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Exact spectra, spin susceptibilities, and order parameter of the quantum Heisenberg
antiferromagnet on the triangular lattice
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Exact spectra of periodic samples are computed up to N = 36. Evidence of an extensive set of
low-lying levels, lower than the softest magnons, is exhibited. These low-lying quantum states are
degenerated in the thermodynamic limit; their symmetries and dynamics as well as their finite-size
scaling are strong arguments in favor of Neel order. It is shown that the Neel order parameter agrees
with first-order spin-wave calculations. A simple explanation of the low-energy dynamics is given
as well as the numerical determinations of the energies, order parameter, and spin susceptibilities
of the studied samples. It is shown how suitable boundary conditions, which do not frustrate Neel
order, allow the study of samples with N = 3@+1 spins. A thorough study of these situations is
done in parallel with the more conventional case N = 3p.

I. INTRODUCTION

The nature of the thermodynamic ground state of the
spin-1/2 Heisenberg antiferromagnetic Hamiltonian, in
two space dimensions, is still an open question. There
have been considerable amounts of theoretical or numer-
ical works on Heisenberg antiferromagnets but few
exacts results. It is known that in one and two dimen-
sions the system is disordered at T g O,

i and that the
one-dimensional system does not exhibit Neel order even
at T = 0. The two-dimensional case is more controver-
sial. There is a rather large consensus on the existence
of Neel order at T = 0 on the (unfrustrated) square
lattice. The situation is much more puzzling as re-
gards the triangular lattice case. It was indeed the first
system to be proposed by Anderson and Fazekas and
Anderson as a candidate for a spin liquid. On this lat-
tice the "&ustration" implies that the classical system
is not very stable (E,i = (2s; s~. ) = —1/4), and the
spin-wave calculations predict an important reduction
(by about one-half) of the sublattice magnetization by
quantum Huctuations. Perturbation theory, series
expansions, and high-temperature calculations have
been developed which suggest that the spin-wave calcula-
tions possibly underestimate this renormalization. Many
variational calculations have been done exhibiting either

ordered or disordered solutions.
In the square lattice case, numerical methods (QMC,

Ulaxn's, or the Trotter-Suzuki method) have brought
very interesting indications on Neel order 5,8—xz Unf
tunately these methods which allow one to handle large
saxnples cannot be applied to the triangular case: They
lay on a property of positivity of off-diagonal matrix el-
ements which is violated in the triangular case; it is the
well-known sign problem which plagues many studies of
strongly correlated fermions. Exact diagonalizations of
the Hamiltonian are thus the last resort to gather new
information on these models. This approach has been
developed by other authors. 2 Most of them conclude
the absence of Neel order for the triangular Heisenberg
antiferromagnet (THA) at T = 0. But two requirements
are to be met to analyze the raw numerical data: a con-
sistent finite-size scaling analysis and a quantum defini-
tion of observables. With these two constraints we will
show in this paper that all the numerical data point to
an ordered ground state for the THA.

As the second and perhaps more important objective
we want to illustrate the spectral properties of an or-
dered quantum antiferromagnet on finite lattices and
how they embody the characteristics of the symmetry-
breaking state (parts of these results have already been
publishedss) .
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In Sec. II, we first show the numerical spectra of the
THA on periodic samples with N = 9 up to 36 spins and
we present the essential characteristics of these spectra.
Their low-lying levels form two families: The first one
contains an extensive number of states called quaside-
generate joint states (ADJS's) in Ref. 33, which collapse
to the ground state as N, and are characterized by
the spatial symmetries of the classical Neel ground state.
The second family collapses more slowly to the ground
state as N i/z and forms the familiar one-magnon exci-
tations. Such a structure was conjectured a long time ago
by Anderson in his seminal paper on antiferromagnets, 2

and the subject has already been studied in the square
lattice case. ' '

Section III is devoted to the understanding of the
ADJS's of the triangular Heisenberg Hamiltonian. We
show how the hypothesis of a Neel order explains the
number of levels appearing for each spin, their symme-
tries, and their dynamics. The analysis of these spectra
gives a first information on the spin susceptibilities g~
and g~~ of the THA. In order to check our general ideas,
we extend the analysis to samples with N = 3p+ 1 spins.
Suitable boundary conditions allow us to study situations
which do not &ustrate Neel order. We compare all the
results of energies and susceptibilities with the first-order
spin-wave results.

In Sec. IV, we analyze the static spin-spin structure
function and the Neel order parameter. We show how
diagonalization results sustain the hypothesis of Neel or-
der and how the analysis of some previous authors was
in error, leading to confusing conclusions.

We conclude by a brief discussion of the interest and
limitations of this approach.

In the Appendixes, we develop the group theoretical
analysis of the THA and explain our numerical method:
This is a technical but crucial point in order to obtain the
needed information in minimum computer time, within
the memory capacities of today's computers. We had for
example to make sure that the low-lying levels of all the
difFerent irreducible representations order as they should
in the framework of our hypothesis. This leads us to
compute the whole spectrum of the samples up to N = 21
and a large number of low-lying levels in each irreducible
representations for all sample sizes up to N = 27.

with N = 3p. Such samples do not frustrate the classi-
cal Neel order. A classical Neel state on the triangular
lattice has coplanar spins with a threefold rotational sym-
metry defining three magnetic sublattices (A, B,C) (see
Fig. 1). On each sublattice, the spins are ferromagneti-
cally aligned and the angles between the magnetizations
of two sublattices are +2vr/3. The total spin of a tri-
angular plaquette is zero and the rotations of the spins
around an ABC triangle could be clockwise or counter-
clockwise defining two opposite helicities. The point sym-
metry group of these classical solutions is Cs„,and the
translational symmetry group is that of a sublattice, say,
A. These classical solutions break the translation and
spin rotation invariance of Eq. (1) whereas the quantum
eigenstates that we will now consider do not.

Using group theory, described in Appendix A, we
have computed the complete spectrum of Eq. (1) for
N = 9, 12, 21. The five lowest energies have been cora-
puted for N = 27 in all the irreducible representations
(IR's), and the three lowest energies for N = 36 in the
homogeneous states k = 0, invariant under rotation. The
energy spectra are given in Fig. 2 and the lowest levels
listed in Table I. Our results are in perfect agreement
with previous diagonalization results.

A first very striking feature of these spectra could be
read in Fig. 2: The lowest-energy levels in each spectra
order with increasing S. This is strongly reminiscent of
the theorem by Lieb and Mattis for bipartite lattices.
But there is presently no proof that the property holds
for other lattices. We find that this is true for other
nonbipartite problems like the Eagome Heisenberg anti-
ferromagnet or for the Ji-J2 models on triangular and
It agome lattices.

The second striking feature of these spectra is the ex-
istence in each 8 subspace of a family of low-lying levels

II. SPECTRA OF PERIODIC SAMPLES:
AN OVERVIEW

All the results presented here have been obtained by
diagonalization of the spin-1/2 Heisenberg Hamiltonian
of periodic samples on the triangular lattice (see Ref.
25 and Appendix A for inore details). The Heisenberg
Hamiltonian reads

where the sum r»~~ over pairs of nearest neighbors and
s;, s~ are the spin-1/2 operators on sites i and j.

In this section, we are concerned with periodic samples

FIG. 1. The classical Neel ground-state: On each ijk tri-
angle s; + s~ + sg ——0. This de6nes three sublattices A, B,C
on which the spins are ferromagnetically aligned; the angle
between the spina of two sublattices is 2s/3. For a given
planar upward triangular plaquette described in the counter
clockwise direction, the spins can rotate clockwise or counter
clockwise, corresponding to the two different helicities: Here
a positive helicity is assumed.



10 050 B.BERNU, P. LECHEMINANT, C. LHUILLIER, AND L. PIERRE 50

0 10 20 30 40 0 10 20 30 40

/
/

I rrr I rrrr II

[
I

[

I 1 I I

I.
7

N=-12 I
r I I I I I I I I I I ltl rrr I I I I I I rrrr I r

r

I

10 20
S~ S2

well separated &om the others: We called these states
the "quasidegenerate joint states" (QDJS's) in Ref. 33.
In Fig. 2, it is shown that the QDJS's energies (6N(s;.s~))
stand around a line E = S(S+ I)/(2IN), where the mo-
ment of inertia I~ is essentially proportional to N (see
Fig. 3). This suggests that these levels collapse as N to

FIG. 2. Energy spectra of Eq. (1) versus S = S(S + 1):
(s) complete spectrum for N = 9 snd 12; (b) lowest energies
for N = 21 and N = 27. The horizontal and vertical scales
have been enlarged by the same factor so that the slope of
the energy per bond versus S(S + 1) can be compared. One
sees on these graphs that this slope goes rapidly to zero. The
straight line is a guide for the eye to link the low-lying energy
levels called ADJS's (for qussidegenerste joint states).

the ground state. We shall show in the next section that
this family of O(N ) QDJS's has all the properties ex-
pected for the description of Neel quantum ground states:
in particular, the C3„and magnetic sublattice transla-
tion invariance of the Neel states (they only contain the
k = 0 or kko IR's of the lattice translation operators
where +ko are the two wave vectors of the corners of
the crystal Brillouin zone, mapping on the center of the
magnetic Brillouin zone). The symmetry-breaking Neel
states are linear combinations of these QDJS's.

To study higher excited states, let us first come back
to the N = 9 spectrum of Fig. 4. Above the basal line of
QDJS's one sees very clearly two families of levels.

The first excited-state family (horizontal bars in Fig. 4)
consists of eigenstates of the translation operator with
k g 0 and k g +ko, they are typically states involved
in one-magnon excitations. What is usually called a
magnon in solid state physics is in fact a spatial modula-
tion of the Neel state. As the Neel states should be seen
as linear combinations of the QDJS's, the one-magnon
excitations are in fact linear superpositions of this first
family of excited states. A one-magnon excitation is thus
pictured in the spectrum of Fig. 4 as a AS = 1 collec-
tive excitation of the QDJS's (three-leg symbol family)
towards the k family of levels (this picture has been as-
certained by the computation of the dynamic structure
factor of the first QDJS's of the N = 12 samples ).

The second family of excited states (solid trian-
gles) belongs to the nontrivial IR's of Cs ['R~

3

exp(+i2vr/3)@]; this is the first family of levels (labeled
3— in the following) that could sustain chiral states
('R2 /3 is a spatial rotation of angle 27r/3). The last fam-
ily of excited states (open triangles) belongs to the non-

TABLE I. Lowest energies, degeneracy, and quantum numbers for N=12, 21, 27, 36. Components of vectors k are in units
of 2n/N. In the three last columns, 1 stands for invariant under the symmetry, 0 for no symmetry, snd -1 for s phase factor
under the symmetry (j for the rotation of 2x/3 snd -1 for the two others). Stars stand for the quasi-degenerate-joint-states
(ADJS's). The line separates the lowest energies from the ADJS's higher in the spectrum.

(2s, s~) S deg. R2~/ 3 R~ cT N
i

(2s, s~) deg.

12 * -0.4068868
* -0.3589325
* -0.3570639

-0.3538882
-0.3382480
-0.3370959

* -0.3280998
-0.3132131
-0.3024839
-0.2913787
-0.2907218
-0.2907008
-0.2906078

* -0.2862917
-0.2827618

* -0.2817881
* -0.2694317

-0.2693163
-0.2585320

21 * -0.3739972
* -0.3516974

0
1
1
0
0
0
1
1
1
0
0
1
0
2
1
2
2
1

0.5
1.5

1 0
6 4
3 0
2 0
3 0
6 2

9 0
18 2
9 0
1 0
4 4

18 2
1 0
5 0

12 4
10 4
10 4
9 0

18 2

4 7
4 0

0
4
0
0
6
4
6
4
6
0

-4
4
0
0
4
4

-4
6
4

-7
0

1
1
1

-1
0
0
0
0
0
1

-1
0
1
1

-1
1
1
0
0
1
1

1 1
0 1

-1 1
1 0

-1 1
0 1

1 1
0 1
1 1
1 -1
0 0
0 1
1 1
1 1
0 0
0 1
0 1
1 -1
0 1
0 0
1 0

* -0.3511989 1.5
-0.3511315 0.5
-0.3500572 0.5

* -0.3499587 1.5
-0.3435291 0.5
-0.3402059 0.5
-0.3392388 0.5
-0.3390870 0.5
-0.3320711 0.5
-0.3296426 1.5
-0.3292417 1.5
-0.3289908 1.5
-0.3287770 0.5

* -0.3172244 2.5
~ -0.3171493 2.5
* -0.3123477 2.5
* -0.3119088 2.5
* -0.2728708 3.5
* -0.2728677 3.5
* -0.2626233 3.5
+ -0.2624250 3.5

8 7
12 3
12 1
4 0

12 2

12 3
12 2
12 1
8 7

24 3
24 2
24 1
4 7

12 7
6 0
6 0

12 7
8 0

16 7
8 0

16 7

9
-4
0

-8
9

-8
4

-7
9

-8
-4
-7
-7
0
0

-7
0

-7
0

-7

1
0
0
1
0
0
0
0

-1
0
0
0
1
1
1

1
1
1
1
1

0 0
0 0
0 0

-1 0
0 0
0 0
0 0
0 0
0 0
0 0
0 0
0 0
0 0
0 0

-1 0
1 0
0 0
1 0
0 0

-1 0
0 0
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N
i

(2s; s~) d,eg. +2m /3

TABLE I. (Continued).

Ni (2s;. s~) deg. k +2~/3

-0.2587919 3.5
-0.3734808 0.5
-0.360?827 0.5
-0.3587615 1.5
-0.3586044 1.5
-0.3580457 1.5
-0.3566086 0.5
-0.3522638 0.5
-0.3517280 0.5
-0.3500536 0.5
-0.3492247 0.5
-0.3482682 0.5
-0.3467737 0.5
-0.3466080 0.5
-0.3461131 0.5
-0.3452044 0.5
-0.3448586 0.5
-0.3448234 1.5
-0.3439540 1.5
-0.3438163 1.5
-0.3436128 0.5
-0.3433155 0.5
-0.3432208 0.5
-0.3429195 0.5
-0.3422904 0.5
-0.3359171 2.5
-0.3358955 2.5
-0.3337237 2.5
-0.3336028 2.5
-0.3072962 3.5
-0.3072094 3.5
-0.3017642 3.5

16 7 -7
4 9 -9

12 6 12
4 0 0
8 9 -9
4 0 0

12 3 6
12 0 9
12 0 9
12 3 -12
12 6 12
12 3 -12
12 3 6
4 9 -9

12 3 6
12 6 12
12 6 12
24 3 -12
24 3 6
24 6 12

2 0 0
12 3 -12
12 3 -12
12 0 9

2 0 0
12 9 -9

6 0 0
6 0 0

12 9 -9
16 9 -9
8 0 0
8 0 0

0 0
0 1
0 1

-1 1
0 1
1 1
0 1
0 1
0 -1
0 1
0 1
0 1
0 1
0 1
0 -1
0 1
0 -1
0 1
0 1
0 1
1 1
0 1
0 -1
0 1

-1 1
0 1
1 1

-1 1
0 1
0 1

-1 1
1 1

-0.3016915
-0.3000848
-0.2734043
-0.2733890
-0.2632354
-0.2630937
-0.2593492
-0.2582988
-0.2575865
-0.3735823
-0.3667362
-0.3555115
-0.3517758
-0.3485718
-0.3430154
-0.3400599
-0.3398439
-0.3398327
-0.3386439
-0.3381808
-0.3204399
-0.3173265
-0.3162180
-0.2977774
-0.2923236
-0.2898917
-0.2721993
-0.2638050
-0.2594966
-0.2565594
-0.2563581

3.5
3.5
4.5
4.5
4.5
4.5
4.5
4.5
4.5
0
1
2
0
0
1
1
3
2
3
3
4
4
4
5
5
5
6
6
6
6
6
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6 0
6 0
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7 0
7 0
? 0

-9
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9
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
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FIG. 3. Moment of inertia versus sample size.

trivial IR of Cs„,the states invariant under a rotation
of 2n'/3 and odd under axial symmetry (o ) [R~ 4' =
4', o @ = —4'] (labeled 3 = z —;see Table III).

For larger N, the spectra become more and more dense,
but this hierarchy of levels is always obeyed. The magnon
states collapse to the ground state roughly as k, i.e., as
N /, whereas the energy of the chiral states seems to
have a gap (Es —Ep = 6 6 1.908 2.958 0.7661 2.454,
2.641, 2.01, 2.546, for N = 7, 9, 12, 13, 16, 19, 21, 25, 27).
The hypothesis of a chiral ground state on the triangular
lattice seems excluded by our results. ' The energies
of the 3 = x—states are much higher in the spectra (out
of the range of energies of Table I).

III. QUALITATIVE ANALYSIS OF THE
QUASIDEGENERATE GROUND-STATE

MULTIPLICITY

The symmetries and the dynamics of the QDJS's are
essential to understand the nature of the order in the
thermodynamic limit. Let us begin our investigation by
the symmetry analysis of the eigenspectrum.

A. QDJS's as the coupling of three spins

Ns = min(2S+ 1,N/2 —S+ 1). (2)

This number is readily obtained by noticing that the
Hilbert space of two spins S~ = S~ = N/6 can be split
into (N/3 + 1) subspaces associated to the eigenvalues
of their sum S~+gy (with ~S~ —Spy~ = 0 & S+++
Sg + S~ = N/3). The coupling of S~+~ with S~ gives
then a total spin S (]S~+g —N/6~ & S & S~+g + N/6),
which leads to result Eq. (2).

It is straightforward to verify (see for example Table
I) that the QDJS's family exhibits the exact number of
states expected &om the coupling of three spins of length
N 6:
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FIG. 4. (a) Enlargement of the low-energy levels for N = 9
versus S(S+ 1). Three-leg-symbol families are essential in-

gredients for a symmetry breaking of Neel type. They respec-
tively span the subspace of quasiclassical Neel ground states
and the subspace of the long-wavelength k g 0 excitations:
i.e., the magnons. Solid triangles represent the chiral states.
Open triangles are states invariant under rotation of 2n/3 and
odd under axial symmetry. (b) Same as in (a) for 27spins. (c)
Same as (b) with ~~z

~ subtracted from the whole spectrum.6NIi

These states ~@p(i, S, Ms)) (with i from 1 to N, ), fully
polarized on each magnetic sublattice, are the projections
of the classical Neel states on the various IR's of SU(2).
They present the usual 2S+1 degeneracy associated with
M~ multiplied by the number Ng of diHerent couplings
of three spins N/6 [Eq. (2)].

As S&2, S2&, S& do not commute with V, ~@p(i, S, Ms))
are not eigenstates of 'R, but we can look at them as the
first (bad) approximation to the exact QDJS: The per-
turbation V dresses these "classical states" with quantum
fluctuations, decreasing the average value of the sublat-
tice magnetizations and lowering their energy towards
the exact results. This process can lift the Ng degener-
acy of the

~
@Pp(i, S, Ms)) and it is indeed what is observed

in the exact spectra of QDJS's, but we verify in Fig. 2
and Table I that the set of QDJS's has exactly the correct
multiplicity Np.

Such a property is not unexpected if we look at that
family of levels as arising &om the renormalization of the
classical Neel state by quantum fluctuations. For this
purpose it is most useful to Fourier analyze the Hamilto-
nian Eq. (1); separating the k = 0 and kkp contributions
from the others, Eq. (1) reads

X = so+ V,

where

'Rp = —(S —S„'—S~ —Sc) .
N (4)

S~ (S~, Sc) is the total spin of the A (B,C) sublattice,
and

V= ) f(k)Sv S x,
@+0;+A:0

with

1
Sg = ) s, exp(ik r, )N

(6)

and

f (k) = exp(ik . uq)

+ exp(ik . u2) + exp[ —ik . (ug + u2)] + c.c., (7)

where uq and u2 are the two-basis vectors of the lattice.
Hp commutes with S» S» S&, and the eigenstates of

'Rp [written as ~4'p(i, S, Ms))] are eigenstates of S, Sz,

B. Symmetries of the ADJS's

The QDJ eigenstates belong to the three following IR's
of the space symmetry group I'q. [k = 0, R 4 = 4,
R2~/s4 = @,o~4 = 4']; I'2. [k = 0, R~4
R2 /3% 4 o @ = 4]; and I s. [k = kkp R2 /s4'
4, o 4' = 4'], where R4, is a rotation of angle P and o.

is an axial symmetry.
They appear with regular rules (described below in

Sec. IIID and in Appendix B) in all the IR's of SU(2):
that is, for each S value.

This proves that the QDJ eigenstates are invariant (1)
under translations of the magnetic sublattices; they only
contain the k = 0 or kkp IR's of the lattice translation
operators; (2) under the point group C3 (R2 /3% —4,
o.C = 4).

The appearance of the k = 0 and kkp IR's of the
translation group in this quasidegenerate ground-state
multiplicity allows us to build states which break the
translational symmetry of the lattice (as is the case of
the Neel state). In the same approach, the appearance
of all the IR's of C2 states (where R @ = +4) allow us
to break the inversion symmetry, whereas the presence
of all IR's of SU(2) allows to build states with a vectorial
magnetization pointing in a given direction. In summary,
all the IR's which keep invariant the Neel states appear
in the QDJS's and no others. Note that the low-lying
levels of 'Hp described in the previous subsection belong
to the same IR's as the QDJS's. It is straightforward to
verify that the quantum perturbation V is also invariant
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under the symmetry group of the classical Neel states;
thus the renormalization by V of the sublattices spins
can take place without disturbance of the symmetries of
the classical Neel states.

The picture of the Neel states as linear combinations
of the ADJS's becomes plausible. But the symmetry ar-
gument does not prove by itself that the low-lying lev-
els of 'Ro have evolved identically in the dressing by the
quantii~ fiuctuations induced by V. For example, the
simple question "do all the ADJS's have the same ex-
tensive sublattice magnetization?" cannot be answered
from only symmetry arguments. A still more basic issue
is discussed in the following subsection.

C. EfFective dynamics of the ADJS's

We have shown in the previous subsections that the
ADJS's possess the same space symmetries as the (spher-
icalized) classical Neel states. We have now to make sure
that the dynamics of this set of states can be reduced in
the thermodynamic limit to that of a collective variable:
the order parameter of the antiferromagnet. This is in-
deed a very serious issue and the necessary condition for
the rigidity of the supposed-to-be ordered phase.

To determine precisely the nature of this order param-
eter, let us concentrate on a presumed Neel order on the
triangular lattice. Defining a specific Neel state requires
the knowledge of exactly three angles: two angles locate
the helicity Y defined as

T = ) (Si X Sg + Sg X Sg + Sg X Si),
(i, j, k)

(10)

where the sum is taken on upward triangles in the coun-
terclockwise direction; the third angle locates the direc-
tion of the magnetization of one sublattice. In this paper
we shall call (3) the direction of the helicity, (1) the di-
rection of the A-sublattice magnetization, and (2) the
third orthogonal direction. When reference to a labo-
ratory frame will be necessary, we shall add a prime to
the Neel-axis frame indices, keeping the unprimed quan-
tities for the laboratory frame. In the Neel ground states
(and in their first long-wavelength excitations) the length
of the sublattices magnetization is supposed to be con-
stant; thus, the orientations of the Neel kame are the
only variables of the problem (homogeneous on the lat-
tice in the ground states and slowly spatially variable in
the first excitations): In other words the order parameter
is an element of SO(3). Let us now consider the dynamics
of this collective variable in the homogeneous Neel state.
On a finite lattice, this collective variable has a finite "in-
ertia" and its &ee dynamics is entirely determined by its
angular nature and the isotropy of spin space. We thus
expect it to be that of a free top. Such a dynamics is at
best described in the kame of principal axes of the ob-
ject. The planar symmetry of the Neel state implies that
one of the principal axes will be directed perpendicular to
the plane of the spins, that is, parallel to the helicity Y.
In the principal axes of the Neel state, the Hamiltonian
describing the &ee dynamics of the system reads

S2 S2 S2

where Sq, S2, S3 are the three components of the total
spin of the system and Iq, I2, I3 the principal moments of
inertia. Iq, I2, I3 are indeed linear responses to homoge-
neous magnetic fields in the spin plane (Iq, I2) or perpen-
dicular to it (Is). They are the extensive homogeneous
susceptibilities of this system. In the thermodynamic
limit, we expect Iq and I2 to be equal by symmetry, as
they are associated with magnetic fields which rotate the
spins out of the plane: We denote them I~ = Nyg, and
I3 is denoted III

= Nyll, where y~ and yll are the per-
pendicular and parallel susceptibilities. For the classical
Heisenberg model, y~ =

y~~
= 1/18 [see Eq. (9)]. Nev-

ertheless, it is likely that on the triangular lattice the
renormalization of the two quantities by quantum fiuctu-
ations can be diferent. Thus, we shall focus on the
dynamics of a symmetric top.

All the considerations up to now are dependent upon
the angular nature of the collective variable and are valid
in a classical as well as in a quantum mechanics point of
view. The quantization rules can be obtained from ele-
mentary quantum mechanics, but it is interesting to look
first at the classical approach of the dynamics of this
top. 4s The free dynamics of a top is entirely described by
the relative motion of three directions (see Fig. 5): the
total angular momentum S (a conserved quantity which
is fixed in the laboratory frame), the angular rotation
vector 0, and the principal axis of inertia of the top
(axis 3, directed along the helicity of the Neel state).
For a &ee symmetric top, these three directions are in
fact always coplanar, and the global motion is the com-
bination of two rotations: the precession of axis 3 of
the top around the total angular momentum S with an
angular velocity A~, = 8/Iq and the uniform spinning
of the top on itself around 3 with the angular velocity
Os = Ss /Is ——Scos 8/Is. The dynamics reduces to two
separate motions of two angular variables constrained to
vary on [0, 4m'] [SU(2) variables]. In quantum mechanics,
these two angular constraints imply the quantizations of
the eigenstates of the associated rotation generators. The
first condition provides us trivially with the quantization
of the total angular momentum and its (2S + 1) degen-
eracy. The second condition is not so trivial and implies

i(3

FIG. 5. Schematic of the free dynamics of a symmetric top.
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the quantization of the projection of the total spin on the
I

3 axis of the top (not to be confused with the projection
of the total spin on the 3 laboratory-frame axis). For a
given S value, Sqi can thus take 2S+ 1 values ranging
&om S to —S. The Hamiltonian then appears in the
canonical form S', t'I

+Ss
I2' (2I[[

(12)

-0.375
I

]
I

e3
E3

C3

—0.38

tM
TM —0.385

V

—0.39

N=27

The degeneracy of the eigenlevels of Eq. (12) is (2S+ 1)
for Ss ——0 and 2 x (2S+ 1) for Ss g 0; for a given S
value of the total momentum the dimension of the Hilbert
space is (2S+ 1) .

Thus the rigidity of the ordered Neel states implies
that the low-lying spectrum of Eq. (1) must map in the
thermodynamic limit, on the spectrum of Eq. (12): That
is indeed a very striking feature of finite-size spectra dis-
played in Figs. 4 and 6 where both the leading behavior
of Eq. (12) and the global multiplicity (2S+ 1)2 of the
top are well verified up to a total spin S = N/6 (for
higher values of S, the multiplicity (2S+ 1)Ns [Ns given
by Eq. (2)] is lower than (2S + 1)2). The inertia I~
in Eq. (12) is indeed an extensive quantity scaling as N
(see Fig. 3). This leads to a determination of y~ ——I~/N
which is not very different, and only a bit smaller than the
first-order spin-wave calculations of Chubukov et at.
[see Fig. 7(a)].

The situation is more difficult as regards the precise
determination of the anisotropy and of y~~. For the small
samples studied in this work, the size effects are still ex-
tremely important: For N = 9 the top is spherical; for
N = 12 no definite sign can be ascribed to (z&

—
2I ).2

][
2 J

For the two larger samples (N = 21, 27) there is a ten-
dency towards a behavior of an oblate top (zI —

2I ) ( 0,2I][ 2I&

I

3p

0.8

0.6 -~
0.8—

I

3p+ 1

~ ~

~ + ~

(d)—
I I

I g

0. 1

~ ~
~ z

0.2
N-- i/2

Ib)—

0.3

FIG. 7. Spin susceptibilities of the THA on 6nite samples.
(a) yi (triangle) and y~~ (square) normalized by its classical
value for the N = 3p samples; large symbols stand for results
obtained from the ADJS's analysis; small symbols show the
6nite-size results of spin-wave calculation of Chubukov et al.
(Ref. 45). Points represent spin-wave results and indicate the
infinite-size extrapolation. (b) y~~ of the N = 3p+ 1 samples;
symbols are the same as in (a).

but the expected degeneracies of the symmetric top are
not present leading to large uncertainties on g~~ (see
Fig. 6) . Unfortunately the Hilbert space of the quan-
tum top in the N = 36 case is too large to allow the
determination of the complete spectrum of low-lying lev-
els and we are thus unable to decide clearly even on the
sign of the above quantity in this case.

D. Spatial symmetries of the quantum effective top

We have determined in Sec. III B the three IR's charac-
terizing Neel order on the triangular lattice. I'i. [k = 0,
'R @ = 4, 'R, »4 = 4, o, 4 = @]; I', : [k = 0,
'R @ = —O', 'R2 as@ = @, o @ = i']; and I s. [k = +kp,
7Z,~»4 = i', o~iI = iI].

These IR's should be identified with the three IR's of
the invariance group C3„ofthe magnetic arrangement.
Each symmetry of the lattice results in a permutation
of the magnetic sublattices. Because the order param-
eter is an element of SO(3), such a transformation may
be cleared by a global rotational symmetry of the spins.
This property allows us to compute the number of occur-
rences of the three IR's (see Appendix B):

I I I I I

S2
20 30

nr, ——(a+ 3b+ 2c)/6, nr, = (a —3b+ 2c)/6,

FIG. 6. Comparison between the exact spectrum and a fit-
ted symmetric top for the N = 27 sample: 1, 2, and 3 stand
for the I'i, I'2, I'3 IR's (see text);: spectrum of an ideal

symmetric top [the isotropic term sinai
i is subtracted from6NI~

the spectrum to focus the comparison on the second term of
Eq. (12)]; For N = 27, all levels of the ideal top ( ) are dou-
bly degenerate (we do uot take into account the trivial 2S+ 1
magnetic degeneracy). In the exact spectrum, the levels 1
and 2 are simply degenerate and the 3 levels are doubly de-
generate. Perfect agreement between the two spectra would
necessitate a quasidegeneracy of 1 and 2 levels.

where

and

nr, = (a —c)/3,

f 2vr
c = sin

~

—(2S+ 1)
~E3 )

Sln

a = 2S+ 1, b = cos(Sar),

(13)
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In the hypothesis of a symmetry breaking in the manner
of the Neel symmetry breaking, the low-energy spectrum
of Eq. (1) should thus contain for each 8, Ms subspace
rtr, [k = 0, R 4 = 4, R2~/~@ = 4', o 4' = 4'] IR, nr,
[k = 0, R 4 = —O', R2~/s4' = 4', o% = 4] IR, and nz,
couples of degenerate [k = kko, R2 /3C @ 0 4 @]
IR's.

This appears to be true in all the exact spectra that
we have computed, for all S values up to N/6 (see Table
I and Fig. 6).

The mapping of the low-lying levels of Eq. (1) on those
of Eq. (12) would imply a "quasidegeneracy" of some I q

and I'2 levels. This phenomenon is not preaent in the
studied samples (see Fig. 6); this does not exclude the
possibility of a quasidegeneracy in the thermodynamic
limit, but this explains the difBculty to extract y~) from
these data.

At that point, we have determined both the dynamics
and the symmetries of the ADJS's that should appear in
exact spectra of a system exhibiting a Neel-ordered phase
in the thermodynamic limit. As regards these criteria
the spectra of the THA point in favor of a Neel ground
state, the scaling of I~ seems even to dismiss the case
of quantum criticality (Ir should then scale as N~/2 as
shown by Azaria et al. s). We shall come back to this
point in the conclusion.

N=21 (a)

=8.0

--8.5 -E0

interaction between the spin (10) and (1') is chosen to be
equal to the interaction of (10) with the periodic image
of (1) rotated by 2z'/3 and so on. Such boundary con-
ditions, which imply the selection of an axis of rotation,
break the rotational symmetry of the Haxniltonian and
the total spin is no longer a good quantum number, but
the component S~ of the total spin on the axis of rota-
tion remains a conserved quantity. If we keep a global
reference kame for the spins, the translational symmetry

E. Spectra of samples with N = 3@+1

The periodic samples which do not frustrate Neel or-
der must have three sublattices invariant in the periodic
boundary conditions, that is, a number of spins N = 3p.
On present-day computers and algorithms, memory re-
quirements limit the studies to samples of N = 9, 12, 21,
27 and 36. In order to enlarge the number of data avail-
able and have a complementary check of our hypothesis
we have thus relaxed the periodic boundary conditions
to allow the studies of the 7, 13, 16, 19, 25, and 28 sam-
ples. Let us look at such a tiling of the infinite lattice
(see Fig. 8). In order to preserve the possibility of a
three-lattice symmetry breaking on the infinite lattice,
the translations operations Tt and Tz should be linked
to a rotation of the spins: To be specific, in Fig. 8, the

-8.50

—Eo(AA)

—Eo(p,g) N=19

F:.:.:.i:i'i:.:i..;

'hi..:;:.'::::;.@:espwgo'" '»0'! *

1

I

-8.00

-8.0

-E0

-9.0
I

-8.0

~ ~r

FIG. 8. The 1V = 13 sample and the tiling of the in6nite
lattice. Numbers stand for the spin. Prime (double prime)
means that the original spin is rotated by +2s/3 (+4s'/3).

FIG. 9. Opposite of the ground-state energy of the N = 21
and N = 19 samples as a function of the spin rotation angles
P, @ attached to the translations uq, uo. The spectrum de-
pends only on the angles 4 = lf+ mb), @ = —mP+ (l + m)@
attached to the translations T~, Tq. In the N = 3p case, the
absolute minimum of the energy is obtained for angles 4',4
equal to 0 or +—characterizing the classical Neel states and
only (C, @) = (+—,~—) in the N = 3p+ 1 samples.
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is difficult to handle. But this essential symmetry be-
comes again trivial by the choice of local frames rotated
by +2vr/3 (p2vr/3) in one-step translations of uq (u2).
Within such a choice the Heisenberg Hamiltonian reads

R = 2 ) s; 'Rs '(2x/3)s. Rs(2+/3),
(' i)

(14)

S3 S3
2I3 2Xy

where s, , s~ are the spin operators in the local refer-
ence frames and 'Rs(2vr/3) = exp( —im/30s), mrs being
the third Pauli matrix. We can in fact solve this problem
for any value (P, Q) of the rotations associated to one-
step translations in the ut and u2 directions (as long as
the total rotation around a plaquette is zero). We have
indeed done it and verified that the absolute minimum of
the energy is obtained for the values (+2z/3) for samples
with N = 3@+1 and for 0 and +2vr/3 for samples with
N = 3p (see Fig. 9). The same method gives information
on the spin stiffnesses of the system. 4r

If the system has Neel order at T = 0, the spectrum of
the low-lying levels of Eq. (14) is easily deduced from the
general considerations of Sec. III C. The present bound-
ary conditions induce a cylindrical symmetry of the prob-
lem around the 3 axis of the laboratory: this implies that

I
the helicity axis 3 of the Neel state (see Fig. 5) is now
constrained to coincide with the 3 axis of the laboratory.
There is only one degree of &eedom left, associated with
the rotations around this axis, and one constant of mo-
tion: the S3 component of the total spin. The effective
Hamiltonian Eq. (11) in these conditions reduces to

0 10 20 30 40 0 10 20 30 40

P7
V —0.2

M

I
R

I I I I

7

5=-13 j

-0.4
10

S~
3

N=19

10
S„

Iv'=25

..1 .J I l. .

20

FIG. 10. Spectra of N = 3@+1 samples versus S3. Note
the tower of states, only doubly degenerate, and its collapse
to the absolute ground state with increasing N.

wave velocities. ' ' In fact in the previously developed
theories ' only the N = 3p samples have been taken
into consideration: In this case the fIuctuations associ-
ated with the three modes of magnons equally contribute
to the renormalization. In the N = 3p+ 1 samples, the
approach to the singular points at k = 0 and kko is
different and we expect different coefficients in the N
expansion. It is effectively what is seen in the finite-size
scaling analysis of the spin-wave susceptibilities (Fig. 7)
and of the spin-wave energies (Fig. 11).

the two other terms in Eq. (11) not related to a constant
of motion should average to zero in any eigenstates. In
our problem, Ss can take all the values ranging from
—N/2 up to N/2 and the degeneracy of each eigenstate
of Eq. (15) is 2 for Ss g 0 and 1 for Ss ——0. Diago-
nalization results entirely corroborate these deductions
as can be seen in Fig. 10. The analysis of the low-lying
levels obeying Eq. (15) gives a determination of y~~ [see
Fig. 7(b)]. As for the N = 3p case, the values obtained
by this method are in agreement and only a bit larger
than the first-order spin-wave approximation; moreover,
the size effects seem to be roughly the same in the two
approaches.

0 36 —, 36 2/ 21

V3

V3
—0.39—

v)- —0.36
V3

D2 —0 39

—0.36

V) —0.39

k.lP" ~ ~". . . 1 '

F. Extrapolation of the ground-state energy
per bond 0.02

3/2

0.04

For ordered systems, the finite-size efFect on the N
ground state is mainly due to the cutoff of the long-
wavelength excitations. In the supposed-to-be Neel or-
der these excitations are magnons, linear in k, and the
leading term of the finite-size corrections to the ground-
state energy is of order N / and thus the ground-
state energy per bond varies as N /2: More sophisti-
cated approaches would allow one to compute the first
coefficients of these expansions as functions of the spin-

FIG. 11. Finite-size scaling of the ground-state energy per
bond and comparison with spin-wave results. (a) Three-leg
symbols, diagonalization results for the N = 3p samples; solid
triangles, averaged values computed thanks to Eq. (18); small
open triangles, spin-wave results; dotted line, N fit on
large N spin-wave results. (b) Same as in (a) except crosses,
diagonalization results for the N = 3p+ 1 samples. (c) Aver-
aged values of (2s, s/) versus N; dotted line, N fit
to these results of diagonalizations (see text).
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The analysis of the diagonalization results is more sub-

tle, because it depends on the parity of N. The ground
state is either an S = 0 or an S = 1/2 state and in this
latter case one has to take into account the top inertial ef-
fects described in the previous subsections. This leads to
an S/N correction to the ground-state energy (an S/N
correction to the energy per bond) which is noticeable
for the small sizes considered here. In order to compare
the exact results to finite-size spin-wave results, it is nec-
essary to extrapolate the exact E(S,N) to an efFective
value E(O, N). Two estimates of E(O, N) can be com-
puted. The first one is obtained by the subtraction &om
the ground-state energy of the main inertial contribution
of (IIIOI'R, Irl@II); that is, for N = 3p samples

gives an estimate of the energy per bond in the thermo-

dynamic limit,

(2s; . sz) = —0.363

[see Fig. 11(c)].
At the end of this section, we can conclude that the

spectral properties of the Heisenberg Hamiltonian give a
strong argument in favor of an ordered ground state and
that the numerical spectral data and finite-size correc-
tions are consistent with the picture and not very differ-

ent &om the spin-wave results. We will now discuss the
important issue of the value of the order parameter of
these Neel states.

( ' ' 'i)0 N = (@ol2s"il@'0) — @0 @o (16)6¹ yg
IV. ORDER PARAMETER

OF THE NEEL STATES

and for N = 3p+1 samples

S2= (~.12 ",l~.)— 6¹ y((

(17)

The second estimate is an average of the same quantity
taken on all the ADJS's up to S = N/6:

S=NI6

(2s; . s~)s ~ = 1/NqDqs ) ADJS ' ADJS
S=min

(18)

where 'R is the Heisenberg Hamiltonian Eq. (1) and 'R,Ir
is given by Eqs. (12) or (15) according to the number of
spins in the samples.

The first estimate (used in Ref. 33) is difFerent from
the exact ground state for odd-N samples only, whereas
the second estimate which is an average over a large num-
ber of levels, always differ &om the exact ground state.
These averaged results are compared to finite-size spin-
wave results (see Fig. 11) where it is seen that the exact
results are lower than the spin-wave results, the finite-size
effects on the two sets of data being nevertheless roughly
the same. It has been shown by Azaria and co-workers
that the finite-size correction to the ground-state energy
of the N = 3p samples is

E~ = E~ —n(c(( + 2cg)N

where a is a geometrical form factor and c~~, c~ are in-
plane and out-of-plane spin-wave velocities.

On the basis of our numerical data we cannot decide on
the exact value of the renormalized spin-wave velocities:
It does not seem to be largely different &om the spin-
wave results, both in the N = 3p [Fig. 11(a)] and in the
N = 3p+ 1 cases [Fig. 11(b)]. The complete set of data
analyzed within the hypothesis

= (Sx) = (Sa) = (Sc) (22)

or of the static structure factor 8(k) defined in state l@)
as

8(k) = (%IS & S&lC) (23)

[with Sg in Eq. (6)) is easier. 8(k) measured in the
ground state of the N = 3p samples is shown in Fig. 12.
The signature of Neel order in the N ground state should
appear as a macroscopic value of M or 8(kII) using the
following identity:

2 N 8(k,)+ (~IS (24)

I I I
I

I I I
I

I I I
I

I I I
I

I I I
I

I

+ 0.8
R

n, 0.6
I

0.4
V

/

/

/
/

*-----+

~9
P 12

/x B�-
i+�

36

0 I I I I I

0 0.8 0.4 0.6
klko

I « I I

0.8 1

The check for long-range order on the lattice could
involve the measurement of the two-points correlations
(s;(0) s~(r)) or that of a macroscopic observable as the
sublattice magnetization.

In view of the lattice sizes that can be studied, the anal-

ysis of the two-point correlation functions is rather incon-
clusive, the asymptotic behavior is far from reached, and
the sizes are still too small to check the Kennedy-Lieb-
Shastry inequality. 4s The measurement of the squared
sublattice magnetization M2,

c//
= c//sw cJ = cJ sw (2O)

FIG. 12. Static structure function in the ground state of
the N = 3p samples versus the k-vector modulus.
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It should be kept in mind that, in the studied sam-
ples, the largest sublattices spins range from 3/2 (for
N = 9) to 6 (for N = 36): They cannot be treated
as classical quantities. M is the square of a vector;
it should be normalized by its maximum quantum value
(N/6) (N/6+1) [reached in the fully aligned classical Neel
state ]O'II(i, S, Ms)) of Sec. IIIA]. The structure factor
(same tensorial form as JH2) should be identically nor-
malized. Two definitions of the order parameter (X or
Y) seem equally valid:

36~2
N(N + 6)

or S(ko)
N+6'

X saturates at 1 in the classical Neel state (and in the
N = 9 sample where the quantum fluctuations are in-
effective to reduce the magnetization sublattices) and
should be decreased by the quantum fluctuations in the
quantum ground state. For the N = 3@+1samples, it is
impossible to de6ne a sublattice magnetization. On the
other hand, one can measure the sum ~q of the magne-
tizations computed in the local basis: For a fully aligned
Neel state the square of this vector should saturate to
(N/2)(N/2 + 1). We thus define in this case

4M,'
N(N+ 2)

(26)

s's &) z'I ' ' ' i'z

~—

Finite-size scaling analysis indicates that the leading
correction to these parameters should go as N /; anal-
ysis of the results (see Fig. 13) shows that for these small
values of N the subleading correction is important: The
N -+ oo extrapolation is thus rather diKcult, but an
extrapolation to a zero value seems highly improbable.

On the other hand, the comparison between the di-
agonalization results and first-order spin-wave results is
interesting: It is seen in Fig. 13 that the two sets of re-

1
(2s, s~)sw = —1/4+ ) (Idi, —1),2N

(27)

where uI, = (1 —pi, ) I (1+2',) ~ and pI, = f(k)/6 [see
Eq. (7)]. On the other hand, the correction to the M,
magnetization involves exclusively the k g 0, kkII points
of the Brillouin zone that is N —3 points in the N = 3p
samples and N —1 points in the N = 3@+1 samples:

(~,) = — 1 —— ) —1

k/0, +ko k )
A careful comparison between the exact results and

the 6rst-order spin-wave results leads us to conclude that
the spin-wave approximation seems an extremely good
quantitative approximation for the considered sizes; on
the basis of the present data, it seems highly hazardous to
adopt other estimates of the thermodynamic limit than
the spin-wave results. ' In a previous paper, we have
shown that, for a given size, the order parameter modulus
is roughly the same in all the QDJS's.

suits do not diH'er by large amounts. It should be noted
that Miyake spin-wave results are in our point of view
incorrect for 6nite sizes. We agree with Deutscher and
Everts formula for 6rst-order spin-wave results which re-
strict the renormalization by quantum fluctuations to
k g 0, +ko wave vectors. As is well known the spin-
wave Hamiltonian cannot be bosonized for k = 0, +ko
(the Bogoliubov transformation becomes singular). It is
a bit lengthy but straightforward to show that these three
Fourier components of the spin-wave Hamiltonian can be
recombined to give the total spin S2 and that they do not
participate to the renormalization of the order parame-
ter (such a remark has recently been developed by Zhong
and Sorella in the case of the square lattice Heisenberg
Hamiltonians ). Careful examination of these singular
terms shows that the 6rst-order correction to the ground-
state energy is exactly obtained by the summation of the
usual formula on the N points of the Brillouin zone:

.-o ~
p p

p' ~ ~ p V. CONCLUSION

I I I I I I I I I I ] I I I I

0.1 0.3
I

0.2
N

—1/2

FIG. 13. Neel order parameter as a function of the sam-
ple size. The order parameter is normalized by its max-
imum value [see Eqs. (25) and (26)]. Triangles (squares)
stand for N = 3p (N = 3p + 1) samples; solid symbols
stand for diagonalization results; open symbols stand for
first-order spin-wave results [2(M ) of Eq. (28)]; dotted lines,
large N fits (N ) 5000) of first-order spin-wave results
(XIv =X +aN '~ ).

The thorough analysis of exact results of diagonaliza-
tion of the Heisenberg Hamiltonian on periodic samples
with triangular symmetry has brought various pieces of
information both qualitative and quantitative.

The qualitative information emerges Rom the sym-
metry analysis of the spectra: This analysis shows a
strict hierarchy of levels. The first family, degenerated to
the absolute ground state in the thermodynamic limit,
contains all the quantum states and only those needed
to build symmetry-breaking Neel states with three sub-
lattices magnetizations in a C3„-invariant con6guration.
Their dynamics can roughly be mapped on the dynamics
of a quantum symmetric top as expected &om general
considerations on the nature of the order parameter in
the Neel ordered states. Understanding this family of
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levels from the coupling of three macroscopic spins ex-
plains why the multiplicity of this quasidegenerate set
of levels (the ADJS's) is of order Ns (in the square lat-
tice case the multiplicity should be of order N2) which
gives in the therxnodynamic limit an entropy of order
ln N. Rather unexpectedly the present analysis does not
give quantitative answers extremely diferent from first-
order spin-wave results. On the basis of the coherence of
the data concerning the symmetries of the ADJS's, their
dynamics, the energies, the spin susceptibilities, and or-
der paraxneter of both the N = 3p and N = 3p+ 1
saxnples and their size eHects, one can only sustain the
hypothesis of an "ordered ground state" for these small
samples. Indeed we have no information of the effect
of softer quantum fluctuations with wavelengths larger
than about six lattice sizes. The clusters expansions of
Singh and Huse and the high-temperature expansions of
Elstner, Singh, and Young point to a weaker order (if
any?) than obtained in the first-order spin-wave calcu-
lations. In these two last methods the invoked clusters
are smaller than our largest sizes but there is no bias due
to periodic boundary conditions and the saxnpling of the
quantum fiuctuations is different from what is done in
this work.

The present state of the art does not exclude that for
larger sizes than those explored today quantum fiuctu-
ations drive the system towards criticality but there is
in the small saxnples studied here no evidence of such a
behavior.

group SU(2). Thus, its IR's are the tensor products of
space group IR's times SU(2) IR's. We first consider in
details the space symmetry, then quickly the spin sym-
metries, and explain how they are implemented in the
numerical approach.

1. Space symmetry group

The spins stand on a triangular lattice defined by the
basis vectors uq and u2 (see Fig. 8). On the infinite tri-
angular lattice, the group g of symmetries, which leave
the lattice sites globally invariant and keep the vicin-
ity relations, is the semidirect product of the translation
group 7 times the point group 'P. The translation group
7 has two generators: the translations of vector uq and
u2. The point group 'P consists of the symmetry trans-
formations keeping a site invariant: Its generators are the
planar rotations R and R~ g3 and the axial reflection
0' with respect to uq (see Fig. 8). The point group P
is isomorphic to Cs„(or17s) and has 12 elements: six
rotations and six reflections.

In order to preserve the translation invariance and to
reduce the number of degrees of freedom, periodic con-
ditions are used, defined by the vectors Tq ——luq + mu2
and T2 ——l'uq + m'u2 (see Fig. 8). R is always a sym-
xnetry transformation of such a system. For R2~/3 to
be a symmetry transformation of the periodic lattice, we
chose T2 ——R ~sTq (I' = —m; m' = l+m). The number
N of sites per cell (Tq, T2) is thus given by
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APPENDIX A: GROUP THEORY
ON THE THA, NUMERICAL METHOD

The system has an axial refiection when Lm = 0 or l = m.
Therefore the point group is 'P = Cs„(Csif there is no 0
axis) and the space group g~ = 7~ x Cs„(7~x Cs) has
12N (6N) elements. In the following, periodic samples
with an N multiple of 3 are used.

Let E~ be the space of wave functions for a system.
of N spins. A wave function is a linear coxnbination of
configurations:

4' = ) n, ic), (A2)
Here, we explain how to obtain the complete spectrum

of the spin-1/2 THA, for the largest possible samples
compatible with the triangular symmetry of the infinite
lattice. The number of eigenstates increases as 2~ with¹ Even for very small values of N, there is no stable
numerical method to calculate directly all the eigenval-
ues of 'R. The problems to be handled are memory space
requirexnent, computer time, and degeneracy of states.
These problems can be reduced by an intensive use of
space and spin syxnmetries. Indeed, when all symxne-
tries are accounted for, one can work in subspaces where
eigenvalues are no longer degenerate and better control
on round ofF errors is obtained. These subspaces come
from the decomposition of the Hilbert space according
to the irreducible representations (IR's) of the symmetry
group of the problexn.

This symxnetry group is the direct product of the space
symmetry group of the lattice times the spin rotation

where a configuration ~c) is an element of the basis
8~ = (~ f), ~ $)) of E~. E~ is a linear representa-
tion of g~. It can be expressed as a direct sum of IR's of
Q~. Summing the isomorphic IR's leads to a unique fac-
torization in a direct sum of subspaces E~ ~ associated
to the various IR's p of g~. Each of these subspaces is in-
variant under 'R. Because g~ is not commutative, some
of the IR's have dimensions greater than 1 resulting in a
degeneracy of 'R on E~ ~. Thanks to the rather simple
structure of group Q~, one can eliminate this degeneracy
by working on some subspace E~ associated with some
one-dimensional IR p of some subgroup g~,~ of g~.

By using E~ instead of E~ ~, the eigenvalue multi-
plicities are divided by the dimension of p, which is also
equal to the ratio of the cardinal of g~ to the cardinal of
QN, p.

Let us first consider the case where there is no axial
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reflection: The point group P is an Abelian cyclic group
of six elements. Because 7~ is Abelian, its IR's are one
dimensional and are characterized by k, a vector of the
Brillouin zone. Thus, E~ is factorized in N subspaces
EN g. The group P acts on these vectors to form difFer-
ent stars. Two vectors kq and k2 belong to the same star
if there exists an element of P (here a rotation) which
transforms k~ into k2. Because this transformation com-
mutes with the Hamiltonian, the eigenvalue spectra of
E~k, and ENk, will be identical. For a fixed k, let
pk be the subgroup of 'P which keeps k invariant. This
subgroup is Abelian and all its IR's are one dimensional.
The cardinal of 'Pk is 6 for k = 0. It is 3 for k = +ko
(kko are the corners of the Brillouin zone); this occurs
only when N is a multiple of 3. It is 2 if k = —k g 0 (the
middle of the side of the Brillouin zone) and this occurs
only when N is a multiple of 4. It is 1 for the other k
vectors. The different IR's are listed in Table II.

When there is an axial reHection (lm = 0 or t = m),
the group 'P is generated by o and 'R ~s. If the group
'Pi, is Abelian, the previous construction is applied. If
the group Pk is'not Abelian, some of its IR's are two
dimensional. This is the case for k = 0 ('Pi, = 'P = 17s)
and k = ko ('Pk = 17s). The Abelian normal subgroups
are, respectively, C6 and C3. The difFerent IR's are listed
in Table III.

For small systems, other accidental space symmetries
can occur which imply new degeneracies. If they com-
mute with all the previous space symmetries, the de-
generate states appear in the same IR. Otherwise, the
degenerate states stand in difFerent IR's.

2. Spin symmetry group

The Hamiltonian of Eq. (1) is invariant under global
spin rotations: It commutes with S, where S is the total
spin. For spin 1/2, the symmetry group is SU(2). The
IR's are labeled by S.

TABLE III. Same as in Table II, when there is an axial
reilectiou (lm = 0 or I = m, ).

k
k=O

k= kkp

k= -kgO

oak= k/0
other k

(Rs g„o,)

(Id, R, oi, )

(Id, oi,}
(Id}

P
Rs ps@=0

R Q=kvj
cr Q=+g

Rs-ys0 =i4'
R„v)=+@

Rs gs4=0
o Q=+g

Rs-gsW=i 4
o R Q=kQ

R @=kg
o),Q=+@
oi,g=+Q

Multiplicity
1

6
12

3. Numerical method

~I 1 0 ~

i =N/2, N/2 —1,
i+S

S' —i(i+ 1)
S(S+ 1) —i(i+ 1)

' (A3)

A general wave function is de6ned by the knowledge
of the set of 2~ coefficients (n,} [Eq. (A2)]. The first
easy reduction of this set is to work in an eigenspace
of S,: The basis size thus becomes t N

'. The nextN/2 —S,

step is to work in a given E„',characterized by the phase
factors associated with each element of g~ ~. One groups
together the configurations in conjugate classes: ~c) and
~c') belong to the same class if there exists an element X
of QN ~ such that ~e') = X~c). So a, differs from a, by
a phase factor listed in Table II or III. The number of
independent coeKcients is therefore reduced by roughly
a factor N (translations) and at maximum by a factor
12N (cardinal of g~). The memory requirement and
computer time are reduced by the same amount.

Implementation of the SU(2) symmetry is done via a
projector technique by using the operator

k =+kp

k= —k+0
other k

ph
p

(Rs gs)

(Id, R )
(Id)

p
Rs ys0=0

R @=+sf
Rs ys@=i0

R vP=+g
Rs ps@=0
Rs ps@=i@

R Q=+@

Multiplicity
1

TABLE II. Irreducible representations (IR's) when there is
no axial reBection (lm g 0 or I g m). First column: vector of
the Brillouin zone. Second column: subgroup which keeps this
vector invariant; (Rs ys) stands for the group generated by
R2 /3 Third column: IR list of this subgroup, with the phase
factor associated to the transformation; @ is a wave function.
Fourth column: multiplicity of each eigenvalue found in this
IR.

where S is computed thanks to relation S = S, + S, +
2S S+ and S+ and S are computed like 'R. Applying
S is therefore as fast as applying the Hamiltonian, or
So.

The Lanczos method has been applied to diagonalize
the Hamiltonian in the subspace associated to each IR p.
Working with classes instead of configurations ensures
that the vectors generated by the Lanczos method. stay
in the same subspace. For small systems, the Hamilto-
nian and the two operators S+ and S are tabulated; for
large systems (N = 36), they have to be computed at
each step, but vector components are stored in an order
allowing application of these three operators to be vector-
ized. In any case, the diagonal part of the Hamiltonian
is computed separately at once and stored. Additional
details on the technical tricks will be given elsewhere.

The algorithm is as follows: (i) First, for some IR,
build the conjugate-class table and the phase-factor ta-
ble; (ii) tabulate '8, S+, and S; (iii) choose a random
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initial vector and project it out in the desired subspace
of S2; (iv) apply the Lanczos algorithm; (v) calculate the
eigenvectors, correlations, etc.

In fact, round-ofF errors propagate very quickly in this
algorithm. In order to eliminate these errors, computed
vectors are orthogonalized to all previous ones and pro-
jected out in the 8 subspace. One can compute the di-
mension m~(S) of this subspace and verify that, after
exactly m~(S) iterations, the modulus of the last vector
is zero. This is a strong test of this algorithm.

APPENDIX B

Here, we compute the number of replica of each ir-
reducible representation of the ADJS's if a Neel state
occurs. The idea is to use some symmetries that keep
invariant the classical Neel state. These symmetries are
the compositions of the permutations of the sublattices
times specific spin rotations.

Thus, let us start with an a priori classical Neel state
and its symmetry group. In our case, the Neel state is
made of three sublattices as described in Sec. II. Let us
define the plan (zy) of the classical Neel state and z a
perpendicular axis. The group which permutes the three
sublattices is Ss (isomorphic to the dihedral group Ds).
After a permutation which exchanges the spins between
the sublattices (giving another Neel state), the initial
Neel state is recovered if the spins are rotated simultane-
ously. For example, the permutation of two sublattices
(say, A and B) times a spin rotation of axis parallel to the
spins of the last sublattice (thus C) recovers the initial
Neel state. Likewise, a cyclic permutation of the three
sublattices times a spin rotation of 2m/3 along the z axis
also recovers the initial Neel state. Thus, two (three)
sublattices permutations are associated to half (a third)
of a turn around an axis in the (zy) plane (around the z
axis .

In the quantum case, the permutation of the sublattice
is one of the symmetry of the lattice (say, central symme-
try for the two sublattice permutation and translation of
one step for three-sublattice permutation) times a spin
rotation in SU(2). The group of these spin rotations is
the dihedral group Ds for integer spins [SO(3)], and is a

TABLE IV. Character table for the spin rotation group of
SU(2) involved in the Neel state; p2 and ps denote the class
of the spins rotations associated to two- and three-sublattice
permutations. The number of elements in each class is N, ~.

The rotation angle associated to each class is P and the trace
of the rotation in the subspace of fixed spin S is given in the
last line, where d = 28+ 1.

—I
1
1
1
2

—1
—1
—2

2'

p3
2

p2
3

p2
3

sin{ 3 d)
sin( —)

sin{ + d)
sin( 3 )

sin( —"d) sin( z d)

For integer (half-integer) spins, only the nr, (nr ) are.
nonzero.

Now, we identify the I'; IR's with the IR's of the Hamil-
tonian. Because the ADJS's have already been found to
belong to three precise IR's (see Sec. III B), this identi-
fication is straightforward: I'0 is the trivial IR, I'q is the
IR odd with respect to the inversion (k = 0, invariant
under a 2z/3 rotation), and I's is the last doubly de-
generate representation (k = ko, invariant under a 27r/3
rotation). The identification of the I"; is the same for
half-integer spins and leads to formulas (13) both for in-
teger and half-integer spins.

group of 12 elements for half-integer spins [SU(2)], whose
character table is given in Table IV. Note that the type
of spin rotation associated with each class is specific of
the Neel state and is necessary (here also sufficient) to
calculate the number of replicas, np, , of each irreducible
representation (IR) I';. As all the above transforma-
tions conserve the total spin S, one can thus calculate
the traces of these rotations in the subspace of fixed S,
Ms..
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