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Neutron-diffraction experiments with both polarized and unpolarized neutrons have been
carried out on single-crystal specimens of Gd in order to measure the magnetic-moment
distribution in the metal. Data have been obtained in the ferromagnetic state at 96 'K for all
(hkO) reflections out to (sin0)/X=1. 275 and nearly all (Okl) peaks to (sing)/X=1. 04. Measure-
ments have been made as well at a temperature above the Curie point. The shape of the spin
distribution appears to be identical at the elevated temperature (313 'K) to that observed at
96 K. The form-factor data can logically be separated into diffuse and localized components,
which may be identified with the conduction electrons and 4f electrons, respectively. The 4f
density is spherically symmetric, and it has a radial dependence which is significantly expanded
relative to Hartree-Fock wave functions for the free trivalent ion. Good agreement can be
achieved with theoretical form factors based on relativistic Hartree-Fock-Slater wave functions.
The diffuse density does not have the distribution expected for 5d or 6s orbitals: It is long
range and oscillatory, however, as one expects for conduction electrons in the rare earths.
Measurements of the form factor of Gd'3 in paramagnetic Gd&03 have also been made, and the
results are in excellent agreement with the free-ion calculations, except at very small scatter-
ing angles.

I ~ INTRODUCTION

In many respects gadolinium is one of the simplest
magnetic materials known. As.such it would be an
ideal candidate for a number of neutron-scattering
experiments, except for the extremely high thermal-
neutron-capture cross section of the naturally oc-
curring element. This difficulty has recently been
overcome by the production, in this laboratory, of
metal highly enriched in the low-capturing isotope

Gd. In this paper we report the results of preci-
sion measurements, with both polarized and unpo-
larized neutrons, of the magnetic-scattering ampli-
tude of gadolinium measured on single-crystal
samples of the isotopically enriched metal.

Gadolinium behaves magnetically as if it con-
tained tripositive ions in $7&~ states: The outer
5d and 6s electrons of the free atom form the con-
duction band. From paramagnetic-susceptibility
measurements' in the temperature range 400-
900 'K, an effective moment of (7. 98+ 0.05) p~
was deduced which is in good agreement with the
theoretical value p,,« =g[J(J+1)]'~2 = 7. 94p~, with

g=2. 0 and J=S=+2.
Below its Curie point of 293. 2 'K, gadolinium is

a simple ferromagnet. The easy direction of spon-
taneous magnetization varies with temperature in
a complex manner but, because the atoms are in
S states, the anisotropy energy is relatively low
and it is possible to. achieve magnetic saturation in
a number of directions in the crystal with relative-
ly weak fields. For application of the polarized
beam technique this is an important consideration.

At 4. 2 K, the measured saturation magnetization
corresponds to 7. 55'~/atom, ' a value which is

0. 55'.~ in excess of 7. 0p~ due to seven electrons
in the half-filled 4f shell. This excess moment is
usually attributed to polarization of the conduction-
electron system.

The polarized-beam technique has been used with
great success to determine the magnetic form
factors of ferromagnetic elements and alloys of the
3d transition series. By Fourier inversion one ob-
tains direct information on the spatial distribution
of the periodic magnetic-moment density, but con-
siderable analysis is then required to extract infor-
mation about the distribution of the 3d electrons.
The technique has recently been applied to the rare-
earth metals Tb ' and Tm, but, because of the
high anisotropy and the large spin-orbit coupling
in these metals, only a limited amount of data is
obtainable. The analysis is further complicated
by deviations from spherical symmetry of the
charge and current distributions in the metals. In
gadolinium, however, the magnetic-moment den-
sity is proportional to the unpaired spin density.

The aim of this experiment has been to measure
the 4f spin distribution and to learn something of
the nature of the conduction-electron distribution.
That this aim has been realized has been reported
briefly earlier "; we give here a detailed descrip-
tion of the experiments, and of the analysis leading
to the separation of 4f and conduction-electron dis-
tributions. Throughout the analysis the assump-
tion is made that the spin density is collinear so that
it can be described by a scalar density function.

Measurements were made as well on metallic
gadolinium at 313 'K, at which temperature a mo-
ment was induced by the application of an external
field, and on isotopically enriched paramagnetic
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TABLE I. Properties of the specimen crystals.

Crystal

Length (cm) 0 859 0.610 1.016

0.041 x0.058 0.0610 x 0.102
(cm)

Figure axis

0.211x 0.244

Gd203. Information on the temperature dependence
of the unpaired spin-density distribution and on the
comparison of metallic and ionic form factors was
sought in these experiments. Results are given in
the appropriate sections of the text.

II. EXPERIMENTAL DETAILS

A. Sample Properties

A button of some 40 g of metal enriched to
99.993% '~Gd was prepared from oxide separated
by the Stable Isotopes Division of this laboratory.
With a modification of the strain-anneal process
reported by Nigh" several large grains were pro-
duced in the button from which neutron-diffraction
specimens were cut. Three crystals were inves-
tigated; a number of pertinent properties of the
specimens are listed in Table I. Crystals 1 and 2
were used in both the polarized and unpolarized
beam experiments. The total neutron cross sec-
tion of the metal at 70 meV was found to be 20. 3 b.

To avoid loss of the isotopic sample, chemical
analyses were not performed on it. Analyses were
carried out, however, on a specimen of metal of
normal isotopic constitution which had been sub-
jected to the same operations. The following im-
purities in ppm were detected: Ca = 100; Mg & 100;
Fe&200; Ta=1000; Y&50; Tb&500; Dy&1000;
Ho&200; Cu&100; 02=1600; NB=100, and these
may be considered representative of the isotopic
sample as well.

At room temperature Gd crystallizes in the sim-
ple hexagonal closepacked structure with a = 3.636
A and c=5.783 A. Below the Curie point the c
axis exhibits an anomalous expansion, whereas the
a dimension shows normal lattice contraction. The
measurements by Darnell' on the temperature de-
pendence of the lattice constants were used in set-
ting up our experiments.

B. Apparatus and Procedure

All the measurements were made at the HB-1
triple-axis spectrometer at the high-flux isotope
reactor (HFIR}. The metallic specimens were
mounted in a "cold-finger" -type cryostat de-
signed so that the specimen could be rotated
about its figure axis by means of external con-

(rad) 0.0027 +0.0014 0.0019 +0.0006 0.0013+0.0002

~Full width at half-maximum of the mosaic distribution
equals 2(2ln2)

trois. With liquid nitrogen in the cryostat the sam-
ples reached an equilibrium temperature of 96 K.
A magnetic field of 12.5 kOe was applied normalto
the scattering plane and parallel to the figure axis
of the specimen.

The polarized-beam technique yields, in princi-
ple, the so-called flipping ratio

(1+p/b)'
(1 —p/b)' '

where p and b are the magnetic- and nuclear-scat-
tering amplitudes, respectively. The magnetic-
scattering amplitude p = poof, where po is a well-
known constant (e y/2mc ), g is the magnetic mo-
ment in Bohr magnetons, and f is the normalized
form factor. The method gives highly precise re-
sults when p/b « I, for in this case R is relatively
insensitive to instrumental imperfections and beam
depolarization. When p = b, such corrections be-
come very important, and have to be determined
with great accuracy. When p» b, the flipping ratio
is less sensitive to p than for p «b but the method
is nevertheless capable, with care, of yielding ac-
curate results.

The crossover point p = b is near (sine)/& = 0. 34
for Gd at 96 'K. Since we expect the conduction
electrons to manifest themselves in the form fac-
tor at small scattering angles we have tried to
evaluate accurately all corrections for the low-angle
reflections. These will be described in a section
to follow.

Additionally, since the unpolarized-beam method
is capable of high accuracy for just these low-angje
peaks, we have used it for evaluation of the mag-
netic-scattering amplitudes of reflections (~k0)
and (Okl) to sin8/X = 0. 51V. Several corrections
must be applied to the unpolarized-beam data to
obtain precise values of the magnetic-scattering
amplitude. These are discussed briefly below.

C. Unpolarized Beam

The integrated intensity in a Bragg reflection
(kkl) from an extinction-free ferromagnetic crystal
is given by

(2)
where K is a scale factor which contains the inci-
dent intensity Io, A~, is an absorption correction,

I G I, is the known geometrical structure factor
for the reflection (kkl), p and b are as in Eg. (1)
above, q is a quantity which depends on the angles
the magnetic moments make with the scattering
vector, and must be averaged over the domain dis-
tribution, and B is the Debye-Wailer temperature
factor. Our experiment consists of measuring the
integrated intensity of a series of Bragg reflections
at a low temperature where the magnetic reflections
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are well developed, and again at a temperature above
the Curie point, and in zero applied field, where the
nuclear scattering only appears in the Bragg reflec-
tions. To eliminate the domain population as an un-
known parameter the low -temperature measure-
ments were carried out in a vertical external field
of 12. 5 kOe, a field sufficiently strong to align all
moments in the vertical direction and hence to make
(q) =1 for all reflections. Under the conditions
cited the integrated intensities at the low and high
temperature become

I'„„=Jf'&~a~
~
G )a ~(&'+0') exp[- 2a'(sin'e')/&' j/sin29',

I„"„=E"Ag„~G ~~, b exp[-28"(sin 8 )/X j/sin28",

(&)
where the symbols L and H refer to quantities
characteristic of the low and high temperature, re-
spectively. The ratio of intensities at the two tem-
peratures, corrected for changes in scale factor,
absorption, Debye-Wailer factor, and Bragg angle
with temperature, yields the value of p/b at the
lower temperature. Measurements were made on
crystals 1 and 2 at neutron wavelengths of 1.07,
0. 77, and 0. 65 A at 96 'K the same temperature
at which the polarized-beam measurements were
made, and at 309'K.

The Debye-Wailer factor ratio was measured di-
rectly in a separate experiment. The specimen
was placed in a horizontal field at 96 K with which
the magnetic contributions to the (002), (004), and
(006) reflections could be extinguished, and the re-
sultant nuclear intensities were compared with
those measured at 309 K in zero field. In this ex-
periment, as well as in the primary one, care was
taken to measure the change in the incident inten-
sity, and hence in K, due to inhomogeneity of the
incident beam. (With thermal contraction of the
system on cooling the crystal was in a different
part of the beam at the two temperatures. )

Small calculated corrections were applied to the
intensity ratios to take into account thermal expan-
sion of the specimens (change in Bragg angle) and
changes in thermal and paramagnetic scattering
(change in effective absorption).

Finally, it was observed that the very low-angle
reflections at 1.07 A appeared to be influenced by
extinction. Accordingly these data were excluded
from the final compilation. In the case of crystal
No. 2 the questionable reflections were measured
at a third wavelength of 0. 65 A. In every case
small extinction corrections based on the observed.
mosaic widths of the crystals were applied to the
data.

The results of these experiments will be pre-
sented and discussed, following a description of
the polarized-beam measurements to which we now
turn.

D. Polarized Beam

Equation (1), which relatesP/b totheflippingratio
8, must, in arealexperiment, be modified to take
account of imperfections in the operation of the in-
strument and of certain perturbing characteristics
of the sample. We describe these modifications
briefly here and give a more detailed treatment of
the general problem (diffraction of polarized neu-
trons by a specimen with extinction, spin-flip scat-
tering, and depolarization) in the Appendix. This
treatment is an extension of one given by Moon"
in his study of hexagonal cobalt.

We show in Table II some typical values of these
corrections for reflections for which p/b & 1, p/5
:-1, and p/b & 1. It may be noted that data taken
under widely different experimental conditions are
in good agreement after the corrections are made.

a. Instrumental imPerfections. The data are
subject to correction for imperfect incident polar-
ization, imperfect spin reversal, and half-wave-
length contamination. As shown in the Appendix,
the first two corrections can be assessed by means
of a double analyzer. Typically, values of Po
=0.992+0.004, Py=0. 996+0.004, and P, =0. 994
+0.001 were evaluated where Po, Pf, and P, refer,
respectively, to the efficiencies of the polarizer,
flipper, and analyzer. ' The influence of these im-
perfections on the values of p/b is shown in Table
II columns headed a(5, +5~) and b, (5~). The half-
wavelength correction is given under 6„.

b. Depolarization. By far the most trouble-
some sample property with which we had to deal
was the depolarization of the incident beam. It is
possible to measure the depolarization of the beam
on transmission through the sample, but unless the
source of the depolarization is known, its effect on
the Bragg reQections is difficult to assess accurate-
ly. We have assumed a uniform-volume depolari-
zation in order to make the necessary corrections,
although our treatment would also apply if the de-
polarization were a surface effect occurring equally
at the entrance and exit surfaces. On this model
a combination of the flipping ratio of the straight-
through beam with and without the sample in place
yields a value for a linear depolarization coefficient
with which the Bragg reflection data can be cor-
rected. The uncertainties in this correction are
most important in the vicinity of p/b = 1; it is in
just the range of scattering vectors for which this
is the case, however, that an assessment of the
validity of the depolarization correction can be
made. One may, by varying the temperature, ad-
just the value of p for such a reflection so that the
observed Qipping ratio goes through a maximum.
At this maximum value there is no extinction cor-
rection and I/R =5p+5y+5D, where 50, 5f, and
5~ represent departures from perfection in the in-
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TABLE II. Representative corrections to polarized-beam p/b values. The column headed by p/b (raw) was calculated
from Eq. (A28) by setting P„=P„'. The other columns were calculated as described in the Appendix. The final value is
not always equal to the sum of p/b (raw) plus all corrections because of the nonlinear nature of p/b as a function of P„.

Crystal A. (A) p/b (raw)

Reflection (010)

~(~, + ~,) ~(a,)

(sing)/Z= 0.1592 (p/b) = 1.731 +0.006

z(y' ) p/b (final)

No. of det. =13

1.07 1.824
0.85 1.836
0.77 1.813
l.07 1.942
0.77 1.827

—0.0183
—0.0392
—0.0305
—0.0614
—0.0291

0.0007
0.0016
0.0012
0.0029
0.0012

—0.0483
-0.0372
—0.0272
-0.0692
—0.0679

—0.0021
—0.0015
—0.0010
—0.0020
—0.0010

—0.0205
-0.0162
-0.0128
-0.0671
—0.0237

0.0001
0.0
0.0
0.0012
0.0001

1.736 ~0.015
1.743 + 0.017
1.743 +0.013
1.748 +0.025
1.707 +0.016

Reflection (022) (sin) 8/x = 0.3622 (p/5) = 0.929 a 0.017 No. of det. =7

1.07 0.775
0.77 0.741
0.77 0.781

0.0197 —0.0002
0.0810 —0.0009
0.0310 —0.0002

0.0791
0.0434
0.0832

0.0020
0.0007
0.0009

0.0020 0.0
0.0015 —0.0001
0.0010 0.0

0.902 +0.033
0.912 +0.052
0.940 +0.044

Reflection (040) (sin) g/X= 0.6369 (p/5) = 0.2548 +0.0011 No. of det. =4

1.07 0.2465
0.77 0.2498
1.07 0.2433

0.0022 —0.0003
0.0026 -0.0003
0.0051 —0.0007

0.0039
0.0023
0.0057

0.0003
0.0001
0.0003

0.0005
0.0002
0.0011

0.0
0.0
0.0

0. 2531+0.0030
0, 2547 + 0.0018
0.2548 +0.0019

cident-beam polarization, flipping efficiency, and
depolarization. From separate experiments 50
+5& is known, and thus the depolarization coefficient
can be established. In all cases studied the two
methods gave approximately the same results.
Consequently we have some confidence that we
have adequately handled the depolarization prob-
lem. Corrections to p/5 due to depolarization are
given under h(p~) in Table II.

Inspection of Eq. (1) shows that p/b is a double-
valued function of the Gipping ratio, and it is not al-
ways obvious which choice to make. This is partic-
ularly true near p/5=1. The same experiments in
which the temperature was varied to establish a
depolarization correction also served to remove
this ambiguity. If p/b & 1, the flipping ratio will
increase when the temperature is decreased, while
the opposite is true for P/b & 1.

SamPle misalignment. The two samples on
which most of the experiments were done were not
perfectly oriented in the sense that the figure axes
were not exactly parallel to the c and a directions,
respectively. In the course of the experiments it
was sometimes necessary to tilt the magnet (and
the sample) about the horizontal rotation axis in
order to put the scattering vector into the plane of
the counter. In most cases the angle of tilt re-
quired was 2 or 3, butfor a few reflections angles
as great as 8 were necessary. The magnetization,
therefore, was not always normal to the scattering
vector, and this results in a number of troublesome
but not serious corrections.

The major effect of the misalignment is that the
magnitude of the magnetic-interaction vector q
is not exactly unity. The scattering cross sections
are functions of q, but they are readily calculated

and this effect has been included in the raw p/g
values listed in Table II. A secondary effect is
that the spin-flip scattering is nonzero for q+1.
This modifies the extinction correction slightly.
The correction for spin-flip scattering is listed in
Table II as b,(r' )

d. Extinction. As in the case of the unpolarized-
beam experiments, measurements were made under
conditions for which secondary extinction was ex-
pected to be small, and the importance of extinc-
tion was judged from measurements made at several
wavelengths. Calculated corrections based on the
measured mosaic spread parameters were applied.
The conventional expressions were modified slight-
ly because of the misalignment of the sample. These
corrections appear in Table II under b,Ex.

e. Simultaneous reflections. As shown by Moon
and Shull'~ these effects will be small for pillar-
shaped crystals with low extinction. While we have
not performed azimuthal scans to search for simul-
taneous reflections, the reproducibility of our re-
sults for different wavelengths, different but equiv-
alent reflections, and different crystals, gives us
confidence that the data are largely free of errors
from this source.

f. Magnetic anisotropy and depolarization. Al-
though the magnetic anisotropy of gadolinium is
small compared to the other heavy rare earths, it
is nevertheless not negligible. At 96 K the easy
direction of magnetization makes an angle of ap-
proximately 45' with the c axis. In the app ied
field of 12.5 kOe, and with the pillar-shaped speci-
mens, the magnetization is rigorously parallel to
the field direction only for fields directed along the
c axis, in the basal plane, or at 45 to the c axis.
For other directions the beam polarization and the
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sets of measurements with the unpolarized beam.
The error bars shown have been calculated from
a statistical analysis of the errors in the individual
determinations, and from estimated errors in the
several corrections to the data.

The results of the two types of measurements are
generally in good agreement and it is signficant
that they pass smoothly through the crossover re-
gion. This implies that the polarized-beam data in
this region of (sin8)/X have been properly corrected.

B. High-Temperature Polarized-Beam Measurements
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FIG. 1. Comparison of polarized- and unpolarized-
beam data for the small-angle region in 6 Gd. Error
bars represent the result of statistical analysis of indi-
vidual determinations and a best estimate of possible
systematic errors. The agreement of the two sets of
data for reflections for which p = b indicates that correc-
tions to the polarized-beam data have been adequately
handled.

magnetic-interaction vector q become complicated
functions of the direction of the application of the
field, and corrections similar to those discussed
above under sample misalignment would have to
be made. In fact, since the samples were not per-
fectly oriented, the magnetization was not strictly
parallel to the field direction but the departures
were very small, and the effects were included in
the sample-misalignment corrections as an error
in the setting of the magnet.

III. RESULTS

A. Comparison of Polarized- and Unpolarized-Beam Data

Results of the unpolarized-beam experiments,
expressed as values of p/b, are shown in Fig. 1
by the filled circles. Polarized-beam data for the
same reflections are represented by open points.
The two sets of 18 ratios given are averages of
measurements made of equivalent reflections with
different crystals at different wavelengths. The
data presented in Fig. 1 represent 146 individual
determinations with the polarized beam, and 86

Implicit in our data-reductionprocedures is the
assumption that the Debye-Wailer factors for
nuclear and magnetic scattering are equal. Al-
though this is a reasonable assumption, we have
tried to test it directly by higher-temperature
measurements. It was of interest as well to study
the temperature dependence, if any, of the form
factor.

Measurements of the flipping ratios of reflections
(hko) to (sin8)/1=0. 84 and reflections (Okl) to
(sin8)/X=O. 76 were made at 313'K in an applied
field of 15.5 kOe, under which conditions an aver-
age atomic moment of 1.32'~ was induced. The
magnetic-scattering amplitudes were thus very
much smaller than those measured at 96 K and the
corrections applied to the observed data, including
that for depolarization, were very much less im-
portant than for those over the same values of
(sin8)/X at the lower temperature.

The results of these measurements as shown in
Fig. 2 are presented as ratios of the magnetic-
scattering amplitudes at the two temperatures. In
each case, within experimental error, the ratio is
constant and equal to the ratio of the saturation
magnetization at 96' to the induced magnetization
at 313 'K. That the constant ratios for the two
sets of reflections differ slightly may be due to
slightly different magnetic fields, or to slightly
different equilibrium temperatures achieved in the
two experiments. The discrepancy in any case
amounts to a maximum of 2. 7%.

These results have three important implications.
If it be assumed that the form factor is temperature
dependent, and that the Debye-Wailer factors for
magnetic and nuclear scattering, B, and J3„, are
different, the ratio of magnetic-scattering ampli-
tudes will have the form

s' '8
exp'+ (B„—8„), expI —(B, —8,")

PH &e

(4)
where the symbols L and H designate the low- and
high-temperature value, respectively, of the quan-
tities to which they are attached.

The first exponential term is the nuclear-tem-
perature-factor ratio which, as indicated in an
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the experimental results indicate that the correc-
tion procedures used in treating the low-tempera-
ture polarized-beam data are correct.

Our observations are consistent with the reason-
able assumption that the conduction-electron polar-
ization is proportional to the average z component
of the localized 4f spin, even above the Curie point
when an external field is used to induce a net mo-
ment. This is in apparent contradiction with the
high-temperature susceptibility data which indi-
cate Curie-Weiss behavior with an effective mo-
ment equal to that expected for an S=+3 ion. How-

ever, it should be noted that our high temperature
of 313 'K is still well below the region of Curie-
Weiss behavior of the susceptibility. At this tem-
perature there are strong short-range order cor-
relations, so the sample is not in a real paramag-
netic state. It will be interesting to repeat our
measurements at significantly higher temperature.

FIG. 2. Comparison of magnetic-scattering amplitudes
measured at a high and a low temperature. The lower
part of the figure shows that the ratio of p~/pH for the
(hk0) reflections is constant, within experimental errors
for all values of (sino)/X. In the upper part of the figure
the ratio is shown to be constant for (Okl) reflections.
That the two constants differ slightly is due, probably, to
a small temperature or field difference in the two mea-
surements. The curve shown is the variation of the nu-
clear Debye-Wailer temperature-factor ratio. As ex-
plained in the text, this must be compensated for by tem-
perature variation of the electronic Debye-Wailer —factor
ratio or by a temperature variation of the form factor or
both. It is concluded that the form factor is independent
of temperature, and that the nuclear and electronic Debye-
Waller factors are equal.

earlier section, was measured directly. This
function, multiplied by the moment ratio, is shown

as the dotted curve in the upper part of Fig. 2. In
order to generate the experimental result that P~/
p„= p, ~/p, „for all reflections, the product (fr/f„)
&&(exp[—(B, —8,")(sin 8)/X j I must be equal to the
inverse of the nuclear-temperature-factor ratio.

If the mean-square amplitude for the electronic
displacement is significantly different than that for
nuclear displacement, the form-factor ratio would
have to depart substantially from unity at large
scattering angles in order to fit the experiment.

This is contrary, however, to our expectation
that the localized 4f form factor would remain un-

changed; any changes in spin density we would
anticipate to occur in the conduction-electron con-
tribution, since the 4f band in metallic Gd is well
below the Fermi surface. Accordingly we con-
clude that (i) the nuclear and electronic Debye-
Waller factors are equal, and (ii) the form factor
of gadolinium is the same at 96 K as it is at 313

Conversely, if these conclusions be accepted,

C. Measurement of b for ' Gd

In order to convert the measured P/b ratios to
magnetic-scattering amplitudes it is necessary to
measure the nuclear-scattering amplitude indepen-
dently. For that purpose neutron-diffraction stud-
ies of the highly enriched oxide Gd~03. were carried
out at room temperature.

Gd203 crystallizes in the bixbyite structure in
which there are two sets of nonequivalent metal
atom positions, one of which involves a single pa-
rameter u. The oxygen ions are in general posi-
tions of the space group Ia3-T~, and three posi-
tional parameters are required. One of the strong
low-angle reflections, (222), is independent of the
oxygen parameters and insensitive to the exact val-
ue of the metal positional parameter.

The intensity of this reflection was measured
once in a polarization-analysis experiment and
twice with an unpolarized beam from which the
scattering amplitude of '~Gd was obtained by com-
parison with silicon as a standard scatterer. More
complete patterns were obtained wite the polarized
beam (in the course of experiments to be described
below designed to measure the paramagnetic-scat-
tering cross section of Gd'~) and with an unpolarized
beam. These data were calibrated internally
against the scattering amplitude of oxygen. The
final result for the scattering amplitude of '~Gd
was b=(0. 915+0.005)&&10 '2 cm. This is within
experimental error of the value b=0. 91+0.04 ob-
tained in an earlier experiment on material of
lower isotopic purity' (98. 7% '60Gd). From a
least-squares fitting of the Inore complete diffrac-
tion data the following values for the parameters
were evaluated: u= —0.0304+ 0.0007, x= 0. 3913
+0.0013, y=0. 1512+0.0012, @=0.3811+0.0015.
These parameters are close to those obtained in
diffraction experiments on other rare-earth ox-
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TABLE III. Observed values of p/b and pf for i60Gd. TABLE III (Continled)

hk
010
002
011
012
110
013
020
021
004

(sine)/X
0.1592
0.1725
0.1811
0.2348
0.2758
0.3038
0.3185
0.3299
0.3450

p/b
1.7250
1.6020
1.5300
1.3390
1.1990
1.1070
1.0900
1.0240
0.9830

Error
0.0060
0.0100
0.0110
0.0140
0.0120
0.0180
0.0100
0.0190
0.0190

pf
5. 854
5.437
5.193
4. 544
4.069
3.757
3.699
3.475
3.336

Error
0.0203
0.0339
0.0373
0.0475
0.0407
0.0611
0.0339
0.0644
0.0645

hk )

70 620
71 710
72 540
73 630
74 080

1.1482
1.2021
1.2436
1.2638
1.2738

—0.0400
—0.0401
—0.0425
—0.0430
—0.0425

(sine)/z . P/b Error

0.0018
0.0010
0.0024
0.0021
0.0041

—0. 1358
—0.1361

0e 1442
-0.1459
-0.1442

Error

0.0061
0.0034
0.0081
0.0071
0.0139

10
11
12
13
14
15
16
17
18
19

20
21
22
23
24
25
26
27
28
29

30
31
32
33
34
35
36
37
38
39

40
41
42
43
44
45
46
47
48
49

50
51
52
53
54
55
56
57
58
59

60
61
62
63
64
65
66
67
68
69

022
0 14
023
210
015
024
030
032
006
025
016
220
310
034
0 26
017
0 40
041
042
0 27
043
008
3 20
036
018
044
410
028
045
019
050
051
052
046
330
053
029
038
420
0010

054
0110
047
510
055
048
056
060
0 1 11
430
062
0310
520
057
0211
0012
610
440
530
070

0.3622
0.3800
0.4103
0.4213
0.4597
0.4695
0.4777
0.5079
0.5175
0.5361

0.5414
0.5516
0.5741
0.5892
0.6076
0.6244
0.6369
0.6427
0.6598
0.6826

Q. 6875
0.6900
0.6940
0.7043
0.7081
0.7243
0.7297
0.7600
0.7692
0.7924

0.7961
O. 8008
0.8146
0.8206
0.8274
0.8371
0.8390
0.8392
0.8425
0.8625

0.8677
0.8771
0.8776
0.8865
0.9054
0.9390
0.9495
0.9554
0.9620
0.9685

0.9708
0.9860
0.9944
0.9992
1,0008
1.0350
1.0441
1.1031
1.1146
1.1146

0.9300
0.8320
0.7540
0.7070
0.6190
0. 6100
0.5640
0.5030
0.4900
0.4320

0.4142
0.3978
0. 3575
0. 3277
0. 3009
0. 2734
0, 2548
0. 2476
0. 2220
0.1941

0. 1922
0. 1847
0. 1768
0. 1728
0.1663
0.1484
0.1407
0.1159
0. 1089
0.0873

0.0816
0.0819
0.0756
0.0590
0.0624
0.0569
0.0563
0.0553
0.0583
0.0422

0.0453
0.0374
0.0353
0.0313
0.0202
0.0068
0.0047
0.0008

—0.0017
-0.0015
—0.0023
—0.0051
—0.0121
-0.0087
—0.0141
—0.0222
-0.0188
—0.0325
—0.0346
—0.0270

0.0170
0.0090
0.0090
0.0150
0.0050
0.0030
0.0030
0.0030
0.0030
0.0016

O. 0017
0.0012
0.0020
0.0014
0.0024
0.0011
0.0012
0.0028
0.0015
0.0007

0.0015
0.0021
0.0045
0.0010
0.0014
0.0014
0.0008
0.0011
0.0010
0.0014

0.0014
0.0025
0.0027
0.0031
0.0012
0.0019
0.0023
0.0019
0.0020
0.0028

0.0030
0.0024
0.0022
0.0011
0.0030
0.0029
0.0037
0.0011
0.0035
0.0016

0.0014
0.0029
0.0005
0.0016
0.0044
0.0019
0.0022
0.0011
0.0022
0.0013

3.156
2. 824
2. 559
2. 399
2. 101
2. 070
1.914
1.707
1.663
l. 466

1.406
l.350
l. 213
1.112
1.021
0.9279
0.8648
0.8403
Q. 7534
0.6588

0.6523
0.6269
0.6000
0.5865
0.5644
Q. 5037
0.4775
0.3933
0.3696
0.2963

0.2769
0.2780
0.2566
Q. 2002
0.2118
Q. 1931
0.1911
0.1877
0.1978
O. 1432

0.1537
0. 1269
0.1198
0.1062
0.0686
0.0231
0.0160
0.0027

—0.0057
—0.0051
—0.0078
-0.0173
—Q. 0411
—0.0295
—0.0479
—0.0753
—0, 0638
-0.1103
—0.1174
—0.0916

0.0577
0.0305
0.0277
0.0509
0.0170
0.0102
0.0102
0.0102
0.0102
0.0054

0.0058
0.0041
0.0068
0.0048
0.0081
0.0037
0.0041
0.0095
0.0051
0.0024

0.0051
0.0071
0.0153
0.0034
0.0047
0.0048
0.0027
0.0037
0.0034
0.0047

0.0048
0.0085
0.0092
0.0105
0.0041
0.0064
0.0078
0.0065
0.0068
0.0095

0.0102
0.0081
0.0075
0.0037
0.0102
0.0099
Q. 0126
0.0037
0.0114
O. QO51

Q. 0047
0.0098
0.0017
0.0054
0.0149
0.0064
O. QQV5

O. OQ3V

0.0074
0.0044

and differ on]y slightly from those derived
from data on bixbyite itself. 3

D. Summary of Measurements

The corrected values of p/b measured at 96'K
for all (hk0) reflections to (sin8)/X = 1.275 and for
nearly all (Okl) reflections to (sin8)/X = 1.04 are
summarized in Table III. (For subsequent Fourier
syntheses, interpolated values for the several un-
measured reflections were used. ) In general, each
entry represents an average over equivalent re-
flections of measurements on different crystals at
different neutron wavelengths. In the low-angle
region the data shown are weighted averages of the
results of the unpolarized- and polarized-beam
data. In all, 350 distinct flipping-ratio measure-
ments were made. As indicated above, 172 dis-
tinct integrated intensities were measured in the
unpolarized-beam experiments.

The errors indicated in the table are based on a
statistical analysis of the individual measurements,
and on estimated errors in the corrections applied.
The procedure is indicated in the Appendix. Also
shown in the table are values of the product pf ob-
tained from the P/b ratios with the experimentally
determined value for the nuclear-scattering ampli-
tude of '~Gd.

In Fig. 3 the results of the measurements are
compared with a theoretical curve based on the
Blume-Freeman-Watson form factor. 4 This
curve is normalized to a 4f moment of 6. 42ps. At
the experimental temperature of 96 K and applied
field of 12.5 kOe the total magnetic moment is
6. 92p~. i On the assumption that the 4f contribu-
tion has the same temperature dependence as the
total moment, a value of 6. 42 ps for the 4f mo-
ment is expected.

Several points are immediately obvious from this
figure. It is clear that the experimental data fall
consistently below the calculated curve, except for
the first two points, and thus that the free-ion
wave functions of Freeman and Watson ' are more
contracted than actual 4f wave functions in the
metal. Inspection of the data, particularly at the
higher angles where there is a high density of re-
flections, shows that they fall smoothly with in-
creasing scattering angle. This implies that the
spin distribution is spherically symmetric, as might



1004 MOON, KOE HL E R, CABLE, AND CHILD

96 K

— 2.0

C:
O

4

E
3

O
CQ

&2

~ h/r0

o Okg

CULATION Gd

og

—1.5

0.5

FIG. 3. Magnetic-scattering ampli-
tudes of Gd at 96 'K. The weighted-
average values of p/b, right-hand
scale, and of pf, left-hand scale, for

&.0 ~ all observations are shown by open
or closed circles. The size of the
circle is a measure of its error. The
line is the calculation of the Gd'3 form
factor due to Blume, Freeman, and
Watson, normalized to 6.42p~, the
expected 4f moment at 96 K and in
12.5 koe.

~e ~ ~l o~

0 0.2 0.4 0.6
sin 8

0.8 1.0

be expected from S-state ions. As we shall see
presently, it is possible from a Fourier synthesis
to state that the 4f spin density departs from spheri-
cal symmetry by less than 1%. There is an abrupt
change in slope of the experimental data near
(sin&)/& =0. 18. This, we believe, is associated
with conduction-electron polarization.

We consider the further analysis of these data
and its implications with regard to the points just
mentioned in Sec. IV.

IV. ANALYSIS AND CONCLUSIONS

A. Separation of Local and Diffuse Spin Distributions

The data given in Table III can be used to make
projections of the moment density or, since we
are dealing with an S-state local moment, of the
unpaired spin density. It will be instructive to ex-
amine first profiles of the projected densities in
certain important directions in the crystal.

The projected density on the basal plane is given

p(r) =Q ~Q Q p' e ~4ko' ~

The double sum extends over all reciprocal-lattice
vectors in the basal plane, and A is the area of the
unit-cell projection. The structure amplitude is

~Q

+aao=~g (&f4ao 8

where the sum is over the position vectors of atoms
in the unit cell, and p, is the magnetic moment per
atom. A similar expression can be written for the

(Okl) data. It is convenient to choose a pseudo-
orthorhombic unit cell for the hexagonal close-
packed structure the dimensions of which are a,
v 3a, and c. In this cell the atoms are found at
(0 4) (0 3 4, ); (-'. , „4.); a,nd (-.', „-,').

In the upper part of Fig. 4, the projected density
on the basal plane is shown as a function of distance
from an atomic site along the line shown in the in-
sert. The solid line is the experimental total point
density. The resolution function is calculated with
a constant form factor for each reflection and scaled
to the total point density at z= 0.

On an expanded scale in the center of the figure
is shown the projected density away from the atom-
ic sites. To avoid complications from series-ter-
mination effects, and since the density in this region
is slowly varying, we have calculated a spherical
average density following the procedure given by
Moon. The radius of the averaging sphere is
0. 63 A. It will be noted that this average density
goes negative in the region between the projected
atomic sites. The midpoint, at 2. 1 A, corresponds
to the projection of a vacant C site in the usual
designation of stacking of A-, B-, and C-type
layers in forming close-packed structures. For
comparison we have calculated the corresponding
profiles for the localized 4f moment with the Wat-
son- Freeman-Blume form factor. Comparison
of the experimental and theoretical curves shows
again that the theoretical wave functions do not
adequately describe the spin distribution around
the atomic sites; away from the atoms, the calcu-
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electron density. As we have shown earlier, "the
separation of these two contributions may be made
in a logical manner. We repeat the argument here
briefly for completeness.

The total moment density pr(r) is considered to
consist of two parts p~(r) and pn(r), where pr, and

pD are the local and diffuse densities so that

p&(r) = p&(r)+ p&(r) .

The three functions are periodic with the period-
icity of the lattice; thus each may be represented
as a Fourier series

p, (r) = (1/ V) Z~ E q e ' &
'

(8)

0 0

~r

10

5

oc[

%./
0.5

0.2

-0.2

1.0 2.0 2.5

lated 4f moment density goes to zero as expected.
We shall return to the curve labeled "experimental
local" presently.

In the lower half of the figure similar profiles,
calculated with the (Okl) data, are shown along ihe
line indicated. In between atoms the average den-
sity oscillates with small amplitude around zero.
The width of the first maximum of the resolution
function is somewhat greater in this case, because
the (Okl) data do not go as far out in (sin8)/X as do
the (kk0).

The projection profiles shown in Fig. 4 suggest
that the unpaired spin density sensed by the neu-
tron consists of a localized 4f part, and a diffuse
part, most probably due to unpaired conduction-

FIG. 4. Projected-moment densities. In the upper
part of the figure the total moment density projected onto
the basal plane is shown, by the solid line, as a function
of distance from the atomic site. The dotted line repre-
sents the corresponding projection of the local-moment
density (see text). The dashed line is calculated using
the Blume-Freeman-Watson form factor for Gd'3 and the
same set of (hk0) reflections. The resolution function is
normalized to the total moment density at &=0. In the
insert are shown the projections of the spherically aver-
aged total, local, and theoretical densities away from the
atomic sites. The radius of the averaging sphere is
0.63 A. The lower part of the figure displays correspond-
ing projections on the plane normal to a hexagonal a axis.
The radius of the averaging sphere is 0.44 A.

where V is the volume of the unit cell, n runs over
the subscripts T, L, and D, and j over all recip-
rocal-lattice points. The measurements give the
set of coefficients I'~, which in our case correspond
to reflections (kk0) and (Okl). If pD(r) is a slowly
varying function of r only the first few terms ia
the Fourier series describing this function will
be nonzero.

Inspection of Fig. 5, in which are plotted the
first few Fourier coefficients, suggests that only
the first three reQections and the zero intercept
(the total moment) are affected by p~.

Qn the assumption that ED, =O for (sin8)/&
&0. 235, Er, =En, over this r.ange of (sin8)/X. Then
we require of p~(r) that it be sufficiently localized
that it go to zero between neighboring sites, and
we adjust the scattering amplitudes for the first
three reQections so that, when combined with the
rest of the data in a Fourier series, aconstantvalue
of p~ (r) is obtained in the region between atoms.
This constant value should be zero if the (000)
structure factor is based on 6 42' /a. st moand if
p~(r) describes the 4f electrons.

For the basal-plane projection, the (010)„,„
amplitude is the only adjustable parameter, and,
as we have shown before, excellent local-moment
behavior is obtained if the (010) amplitude is re-
duced to fall on the linearly extrapolated portion
of the curve of Fig. 5. Thus with the observed
value of (iaaf)s,s = 5. 854 the spherically averaged
spin density in the basal-plane projection is as
shown in the solid line in the top part of Fig. 4.
With (pf)„s= 5.400, the "local" value, the dashed
curve labeled "Exp. local." is obtained and it is
zero, within experimental error, over a fairly
large area near the midpoint of the two atoms.
Similar results have been obtained with the (Okl)
data by reducing the (002) and (011)amplitudes
to the linear extrapolation of Fig. 4.

The contribution of the diffuse component to the
scattering amplitude is given by the difference be-
tween the experimental results and those describing
the local component. This difference, about which
we shall have more to say presently, is shown in
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FIG. 5. Magnetic-scat-
tering amplitudes for low-
angle reflections in 6 Gd.
Experimental errors are
indicated by the size of the
data-point circles. The
insert shows scattering am-
plitudes for the diffuse con-
tribution.
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the insert to Fig. 5.
We believe that the local form factor describes

the 4f electrons for a number of reasons. Most
convincing is the result of the local-moment calcu-
lationt7 which gives the integral of moment density
above the flat region between atoms as (6.44 + 0. 16)
p,~, in excellent agreement with the expected value
of 6.42 ps for the 4f electrons. The change in the
local-moment calculation when (pf)ptp is changed
from the observed value to the "local" value is
shown in Fig. 6. The dashed line indicates the ex-
pected 4f moment.

In addition, appeal may be made to some general
properties of calculated ionic 4f form factors. For
small values of (sin8)/X atomic form factors have
the functional forIn

f= 1 —A[(sins8)/Xs] .
For higher values of (sin8)/X the curvature is posi-
tive and there is an intermediate region where the
curve is nearly linear. From a knowledge of the
slope in the linear region, the zero intercept in
the quadratic region, and the condition that the
functions and their first derivatives be equal at the
boundary, one may calculate the value of (sin8)/&
corresponding to this boundary. With the experi-
mental data for Gd, it is found that the linear re-
gion of Fig. 5 should extend to (sin8)/A. = 0. 143,
which is well inside the first Bragg peak. Thus the
local form factor which we have extracted from the
observations has behavior consistent with that of
theoretical 4f form factors in the small-angle region.
We therefore take the experimental local form fac-
tor as representing the unpaired 4f spin distribu-
tion in Gd.

A contour map of the basal-plane projection of
the spherically averaged total density is shown in
the upper part of Fig. 7; the corresponding
spherically averaged local density is shown in the
bottom part of the figure. The density around each
atomic site is circular and the diffuse density be-
tween sites is negative within the shaded contours.
When the value of (pf)p„ is dropped to its "local

10

g
E

D 8
"""i~ jl~ (P.f)o(o=5.854

I ~ ~ ~ ~ ~
Ii

I—
z'
UJ 7
0
g 6

O
5

0 0.) 0.2 0.3

FIG. 6. Change in the local-moment calculation when

(SPO&o is changed to the local value. The calculation is
based on a basal-plane projection, along the line (~, 2, z),
of the spherically averaged density. The radius of the
averaging sphere, in angstroms, is 6.35. Below 5 =0.06,
the errors bars are an estimate of series-termination er-
rors. Above this value of 6 the series-termination errors
are smaller than the experimental errors and the error
bars indicate the experimental standard deviation. The
points shown are an average of the values of the local-
moment summation as new terms are added beyond (sin&)/A,
=1.04 A. ~. See Ref. 27 for details. The dashed line in-
dicates the expected 4f moment based on the magnetization
measurement.
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On moving away from the atomic sites the polariza-
tion reverses, reaching a maximum of (-0. 03V

0, 004)ps jAa (- 4. 4 kg). Negative polarization
is found in slowly undulating columns parallel to
the c axis, which run through the C sites of the
hexagonal close-packed sequence of layers. An

attempt to represent this in a three-dimensional
diagram is shown in Fig. 10. The surfaces shown
are the zero-level contours of the diffuse distribu-
tion. Inside the figures so defined is found the nega-
tive polarization.

B. 4f Form Factor and 4f Spin Density

0.8—

0.6—

0.4—

0.2—

0 0.2 0.4 0.6 0.8 1.0

FIG. 7. Contour maps of spherically averaged pro-
jected total and local-moment density. The projection is
on the basal plane, and the radius of the averaging sphere
is 0.63 A. The numbers on the contour lines are in units
of pz/A . Between atomic sites in the total moment pro-
jection the moment density goes negative; in the local-
moment projection it is zero within experimental error
over a considerable distance.

Having made a reasonable separation of the local
and diffuse magnetic-moment densities, we turn
now to a consideration of the 4f form factor and
the 4f charge density. The first determinations of
rare-earth form factors were carried out with the
paramagnetic oxides, ' and the theory, given first
by Trammell, utilized screened hydrogenic radial
wave functions, in which the screening constant
was an adjustable parameter. Subsequently Free-
man and Watson" generated nonrelativistic Har-
tree-Fock 4f wave functions for the trivalent rare-
earth ions, and, with these, Blume, Freeman, and
Watson calculated rare-earth form factors. With-
in the rather large experimental error of the data
extant, good agreement with the theory was found.

For ionic gadolinium the theoretical form factor
has the simple form

value, " the density map in the lower part of the fig-
ure results. The first few contours about each
site are circular and the density farthest from
every atom in the projection is zero, within the
experimental error.

Departures fromm spherical symmetry would be
expected to appear as adifference in density along
the c axis and in the basal plane. A projection of
the local point density based on (Okl) data is shown
in Fig. 8. This projection shows that the 4f distri-
bution about the atomic sites is spherical in the
sense that the semiaxes of the contours parallel to
the c axis and normal to c are equal, towithinabout

Consider next the diffuse component of the experi-
mental scattering amplitude which is shown in the
insert of Fig. 5. The coefficients of all terms in
the series for pn(r) are zero except for the first
three terms and for the zero intercept. By defini-
tion this constitutes a complete set of data and the
point density of the diffuse component can be cal-
culated throughout the unit cell. Contour maps
giving the diffuse magnetization in several principal
planes are shown in Fig. 9. At each atomic site
there is a maximum density of magnitude (0.056
+ 0. 012)p, s/Aa (6. 6 kg) parallel to the local moment

0.4

0.3

0.2

0
0

I

0.1
I

0.2 0.3

FIG. 8. Contour map of local-moment point density
projected on the plane normal to a. The first four con-
tours are circular to within 1%. Numbers on the contour
lines are in units of ps/A .



1008 MOON, KOEHLE R, CABLE, AND CHILD

j"(k) = &j,(k) ) = f U~(r) j,(k~) dr, (10)

where U~(~) is the Hartree-Fock radial orbital for
the 4f electron and jp(kr) is the spherical Bessel
function of order zero. The Freeman-Watson wave
functions have the convenient analytical form

with

U4f r &'=1 . (12)

The values of the parameters as given by Freeman

1.0

0.8

0.6

0.4

FIG. 10. Distribution of the diffuse component of un-
paired spin density in the unit cell. The lines show the
zero contour; inside the figures so formed the density is
negative.
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FIG. 9. Contour maps of diffuse component of mag-
netic-moment density. The shaded areas have negative
density values. The numbers on the contour lines are
multiples of 0.01 Ps/~ or multiples of 1.16 kg. Atomic
sites are indicated by black circles. Errors vary from
one-half contour interval to about a full interval.

and Watson are listed in the first columns of Table
IV. The corresponding form factor is, as we have
shown in Fig. 1, in poor agreement with our data
for the metal.

We have thought it worthwhile to attempt to find
an analytical expression for the form factor which
would be useful for computational purposes. We
have made a least-squares fit of the experimental
local form factor to wave functions of the Freeman-
Watson type. A similar treatment for Tb and Tm
has been described by Brun, Lander, and Felcher. 3

From Eqs. (10) and (11) it can be shown that

(jp) =E C, C)F(s, + e~, k),

where

7 5 2+ 3 4 8

F(a k) =40320a
—Va k +Va k —ak

(a'+ k')'

and k is in inverse atomic units. Our most success-
ful fit was obtained by varying c» c4, z» and z4.
The results are shown in Fig. 11 and in the second
column of Table IV. The change in c2 and c3 from
the Watson-Freeman values is a result of renormal-
izing the form factor obtain in the fitting pro-
cedure. It must be emphasized that the wave func-
tion which results from this procedure has no
fundamental significance but is a convenient analyti-
cal representation of our experimental results.

The fit is further illustrated, and on an expanded
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TABLE IV. Parameters which define the Hartree-Fock
wave functions. The unprimed coefficients define the
Watson-Freeman 4f orbitals. After least-squares fitting
and normalization, the primed coefficients result.

S

12.554
7.046
4. 697
2. 578

1923.815 1
329.667 24
43.274 827
1.504746 9

Zli

ll. 677
7.046
4.697
2. 602

C'

1431.8303
297. 2024
39.0132
2.3577

scale, in Fig. 12 for the data obtained at high val-
ues of (sin8)/&. The smooth behavior of the ob-
servations indicates spherical symmetry.

The most obvious reason for the failure of the
free-ion Hartree-Fock wave functions to accurately
describe the metallic 4f electrons is the presence
of the conduction electrons in the metallic case.
These should provide additional screening of the
nuclear charge and allow the 4f electrons to move
in slightly larger orbits. When the conduction elec-
trons are near the nucleus, they should behave very
much as 6s or 5d electrons in the free atom. Ac-
cordingly, Davis and Cooke3' have undertaken a
series of atomic calculations to test the sensitivity
of the 4f wave functions to the presence of electrons
in the 5d or 6s levels. They used a relativistic
Hartree-Fock-Slater program with Wigner -Seitz
normalization. 3 In going from the neutral atom
(4f'5d' 6s ) to the + 3 ion (4j'), they found a negligi-
ble change in the 4f form factor. This is a strong
indication that screening by the conduction elec-

trons is not important in determining the radial
wave functions in the metal. Davis and Cooke found
that their wave functions were quite sensitive to the
magnitude of the Slater exchange coefficient, and
by varying this coefficient they were able to obtain
a 4f form factor in rather good agreement with our
experimental results. Their calculation for the
neutral atom with an exchange coefficient equal to
0.8 times the usual Slater approximation is shown
as the dashed line in Fig. 11. It is in excellent
agreement with our "local" experimental results at
low values of (sin8)/A. and is slightly high at larger
values of (sin8)/&. Because of the arbitrary selec-
tion of the exchange parameter, this calculation
does not qualify as a theoretical prediction. How-
ever, the value of the exchange parameter is rea-
sonable, and the agreement suggests that relativ-
istic effects may be important for the 4f wave func-
tions. The excellent agreement with the experimen-
tal points in the low-angle region is a further indi-
cation that our separation of local and diffuse form
factors results in a local form factor of reasonable
shape, that is, a shape similar to that expected
for the 4f electrons.

The radial charge or spin density as calculated
by Davis and Cooke is compared with the Watson
and Freeman calculation in Fig. 13. The corre-
sponding curve for our least-squares-fitted wave
function is so close to the Davis-Cooke result that
it is not shown. The maximum in the density func-
tion is only slightly different in the three cases,
but the Watson-Freeman charge density is signifi-
cantly contracted compared to the other two cases.
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FIG. 11. Comparison of the 4f
experimental form factor with calcu-
lation. The curve labeled Davis-
Cooke is based on Hartree-Fock-
Slater wave functions. The curve
labeled least-squares fit was ob-
tained by varying parameters in the
Freeman-Watson 4f orbitals.
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A measure of the degree of difference between the
three density functions is given by calculating
(x ). For the Watson-Freeman function, (x~)
=0.785; for Davis-Cooke, (r')=0. 97; and for the
Least-squares fit, (r ') = 0. 942.

Another source of unpaired spin density which
has thus far been ignored is the core polarization.
This is a major contributor to the effective field
seen by the nuclei, but has a very small influence
on our result. Watson and Freeman have pub-
lished a radial spin density for the core electrons
in Gd'3 based on a spin-polarized Hartree-Fock
calculation. Unfortunately, the 5p contribution was
not included. We have obtained a complete set of
analytic spin-polarized wave functions for Eu' from
Watson in order to estimate the importance of the
core polarization in our results. Based on these
wave functions we calculate a form factor which
starts at zero, rises to a maximum of 0.05 (in pf
units) at (sine)/X=0. 2, and remains small and neg-
ative beyond (sine)/X=0. 4. It is typically about
1% of our observed pf values and is comparable to
our experimental error. Watson and Freeman33
have emphasized the negative polarization of the
core electrons at large distances. The Eu' cal-
culation indicates that this outer negative core
polarization is a very minor contributor to our dif-
fuse negative density. At a distance of 2. 1 A the
core polarization amounts to —3. 3x 10 4g~/As,
while the maximum in our diffuse density is —3.7
x10 2p~/A'. On the basis of the Eu' calculation,
we feel justified in ignoring the core polarization.

Interband mixing has been invoked to account for
negative conduction-band polarization in some rare-
earth compounds ' and for a negative g shift in
gadolinium. We know there is an interaction be-

tween the 4f and conduction electrons, andtheques-
tion of whether this interaction can mix sufficient
conduction-electron character into the 4f wave func-
tions to significantly alter their shape is very in-
teresting. It seems unlikely that this is the case
because the 4f band lies at least 6 eV below the
Fermi surface. '

C. Conduction-Electron Form Factor and Spin Density

Theoretical calculations have not yet reached a
stage where realistic conduction-electron form
factors exist, so that a comparison of the data shown

I.5

EEMAN
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FIG. 13. Radial charge densities calculated from the
Freeman-Watson and Davis-Cooke wave functions. The
corresponding curve for the least-squares wave functions
is indistinguishable from the Davis-Cooke curve on the
scale of this figure. Comparison shows the Freeman-
Watson wave functions to be more contracted than those
in the metal.
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in the insert of Fig. 5 or of the unpaired spin den-
sity maps with theoretical predictions is not yet pos-
sible. The measured diffuse component shown in
Fig. 5 is not what is expected for 5d or 6s electrons
in atomic Gd, nor does it correspond to the spin
polarization produced in a free-electron gas by the
Ruderman-Kittel-Kasuya-Yosida (RKKY) interac-
tion. However, the diffuse component is definitely
long range and oscillatory, and these are proper-
ties which are universally attributed to conduction
electrons in the rare-earth metals.

D. Ionic Form Factor

The paramagnetic-scattering cross section for
Gd' in Gd~03 has been measured" with a sample
of 98. V% isotopic enrichment. Since a contami-
nant of just 1% '57Gd is worth 1000 b at 70 meV, the
absorption cross section of this specimen was ap-
preciable. Moreover, in the conventional experi-
ment the paramagnetic scattering cross section
cannot be measured with high accuracy except at
very small scattering angles because of the diffi-
culty in resolving the background from overlapping
nuclear reflections superimposed on it.

In the course of this study we have repeated the
experiment with a less-absorbing sample, and with
the polarization-analysis technique. The experi-
ment is so designed that the polarization of the in-
cident beam is maintained parallel to the scattering
vector. A diffraction pattern of the polycrystalline
specimen is recorded with the flipper off and with
the Qipper on. In the former case, only those
neutrons which are scattered without spin flip are
passed by the polarization-sensitive analyzer and

detected by the counter. With the flipper on, only
those processes which produce a spin flip on scat-
tering produce detectable neutrons. With the iso-
topically pure sample (except for small and calcu-
lable background effects) the coherent nuclear scat-
tering alone is detected with the flipper off; the
paramagnetic scattering alone is detected with the
Qipper on. A typical set of data is shown in Fig.
14. It is to be noted that useful data for the pa-
ramagnetic-scattering cross section are obtained
even under the Bragg peaks. A clean separation,
therefore, of the magnetic scattering from the nu-
clear scattering can be achieved. Very small cor-
rections to the spin-flip data were calculated to
correct for multiple scattering and instrumental
imperfections.

Since the ordering temperature for Gd20~ is be-
low 4. 2'K, '9 we expect the room-temperature pa-
ramagnetic scattering to be very closely elastic
with no short-range order. The data of Fig. 14
were converted to absolute cross sections by com-
parison with a silicon-powder pattern. The pa-
ramagnetic cross section is given by

2 22
(14)

The main conclusions of this set of measure-
ments may be summarized as follows:

(i) The total spin density of metallic Gd can be

2000

1 500

C
E
O

iA I000
0

C

500

FLIPPER OFF

C
E

500
C0

C

FLIPPER ON

e e ~ ~~~e o . a~ WePP~+~gTee+ e

~ oehIg ~~
BKG

0 )0 4020 30
SCATTERING ANGLE (deg )

Gd203 Polarization Analysis Pattern

FIG. 14. Polarization-analysis pattern of Gd203.
With the flipper off only coherent nuclear scattering is
detected; with the flipper on, only paramagnetic scatter-
ing is detected. In a conventional experiment both types
of scattering would be seen and the resulting pattern would

be the sum of the two shown.

We obtained the form factor with no adjustable pa-
rameters by taking S=~ .

The oxide form factor is compared with the local
metallic form factor in Fig. 15. There is a sig-
nificant difference between the two experimental
form factors, indicating that the oxide spin density is
more contracted than the metallic 4fdensity. The ox-
ide form factor is seen to be in good agreement
with the Blume- Freeman-Watson calculation ex-
cept at very small scattering angles.

We have no satisfactory explanation for the dif-
ference between the two observed form factors.
The most obvious physical difference is the pres-
ence of conduction electrons in the metallic case,
but the Davis-Cooke calculations tell us that the 4f
spin density is insensitive to these electrons. Rela-
tivistic effects should be equally important in the
two cases. We are left with the conclusion that the
crystalline environment affects the 4f spin density
in one or both of these cases in ways that are still
to be determined.

V. SUMMARY
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separated in a logical manner into a local part and
a diffuse part.

(ii) The diffuse part is long range and oscillatory,
which are properties generally attributed to conduc-
tion-electron polarization. At the atomic sites this
spin polarization is parallel to that of the local con-
tribution.

(iii) The local part of the spin density is not in
good agreement with nonrelativistic Hartree-Fock
wave functions for the 4f electrons. The agree-
ment is much better with a relativistic Hartree-
Fock-Slater calculation using a reasonable value
for the Slater-exchange coefficient.

(iv) The shape of the total spin density is the
same within experimental error at 96 and 313 'K.
This is consistent with the assumption that the mag-
nitude of the conduction-electron spin polarization
is proportional to the average value of the z com-
ponent of the local moment. 'We do not yet conclude
that this assumption is good at all temperatures.

(v) The metallic local form factor is different
than the paramagnetic form factor of Gd~03. The
results indicate that the 4f electrons in the oxide
are more compact than in the metal. Accepting the
theoretical conclusion of Davis and Cooke that
screening by conduction electrons has a very small
influence on the 4f wave functions, this difference
between the metal and oxide is not understood.
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APPENDIX

In this Appendix we describe the data-reduction
process, including the determination of experimen-
tal correction parameters and error analysis. A
method of interpreting the flipping ratio in the
presence of imperfect beam polarization, imper-
fect flipping, —,'& contamination and low secondary
extinction has been previously described. " We
wish to extend this treatment by also including cor-
rections for sample depolarization and spin-flip
scattering.

In the usual treatment of secondary extinction,
a solution is sought for a set of two linear differ-
ential equations describing the interchange of in-
tensity between the incident and reflected beams.
In a polarized-beam experiment, when depolari-
zation or spin-flip scattering may be important,
it is necessary to deal with a set of four differential
equations describing the change of intensity of both
spin components in both beam directions. We
characterize the sample by a set of linear reflec-
tivity coefficients x';,'. which give the probability
per unit path length for reflection from beam i to
beam j with change of spin state from s to s'. The
subscripts can take the values 0 or 1 for incident or
reflected beam directions, and the superscripts
can take the values + or —. In this notation, a de-
polarization process in the incident beam would be
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characterized by zoo.
We consider a crystal in the shape of a flat plate

which is large compared to the incident-beam cross
section, with the reflected beam in transmission
geometry. The following differential equations de-
scribe the change in power (neutrons/sec) in the
various beams as they traverse a crystal layer of
thickness dh at depth x below the surface:

S

dx

—r',
& y, N, —r',

&
. y. N''; —g y N';, (Al)

where N'; is the power in spin state s of beam i, y;
is the reciprocal of the absolute value of the direc-
tion cosine of beam i relative to the normal to the
crystal surface, and p., is the linear absorption co-

efficientt.

We wish to solve the set of four coupled equations
given by Eq. (Al) subject to the boundary conditions
N,'(0) =N, (0) =0. The experiments were always per-
formed under conditions of low extinction, low de-
polarization, and low absorption, so we will seek
an approximate solution which is valid in the limit
r,'; l, «1 and p,,E, «1, where I, is the path length of
beam i. If T is the crystal thickness, l, =y, T. We
follow the procedure of Moon and Shull, '7 obtaining
N~(T) and Nq(T) as Taylor-series expansions about
the point x=0, keeping terms up to the second or-
der. In this experiment the detector is not polariza-
tion sensitive, so we are interested in the quantity
N, (T) =N,'(T)+N, (T). We assume that the scatter-
ing processes are reversible,

SS SS' SS
+op —Y]o

that the spin-flip scattering is independent of the
initial spin state,

(A2)

quite valid if there is spin-flip scattering. The
second square brackets enclose terms correcting
the extinction terms to properly account for the
spin-flip scattering, and finally there are correc-
tions for depolarization and absorption. Using the
definitions

r = ,' (r'—+r ), -

P„= (r' —r )/(r'+ r ),
No = No+No,

Pp = (¹p Np)/Np

Eq. (A5) may be written as

(AS)

(Ao)

(A10)

(A11)

N",(P', P„') = r"1 N" (1+P"P„) . (A13)

With the flipper off, the total reflected beam power
is given by

N"'= N, (P„P„)+N", (P"„P'„),

and with the flipper on, by

N- = N, ( P,P„P„)+ -N", (0, P„"),

(A14)

where use is made of the fact that a flipper tuned to
optimize the flipping efficiency at wavelength X will
depolarize the —,'X component. The observed flipping
ratio is given by

fl = N'"/N" . (A16)

We choose to calculate a related quantity

N, (Pp, P„)= rlpNp [1+PpP„—,'r(lp—+l,) (1+2PpP„+P„)

+ r+ l yPpP„—g&lpPpPz —
p g~(lp+ . lg) (1 + PpP~)]

(A12)

The quantity r is the ref lectivity for an unpolarized
beam. For the —,'& component, we neglect the cor-
rection terms, so that

and that the depolarization is independent of the
beam direction and initial spin state,

P/
R+ 1 1V' +N" (A17)

&oo=&oo=&ss=&is= ~u ~

For the total reflected power, we obtain

Ng=lp[r'¹p+r ¹p——,
' [r' (lp+l, )Np+r (lp+l, )Np]

+ ,'[(r' —r )l,r ' —(¹p—Np)] —', [(r' —r )p~-l p

We wish to obtain an expression for P„ in terms of
P„'. Performing the indicated substitutions and
solving for P„, we obtain

P„=P„[1+2(5p+ 5z) + 5&(P„' —1)+ 5„

+ (Np Np)] — '

p, (lp + l, )(r 'Np+ r ¹p)}', (A5)
where

+ —', r(lp+ l, ) (1 —P„' )- li r' + p„lp], (A18)

where

and

x'= r"+ r'

(Av)

5p= p(1 —Pp),

5~ ——p (1 —P~)

(A19)

(A20)

(A21)
The first two terms in Eq. (A5) give the uncorrected
reflected power. The terms inside the first square
brackets give an extinction correction which is not

In obtaining Eq. (A18), we have retained only the
first-order correction terms. Although Eq. (A18)
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has been derived for the case where the reflected
beam is in transmission geometry, it can be shown
that the same equation applies to the case of reflec-
tion geometry in the thin-crystal limit. This is the
basic equation used in correcting the data. The
terms in 5p, 5&, and 5„arise from instrumental
imperfections, while the last three terms correct
for extinction, spin-flip scattering, and depolariza-
tion within the sample.

In the evaluation of the ref lectivities, we assume
the crystal has a Gaussian mosaic distribution func-
tion and we evaluate the peak ref lectivity. The re-
flectivities are given by

~"= G(b +pq')',
= G(b —pq )

r' =y '= Gp'q'(I —q'),

where

G=[(2p)' q] '& N F~/sin28 .

(A22)

(A28)

(A24)

(A25)

Here A is the wavelength, N is the number of unit
cells per unit volume, F~ is the geometric struc-
ture factor, 28 is the scattering angle, and g is the
mosaic distribution parameter. The quantity q' is
the square of the angle between the magnetization
vector and the scattering vector, and is readily cal-
culated from the orientation of the magnetic field.
In our experiments q = 1, so that the spin-flip scat-
tering was always very small. The total reflec-
tivity which enters in the extinction correction
term is given by

r=G(f'+p' )q.

Finally, we have that

2bpq
g bP+p2 3 p

(A26)

(A2V)

from which the desired ratio of magnetic to nuclear
amplitudes may be obtained:

(A28)

Let us turn now to the determination of the vari-
ous parameters which enter the correction terms
of Eq. (A18). The determination of the beam polar-
ization and flipping efficiency can be achieved by
making separate measurements of the "shim ratio"
and flipping ratio with an analyzing crystal at the
test position. M However, we note from Eq. (A18)
that it is the combination (&p+ 6q) which is the most
important instrumental correction. These correc-
tions are appreciable when P„'=1 (p/5 = 1), but in
this case the term 6&(P„' —1) becomes very small.
We have, therefore, not attempted to make accurate
measurements of 5&, but have concentrated on mea-
suring (6p+6~). The customary technique is to mea-

sure the flipping ratio using an analyzer at the test
position. The inverse flipping ratio is given by

1 1 —PoPgP~
+5g+ 6 (A29)

6~ =2(6p+6~) + 2(6p+6f) . (A81)

The scale of the —,'~ correction is set by the fac-
tor Np/Np in Eq. (A21), which is the ratio of inci-
dent intensities in the —,~ and ~ components. This
ratio was determined by measuring the integrated
intensity for the same reflection from the same
crystal for both wavelength components. At X

=1.07 A this ratio was 0.0088. From the work
of Nathans and Paoletti, PP we obtain Pp =0. 58. The
factor 2/r was calculated using Eqs. (A25) and
(A26), and approximate values of P"„were calculated
assuming the validity of the free-ion form factor.

The extinction and spin-flip scattering correc-
tions depend on the mosaic width parameter g, which
was determined by measuring the width of the rock-
ing curve using a sharp Ge crystal with matched d
spacing as a monochromator. The value of g de-
termined in this manner may not be the proper
value for insertion in the reQectivity calculation
if the mosaic distribution shows variations within
the volume of the crystal. In addition, by evaluating
the mosaic distribution at its peak value, we are
really assuming that the instrumental resolution
is narrow compared to the mosaic distribution.
This is not a particularly good assumption. There-
fore, we should not expect the extinction correction
to be more than a rough approximation, which is
adequate if the correction is sufficiently small. Be-

where P„=1 —25„ is a measure of the polarizing
efficiency of the analyzer. The difficulty in this
technique is that 5~ is usually not known and the
assumption is frequently made that 5„=6p. We
have avoided this difficulty by using two analyzing
crystals with the second analyzer set to give Bragg
reflection of the reflected beam off the first analy-
zer. This results in a nearly perfect analyzing
system. If 6„ for one crystal is about 10, then
the corresponding number for th. e double analyzer
will be about 10 '. The inverse flipping ratio for
the double analyzer is

1 1 —PoPgP~, —PoPsP~2+ Px (P&2
p+&z ~R 1+Poly+ PpPg2+ Pz]Pg2

(A80)

Taking care to sample the same part of the beam
that is incident on the test crystal, we have used this
double-analyzer technique to determine (bp+6z) at
the various wavelengths used in these experiments.
Flipping ratios as high as 430 were measured in
this way. In evaluating the third term of Eq. (A18),
we took advantage of the insensitivity of the final
result to this term and used
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cause of the approximate nature of the extinction
and spin-flip-scattering corrections, no attempt
was made to accurately calculate the effective path
lengths of the incident and reflected beams. An

average path length for a particular crystal was
used for all reflections with an error assigned
which was large enough to include both the shortest
and longest possible path lengths.

As discussed in the main text, we used two tech-
niques to measure the sample depolarization. In
the polarization transmission measurement, the
change in Gipping ratio of an analyzing crystal is
observed when the sample is inserted before the
analyzer. The difference in the inverse Gipping
ratio is

1 1
R R

--2PDlo ~

in out
(A82)

This experiment is rather difficult to perform with

very small crystals mounted in a cryostat, because
the beam must be reduced in size so that all of the
neutrons pass through the test crystal. In the other
method of measuring depolarization, we make an
analyzer out of the test crystal itself by varying the
temperature until p/5 =1. The difficulty is that the
depolarization measurement is made at the wrong
temperature. To compare with the polarization
transmission results, we assumed that the depolar-
ization had the same temperature dependence as
the magnetization. The dependence of the incident-
beam path length on the scattering angle was taken
into account in evaluating the depolarization cor-
rection term in Eq. (A18).

The difficulty in determining errors in the final
value of p/b has been discussed by Kendrick ef al. 40

We have followed a scheme similar to theirs. We
rewrite Eq. (A18) as

where the C, stand for the six correction terms.
The error in P„was calculated as

AP„= (AP„+Z; b.C() (A84)

~p/b = ,'[H(P„+ ~P-„) H(P„~P—„)] . (A88)

The number of independent measurements using
different wavelengths, different crystals, or dif-
ferent, but equivalent, reflections varied from 1
to 16. In general, the calculated errors gave a
good measure of the spread in observed p/b values.

The entire data-reduction process was performed
by a computer program. In addition to the final
P/b value and associated error, the importance of
each of the correction terms was displayed by cal-
culating the quantities

A; ='H(P„'+ C;) —H(P„') . (A88)

The individual hC, were based on errors in the
parameters discussed in the preceding paragraphs.
Some of these errors are statistical but some are
uncertainties expressing our ignorance. The error
in P„ is definitely statistical. Each of the 350 flip-
ping-ratio measurements is the mean of 20 identical
experiments with counting times optimized to result
in the lowest statistical error in the ratio. The
standard deviation from this mean was calculated
by computing the root-mean-square deviation of
the 20 observations and comparing with the standard
deviation computed from the total number of counts
recorded, assuming Poisson statistics. These two
standard-deviation computations were always in
excellent agreement. If the function on the right-
hand side of Eq. (A28) is defined as H(P„), then the
error in p/5 was computed as

P„=P„'+ C, , (A88)
It is these quantities which are shown in Table II.
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The scattering half-thickness for electrons has been experimentally determined to be = 0.25

pg/cm (= 13' carbon) for 1169-eV electrons and = 0.21 pg/cm (=10 A carbon) for 920-eV
electrons. The corresponding mass-scattering coefficients are 2. 75 + 0. 19 and 3.32 + 0.37
cm2/pg. Other useful and related attenuation parameters are defined and calculated. These
results were obtained from measurements of the attenuation by thin carbon films (6-60 A)

of monoenergetic photoelectrons originating from gold substrates irradiated with Mg X~ x rays,
and also from measurements of the concomitant increase in carbon photoelectron intensity.
Scattering of electrons in the energy range about 1 keV is greater than has generally been in-
dicated.

INTRODUCTION

The attenuation of low-energy electrons (=1000
eV) has become increasingly important because of

the growing use of high-resolution x-ray photo-
electron spectroscopy for investigations in solid-
state physics and chemistry. ' %hile it is clear
that x-ray photoelectron spectroscopy yields in-


