parameter B de-
pends weakly on the radius of curvature. In the follow-
ing discussion we take a typical value of R in the expres-
sion for B, which is treated as a constant. Strictly speak-
ing the radius of curvature R is a property, which is the
result of the equation of motion. The truly independent
variables in Eq. (14) are the velocity V, the vortex
strength «, and the core diameter a,. In confined
geometries also the size of the flow channel enters into
the expressions. The following dimensionless quantities
are introduced: The position vector

— KN
c<:> S <\é/ —
) |2

e
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o=sV/B, (25)
time

=tV?/B, (26)
velocity difference

Pus =V ’V , (27)
and the dimensionless superfluid velocity

=V /V. (28)

Equation (14) in dimensionless form then reads
do/dt=@,+0'Xo"+ao'X(@,,—a'Xa"). (29)

The dimensionless reversed average line-length distance
Ao is given by

Ag=BA/V . (30)

III. RESULTS

A. Square cross section

As a first case we discuss the calculated flow properties
of a square capillary with edges d =50 pm assuming pure
normal-fluid plug flow (V,=0 and v,=V). In first in-
stance the length / of the period of the periodic boundary
conditions was also 50 um, so the calculations were ap-
plied to a cubical control volume of 50X50X50 pm?.
Figure 2(a) represents the starting situation, which con-
sisted of 13 rings, chosen in such a way that there were
no immediate reconnections, and that the average self-
induced velocity in the z direction was zero.

Figure 2(b) shows the vortex tangle, which developed
from this starting situation after 38 ms for V=118 mm/s.
Except for the boundary layer, the vortex lines are homo-
geneously distributed over the channel as may be expect-
ed from the flat profile. Figure 3 shows the line-length
density L as a function of time. After a transient period a
dynamical equilibrium was reached in which L fluctuates
around an average value of about 0.009 um/um?®. How-
ever, when V was decreased to a value below 10042
mm/s the vortex tangle was not self-sustained, and L
tended to zero. In our definition this means that the criti-
cal velocity ¥V, of this channel is 100 mm/s.

FIG. 2. (a) The 13 rings, which formed the
starting situation for many of the simulations.
(b) Vortex tangle, which evolved from the
ringes of (a) for V=118 mm/s, in a square
channel [Fig. 1(a)] after 38 ms. The dots mark
the points where the lines touch the walls.
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FIG. 3. The line density L as a function of time for V=118
mm/s for the tube with a square cross section and normal-fluid
plug flow. The horizontal line indicates the time average for the
time interval between 25 and 124 ms.

Figure 4(a) represents the calculated A-V dependence.
It is in good approximation linear in ¥ so we introduce

)\'_:YL(V""UL()) Py (31)

where y; and v, are parameters, which in this case are
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FIG. 4. Flow properties of the square channel plotted as
functions of V. Points for three different periodicity lengths [
are presented. The lines are linear fits to the data for / =d. The
error bars represent the standard deviation. (a) The inverse
average line distance A. (b) The square root of the reduced mu-
tual friction force density I'.
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equal to 1.3 s/mm? and 47 mm/s, respectively.

Due to the periodic boundary conditions the calculated
local line-length density cannot vary over length scales
larger than /. Variations in the line density over larger
length scales are suppressed. This may affect the results.
Therefore, the average flow properties have been deter-
mined also for / =2d and 4d. Examples of typical tangles
are presented in Fig. 5. Figure 4 shows that V, increases
slightly with /. For / =4d we obtained V,=108+2 mm/s
or

V.=60B/d . (32)

The jump in A at V, decreases with /. Probably the tran-
sition may be continuous for very long capillaries. For
V >>V, the dimensionless reversed average line distance
A is expected to be constant. In this case A,=0.112.

In Fig. 4(b) V'T is plotted as a function of V. For I =d
the V'T'— V relationship is fairly linear, so we introduce

VT=yp(V—=vg) , (33)

where vy and vg, are parameters, which in this case are
equal to 0.35 s/mm? and 45 mm/s, respectively.

B. Circular channels

For the capillaries with a circular cross section four
different cases were investigated: pure normal Poiseuille
flow (V,=0, V,=V), thermal counterflow (at T=1.6 K:
V,=—0.16V, V,=0.84V), “combined flow,” which in
this paper is defined as the flow situation, where the aver-
age normal and superfluid velocities are equal in size but
with opposite directions (V,=—0.5V, V =0.5V), and,
finally, pure normal-fluid plug flow (V,=0, v, =V, =V).
As was mentioned earlier, the latter case also corresponds
with pure superflow (V,=—V, v, =0).

Figure 6(a) shows a typical tangle for plug flow for
V=118 mm/s. The general behavior of the time depen-
dencies of L and F is the same as for the square capillary.
Also the A-V dependencies for [ =d are practically the
same. Figure 6(b) is a typical example of a tangle for
pure normal flow with a parabolic flow profile. It is dis-
tinctly different from the plug-flow case: The vortex lines
are pushed towards the walls, leaving a low line density
in the center. This is in agreement with the results of
Samuels!?> who showed that vortex rings tend to take a
position in a region in the tube, where the relative veloci-
ty of the normal and the superfluid components is zero.
In this case this position is at the wall of the channel.

Figure 7(a) presents the A-V dependencies for / =d for
normal-fluid plug flow and for parabolic flow. Within the
accuracy the values of the critical velocities are the same,
but the slopes of the A-V dependencies differ significantly.
The results of simulations with [=2d were not
significantly different from the | =d case. Figure 7 also
contains the results for thermal counterflow. They are
positioned in between the two previous cases.

The spatial properties of the tangles are treated in
more detail in Fig. 8, where six time-averaged properties
of the tangle are plotted as functions of the radius r for
normal-fluid plug flow, pure normal Poiseuille flow, and
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for combined flow respectively. For plug flow A is homo-
geneous in the major part of the capillary [Fig. 8(a)].
Near the wall A decreases. This is due to the reconnec-
tions with the wall, which take place in the boundary lay-
er, which has a thickness of about 4 um. In this region
the vortices are oriented mainly perpendicular to the sur-
face.

Figure 8(b) represents the time average of the number
n of vortex lines penetrating a surface of unit area, orient-
ed in the radial direction. For a flat normal profile »n is
equal to zero. For the other profiles n has a typical value
of 0.002 vortices per pm2, or about 2.5 vortices in an area
of 25X50 um?. We will come back to the physical
significance of this nonzero » in the discussion.

Figure 8(c) shows the distribution of the axial com-
ponent of the mutual-friction force density. In all cases
the force is constant except for the region close to the

o

(@

(b)

FIG. 6. Vortex tangles in a tube with a circular cross-section
with pure normal flow for V=118 mm/s. (a) Plug flow, situa-
tion after 153 ms and (b) parabolic profile, situation after 163
ms.
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A = 0.068 ym™!
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FIG. 5. Tangles for V=118 mm/s
(Vd /B=66) in a tube with a square cross sec-
tion of 50X50 um? In the plots the total
length of the tube section is the same, but the
periodicity length is different: (a) /=50 pm,
(b) =100 pm, and (c) /=200 pm. The
differences in line densities between the three
cases are clearly visible.

5
z (pm)

wall. The values correspond to pressure gradients of typ-
ically 1000 Pa/m. In pure normal Poiseuille flow the
viscous pressure gradient is 1900 Pa/m.

Figure 8(d) shows that F has a radial component,
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0.05 - ¢ plug flow n
L O counterflow .
i & Poiseuille profile ]
ol e 11
0 100 200 V (mm/s) 300
— T T
; ]
i o plug flow ]
O counterflow ]
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FIG. 7. Velocity dependencies of flow properties of circular
tubes. In all data points / =d =50 um. Results for normal-
fluid plug flow, for counterflow, and for a parabolic normal flow
profile are shown. The lines represent Eq. (31) and Eq. (33),
fitted to the data for ¥ > V. (a) The average reversed line dis-
tance A and (b) the square root of the reduced mutual-friction
force density I".
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FIG. 8. Calculated properties of the tangles
as functions of the radius for a circular capil-

T (d) lary with d =50 pum and V=118 mm/s. In all
7 plots the results are shown for (I) plug flow,

(II) combined flow, and (III) Poiseuille flow.
N The plots represent the r dependence of the
time averages of (a) the line-length density A,
(b) vortex number density n, (c) mutual-friction
A force density in the axial direction F,, (d)

mutual-friction force density in the radial
direction F,, (e) vortex velocity in the flow

T direction ¥V, and (f) vortex velocity in the ra-
dial direction V,.

which is typically 10% of the axial component. The re-
action force on the normal component will drive it to-
wards the center of the tube. In the stationary state this
effect has to be balanced somehow.

Finally, Figs. 8(e) and 8(f) give the velocities of the
discretization points on the vortex lines as calculated
with Eq. (15). The positive values of V;, mean that the
points move towards the wall. For a correct interpreta-
tion of this result one should keep in mind that the veloc-
ity of a discretization point has some arbitrariness. It is
permitted to add a component in the tangential direction
(i.e., the direction of s’) to it. Therefore the velocities
presented in Figs. 8(e) and 8(f) cannot simply be interpret-
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- a Poiseuille profile 4
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0 100 200 V (mm/s) 300
FIG. 9. The anisotropy parameter 3I'/2aA for three

different flow situations as functions of V¥ in tubes with a circu-
lar cross section. The dotted horizontal line indicates the value
one, which corresponds with an isotropic tangle.

ed as the velocities of the vortex lines.

In Fig. 9 the ratio 3I'/(2aL) is plotted. For an isotro-
pic tangle it should be equal to 1. The deviations are on
the order of 15%. Equations (18) and (21) are often used
to derive line densities from experiment. The fact that
the tangles are anisotropic introduces errors of typically
15% in the quoted average line densities.

C. Infinitely wide slit

In the case of an infinitely wide slit periodic boundary
conditions were applied in the z and y directions [Fig.
1(c)]. The periodicity lengths were 50 um. The width of
the slit was 50 um, so the control volume again was
50X 50X 50 um3. The calculations were started with the
13 rings as in the previous cases.

First we discuss the results of normal-fluid plug flow as
shown in Fig. 10. In the first 50 ms a tangle develops
similar to the ones discussed before. In a later stage,
however, the tangled structure disappears. In the final
situation a number of straight vortex lines in the x direc-
tion are moving with velocity aV [in Eq. (15) V; and s”
are zero] in the y direction. The number of positively
oriented lines is equal to the number of opposite lines so
half of the lines move in the positive y direction and the
other half in the negative y direction. The drag force per
unit line length [Eq. (17)] is ap,«V, so if there are N, vor-
tices in the control volume of edge d the number density
n=N,/d* and the mutual friction force density is given

by

F=anpV . (34)

The average mutual-friction force density depends on the
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FIG. 10. Time dependence of L for ¥=47 mm/s in the slit
(d=50 um and ! =50 um). The tangle degenerates after about
75 ms. In this case there were two pairs of noninteracting
straight vortex lines in the control volume in the final situation.

number of vortex lines in the final situation, which was in
our case of order 1. Only after averaging over a large
number of different starting conditions, or by taking a
large control volume, sufficient statistics can be obtained
to define an average line density. In any case F tends to a
finite value at every value of ¥V, so V,=0. We will come
back to this result in the discussion.

If a parabolic normal velocity profile was assumed the
tangle degenerated into a set of slightly curved vortex
lines. In the final situation the lines lie in a plane making
an angle arctan(a) with the =z direction. For
aVd /B<<10, and neglecting terms of order a?, the
curves can be approximated by the equation

s(x)=(x,—az,z) (35)
with
_ avd? x* . x*
z= T d2+2d4]. (36)

Just as in the case of a flat normal-velocity profile the
vortices move in the y direction with velocity a V.

IV. COMPARISON WITH EXPERIMENT

During the past many decades the flow properties of
He II have been determined experimentally. The proper-
ties have been mapped in the V;-¥, plane, which shows a
rich structure with various turbulent regimes, separated
by critical velocity lines.!* The properties are tempera-
ture, size, and geometry dependent. Also the condition
of the surface of the flow channel is of importance.

In the comparison with experiment we first discuss
thermal counterflow. This is widely investigated experi-
mentally.">!4~2! In round capillaries two critical veloci-
ties are found experimentally: V,, and V,.

The main results of our calculations are summarized in
Fig. 7, where A and VT are plotted as functions of V. In
order to compare these with experiment we plotted in
Fig. 11, as an example, the experimental results of
Marees and van Beelen!® together with our calculated re-

FIG. 11. Inverse averaged line distance A as a function of V.
This plot shows the calculated results for a plug flow and
Poiseuille flow together with the scaled (see the text) measured
points of Marees and van Beelen (Ref. 18).

sults for the parabolic and the flat profile. Unfortunately
the experimental and the calculated results apply to
capillaries with different diameters (216 ym and 50 ym,
respectively), and different temperatures (1.4 K and 1.6
K, respectively). Therefore the experimental results were
scaled. In accordance with Eq. (25) the velocity scale was
multiplied with a factor 216/50=4.32, correcting for the
difference in diameters, and divided by 1.13 accounting
for the different B values. This resulted in V, ;=110
mm/s, which agrees with the calculated value of 100
mm/s. The A scale was multiplied with a factor 4.32 of
the diameter ratio, and reduced with an additional 20%
so that the experimental A-V curve in the high-velocity
region fits calculated result of plug flow. Although it
probably is somewhat suggestive to compare the experi-
mental and calculated results in this way, the general pic-
ture from Fig. 11 is that V,, is a transition to a turbulent
state in the superfluid component, keeping the normal-
component velocity profile in tact (i.e., parabolic), while
V., marks a transition in the normal component velocity
profile from parabolic to flat. This has also been suggest-
ed by Tough! and Donnelly.? Awschalom, Milliken, and
Schwarz measured A and v, as functions of the positions
in a 1X2.5 cm? rectangular channel.?? They reported
constant values of A and v,. It should be noted that in
this experiment, at the lowest value of the velocity
V=2.7 mm/s, the average line spacing was 0.27 mm,
which is well below the typical channel size, so their mea-
surements applied to the fully turbulent state.
Experimentally it is found that the parameter

.
V’l

A
1 A, ] (37

(Refs. 19 and 20) with A, the average line length density
for pure superflow, is a constant equal to 0.95 at 1.6 K.
As can be derived from Fig. 12 (keeping in mind that
pure superflow is equivalent with pure normal-fluid plug
flow) the calculated value of a is velocity dependent, al-
though the order of magnitude is correct. The agreement
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FIG. 12. Calculated a values [Eq. (37)] as functions of V.
The points represent plug flow, counterflow, and combined flow.
The experimental value of 0.95 is indicated with the horizontal
dashed line.

with experiment improves when in Eq. (37) the A, values
for A=4d are substituted.

In Table I, values for the parameters ¥, v;0, ¥ F> Vro»
and V, are presented for d =/ =50 um. The ratio of y
for plug flow and Poiseuille flow is about one-third. In
the counterflow experiments of Martin and Tough®' and
of Marees, van der Slot, and van Beelen?® v, in the T'I
state is about half the value in the T II state.

Table II summarizes the calculated and measured
scaled critical velocities V,,d /B and V,_,d/B at 1.6 K
from different sources. The results of our calculations on
V., and A, typically deviate 20% of the results of
Schwarz, which is reasonable in view of the difference in
algorithm. In the analysis of experimental data the value
of B is determined using the expression

cK
B o In(8g7) .

This expression is based on the assumption that §4A, with
85=0.15 nm, is a good representation for the typical
R /a, value of a tangle.* If necessary the value of A is es-
timated using the relations' Ad =2.5 at V,; and Ad =20
at V,,. Table II shows that there is reasonable agreement
with our value of ¥V.d/B=60 and the experimental
values for V,,d /B, which are in the rather wide range of
22-95. In any case it is considerably lower than the typi-
cal values found for V,, which is in the 120-200 range.

(38)
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The fact that the critical velocities in circular and
square tubes are the same is confirmed by the experi-
ments of Henberger and Tough who observed that the
square tubes “appear to be essentially identical to circular
tubes.”?* Marees and van Beelen'® measured that ¥, for
counterflow and for pure superflow both are temperature
dependent. At about 1.6 K he found that the two critical
velocities are equal, which agrees with our calculations.
This may imply that the calculated result that ¥, for pure
normal-fluid plug flow is the same as for Poiseuille flow is
not generally true but somewhat accidental. It may only
be true at the particular value of a=0.1, which was
chosen in our calculations.

The ratio of the effective *He density and the total fluid
density for a saturated mixture at very low temperatures
is (m*/m3)p;/p)=2.46X7.05/140=0.12 (Ref. 25). A
p,/p value of 0.12 for pure “He corresponds with a tem-
perature of 1.5 K. So, presumably, the experimental re-
sults for mixtures at very low temperatures are also de-
scribed by our calculations for pure ‘He at 1.6 K.
Zeegers et al. measured the critical velocities of *He, and
chemical potential differences, in 3He-*He mixtures for
many capillaries.”® For d=50 um they found
V,.=120+50 mm/s, which agrees remarkably well with
the calculated value of 100 mm/s. The general character
of the V' Au/IV -V dependencies [see, e.g., Fig. 10(b) of
Ref. 26, please note that the parameters @ and I in Ref.
26 are different from the ones used here] resemble the
V'T-V relationships calculated here. The slope of the
measured curves corresponds with y=0.5 s/mm?
which is close to the value of 0.35 s/mm? found for
normal-component plug flow (Table I). This is somewhat
surprising as the measured pressure drop across the flow
channel is consistent with the Poiseuille flow. Satoh and
Okuyama,”’” who used NMR to study adiabatic flow,
showed that the normal-component velocity profile just
above the first critical velocity is parabolic.

V. DISCUSSION

A. Critical velocities

The boundary layer A, is defined by Eq. (24), with a
typical value for R. The processes in the boundary layer
are different from the processes in the bulk: The vortex
lines are oriented perpendicular to the wall; the radius of
curvature is relatively small. There are many small semi-
circular vortex rings [Fig. 2(b) and Fig. 13(b), the latter

TABLE I. Values for the parameters ¥, Vo, ¥ r, Uro» and V, for the geometries that are discussed in this paper. In all simulations
the typical length scale d =50 um. Only values of “short” tubes (I =d) are tabulated.

Geometry Flow type V., YL YF Vro Vo v,
(s/mm?) (s/mm?) (mm/s) (mm/s) (mm/s)

Slits Plug V 1.1 0.29 0 0 0
Square Plug 4 1.3 0.35 47 45 100
Circular Plug V 1.3 0.35 42 41 100
Circular Combined 0.5V 0.87 0.25 17 21

Circular Counterflow 0.16V 0.43 0.12 —40 —40 100
Circular Poiseuille 0 0.13 - 0.031 =~—370 ~—370 100
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TABLE II. Values for the scaled critical velocities V,,d /B and V,,d /B from different sources at T=1.6 K. The parameter A, is
calculated from the A(V) dependence for V> V_,. The first two lines of this table lists the results of numerical simulations for plug
flow. The second part is from an analysis of data from counterflow experiments.

Source Tube geometry d (um) V.d/B V.d/B Ao
This work Square and circular 50 60 0.112
Schwarz (Refs. 3 and 5-7) Square and circular 48 0.137
Brewer and Edwards (Ref. 32) Circular® 366 200 0.131
108 67 200 0.122
52 51
Childers and Tough (Ref. 33) Circular 126 49
Circular 61 22
Henberger and Tough (Ref. 24) Square 120 54 120
Martin and Tough (Ref. 21) Circular 1000 95 200 0.122
Swanson and Donnelly (Ref. 34) Square 10000 200
Marees, van der Slot, and van Beelen (Ref. 23) Circular 130 38
Courts and Tough (Ref. 35) Circular 134 44
Courts and Tough (Ref. 20) Circular 134 200 0.157

*T=1.563 K.

also represents the projection of a typical tangle] moving
with high speed in some cases even in a direction oppo-
site to the applied flow [Fig. 8(e)]. As can be seen in Fig.
8(a) the line length density is lower near the wall than in
the bulk. For velocity values just above ¥, in the central
regions of the tube, the tangle consists of slowly moving
vortex lines with radii of curvature which typically are on
the order of the channel size.

In normal-fluid plug flow V=V, @, =0, and ¢, =e,.
Based on Egs. (29) alone, this would imply that, e.g., A is
proportional to ¥, and that A is independent of the size of
the flow channel. However, the thickness of the bound-
ary layer A, scales with B/V, so the relative importance
of the boundary layer increases with decreasing V. This
is illustrated in Fig. 13. Figure 13(a) represents a tangle
in a square channel with edges d; the normal velocity is
V. Figure 13(b) represents a situation where the velocity
V is reduced, e.g., by a factor of 2 and the tube and the
tangle are expanded with the same factor [Fig. 13(b)]. In
that case the typical radius of curvature, and the result-
ing thickness of the boundary layer [Eq. (24)], also in-
crease with a factor of 2 (again neglecting the weak loga-
rithmic R dependence of B): The time evolutions of the

S LLLLLLLLLLLLLLL LY LR L

tangles in the small [Fig. 13(a)] and the large channel
[Fig. 13(b)] will be practically identical if the time scale in
the large channel is four times larger [Eq. (26)]. Howev-
er, if walls are put into the channel of Fig. 13(b), result-
ing in the four separate channels represented in Fig.
13(c), the total area covered by the boundary layers is in-
creased. The channel in Fig. 13(a) is the same as one of
the channels in Fig. 13(c), but, due to the increased
influence of the boundary layer, the two situations are
essentially different. The evolution of the tangle, and the
resulting A, will be different. In fact, A in the case of Fig.
13(c) will be smaller then the reduction of the factor of 2
obtained from the scaling according to Eq. (25) because
the line density near the walls is low. So reducing V by a
factor of 2, while keeping the tube dimension constant,
leads to a reduction of A of more than a factor of 2. This
is the basic reason for the phenomenon of critical veloci-
ties in He II flow: By reducing the velocity from some
high value, A will decrease stronger than linear with V.
At some specific value ¥, of V the value of A drops to
zero. So the critical velocity is due to the specific proper-
ties of the boundary layer. This is reminiscent to the as-
sumptions made in the pioneering work of Vinen.?’
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FIG. 13. (a) Schematic representation of a vortex tangle in a square channel with applied velocity V. The dashed lines indicate the
boundary layer. (b) Same tangle as in Fig. 13(a), but now the dimensions (including the boundary layer) are twice as large and the ap-
plied velocity is half. On a four times larger time scale the evolution of this tangle will be the same as in Fig. 13(a). (c) Same situation
as in Fig. 13(b), but now walls divide the channel in four channels of the same size as in (a). The evolution will be different from the
evolution in (b), and consequently also from Fig. (a), due to the added walls.
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As argued above the tangle properties depend on the
channel size even in the case of normal-fluid plug flow or
pure superflow. In the presence of a parabolic normal-
flow profile this effect adds up to the variations of v, with
the typical length scale (d) of the channel [Eq. (5)]. The
flow phenomena do not scale simply as Vd /8.2* Within
the (relatively large) scatter in the points Zeegers et al.?’
found a linear V_.d-In(d) dependence, but the line extra-
polated to V,d =0 for d =15 um, instead of a value on
the order of a,, which would be expected if V.d is pro-
portional to .

In this paper the critical velocity is defined as the ve-
locity value above which the vortex tangle is permanently
sustained by the externally applied flows. This picture is
very appealing but incomplete. Due to the application of
periodic boundary conditions in fact an infinite number
of vortex rings was initially put into the infinitely long
channel. In a channel of finite geometry the tangle will
be flushed away from the channel even at velocities above
critical. Some additional mechanism is needed to explain
the observation of steady mutual friction in finite chan-
nels. Schwarz’ proposed a mechanism in which a “vortex
mill” from remanant vortices near the tube entrance pro-
duces turbulence which downstream develops into a tan-
gle. Also the creation of vortices can explain the ob-
served steady state. Figure 8(e) shows that the drift ve-
locity of the vortex lines in our case was typically 5
mm/s. So it takes 10 ms to travel through the control
volume of 50 um length. With typically 5-10 rings in
the control volume a production rate near the tube en-
trance of 10 rings per 10 ms would be sufficient for the
case of pure normal flow. In the case of pure superfluid
flow the drift velocity of the vortices is about equal to V,
which is on the order of 100 mm/s. In that case the
creation frequency should be an order of magnitude
higher.

Samuels'? has shown that vortices tend to arrange in
rings in the regions of zero relative velocities. This in-
teresting case does not apply to our situations. In all our
simulations the velocities of the normal and the
superfluid components were opposite, so a region of zero
relative velocity does not exist in the fluid. In the special
case of ¥V, =0 this region is positioned at the wall of the
tubes, where both v, and V; are zero. However, here the
interactions with the wall, which were neglected by
Samuels, play a dominant role.

For slits the numerical results produce a zero critical
velocity. This agrees with the experimental results of
Zeegers et al. for an annular spaces?® and the results of
Ladner and Tough,3®3! and Henberger and Tough,?* who
found a reduced critical velocity in a rectangular channel
with high aspect ratio. However, this agreement can be
fortuitous. It is possible that the calculated zero critical
velocity is an artifact of using the local approximation.
In the final situation the vortex lines are fairly straight so
the motion of a vortex line is affected by the (nonlocal)
velocity fields of the other vortices. In the presence of
mutual friction this can lead to vortex annihilation. So
the critical velocity may be nonzero after all. The model
has to be extended with nonlocal contributions before
definite conclusions can be drawn.
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B. Self-consistent flow profiles

In our calculations the flow profiles of the normal and
the superfluid components were imposed to be parabolic
and/or flat. In reality only the mass flows are determined
by the experimentalist and the flow profiles result from
the viscous stresses, the slip condition at the wall, and the
interactions between the two components (mediated by
the vortices). In principle, the shape of the profiles has to
be derived from a self-consistent calculation.

The two cases with parabolic normal-flow profiles de-
scribed in Fig. 8(b) show a maximum in n at about 5 um
from the wall. This is due to the fact that the tangle
tends to organize in circles around the capillary axes.
This leads to a macroscopic variation of v, in the channel
due to the nonlocal contributions, which were neglected
in our approximation. The error can be estimated from
the relation

dv,/dr=—«kn . (39)

The value of about 0.002 vortices per um? [Fig. 8(b)] cor-
responds to a difference in superfluid velocity between the
wall and the center of a few mm/s, which is much smaller
than the average applied velocity of 118 mm/s. So the
influence of the orientation of the vortex tangle on the
relative velocities of the two helium components is negli-
gible in this case. However, in general the contribution
to the superfluid velocity due to the orientation of the
tangle should be taken into account. The same holds for
the influence of the mutual friction force density on the
normal velocity profile. These effects can become impor-
tant at higher velocities and may eventually lead to an in-
stability, which can be the origin of the second critical
velocity.

VI. CONCLUSION

We have developed a stable and efficient numerical al-
gorithm and investigated numerically the flow properties
of He II in terms of the reconnecting vortex model. In
square and circular flow channels a well-defined critical
velocity is found. The profile of the normal component
velocity has a minor effect on the value of the critical ve-
locity, but it affects the value of the mutual friction force
density significantly. The calculated critical velocity
agrees with the measured first critical velocity. The cal-
culated mutual-friction force density for a parabolic
profile seems to agree with the T I state; the flat profile
satisfies more the values found in the T II state.

Note added in proof. In addition to what was discussed
in Sec. III C with respect to the long term behavior in
slits, further calculations have shown that a critical ve-
locity also exists in slits. The main difference with flow
channels with square or circular cross sections is that in
slits, for velocities below the critical velocity, the vortex
tangle evolves into a steady state with (nearly) straight
vortex lines while in the other geometries the vortices
disappear. Above the critical velocity, in the slit, a vor-
tex tangle remains with fluctuating density which is simi-
lar to the other cases. The results for the 50-um-wide slit
can be summarized in terms of the critical velocity V.
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and the parameters ¥, v;, introduced in Eq. (31). For
flat normal-flow profiles V,=53 mm/s, y;=1.4£0.2
s/mm?, and v;,=8+9 mm/s. For Poiseuille normal-flow
profiless V,=57 mm/s, y;=0.59+0.04 s/mm? and
Vro=—37£10 mm/s.
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