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A scaling theory of the critical region is developed for systems with a pair potential v(r) that
falls off like a power of r, the distance between particles, when x is large. The development,
which leads to the same relations among critical exponents that weak-scaling theory predicts in
the case of short-range forces, is associated with an appropriate generalization of Kadanoff's
cell-site equations.

It is not clear that Kadanoff's derivation ' of his
cell-function-site -function scaling-theory relations
is applicable to systems with long-range potentials
that fall off as some power of the distance x between
particles when z- ~. This adds an extra degree
of difficulty to the task of evaluating his approach
when it is used to predict the critical-exponent
relations in systems with long-range potentials.
The difficulty is vexing for two reasons. First,
real fluids are thought to have just such potentials.
Second, models with such potentials are among the
very few systems for which interesting results have
been obtained by means other' ' than scaling-theory
or series-extrapolation techniques. It is therefore
desirable to have scaling-theory results appropriate
to such systems at hand for comparison, especially
since the series-extrapolation results for long-
range potentials are as yet so meager.

In this paper we develop a scaling theory of the
critical region for systems with pair potentials of
the form

v(r)- —Aj~" as ~- ~ .
Here A & 0, d is dimensionality, and 0 & 0. The re-
sulting theory has the same critical-exponent re-
lations as the weak-scaling theory that we have al-
ready developed for short-range forces. In fact,
it is the same theory, with the same extra critical
exponent 0 & 1 that characterizes our earlier modi-
fication of scaling-theory results. The cell-site

scaling equations that we associate with our theory
prove to be a natural generalization of Kadanoff's
equations and, moreover, are as appropriate to
short-range as to long-range potentials. They ap-
pear to be identical to the cell-site equations re-
cently proposed by Snider when the s of Eq. (14)
is identified with d.

In the case of short-range v(r), we found it un-
necessary to follow Kadanoff in order to develop
the weak-scaling relations that we have discussed
elsewhere. We obtained them instead by using
Widom's approach' of combining an assumption
of thermodynamic homogeneity with the argument
that to an appreciable extent density fluctuations
manifest themselves in the form of microdomains
of conjugate phase. The sole difference between
our development and that of Widom lies in our esti-
mate of the order of magnitude of the characteris-
tic size of these microdomains. Widom puts it at
$', where $ = v is the fundamental correlation.
length in the problem (i.e. , the largest among the
various lengths that can legitimately lay claim to
the name of correlation length), while we judge it
to be $ "in general, with 8 & 1, and with 0 a non-
increasing function of d. We have given else-
where ' the rationale for combining the results of
this assumption with those scaling relations that
do not explicitly involve d, namely, those that fol-
low from thermodynamic homogeneity plus those
that follow from the relation
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Kr=) (2)

1 for (y„/d &-,'
~oz=

o /(d o„) for o„—/d& ~ .

Here

o = min[a, 2] (6)

for v(r) satisfying (1), and o„=2 for short-ranged
v(r) for which no o exists. [Such v(r) can always-
be thought of as being defined by (1) with a = ~ for
the purposes of this paper. ]

Bo far, we have simply assumed that an appro-

Here Kr is the isothermal compressibility (suscep-
tibility, in magnetic language) and q can be defined
by the assumption

E,(r)-1/~" '",
where F(r) can be taken to be either the density-
density correlation function [the F (r) of our previous
papers] or the spin-spin correlation function (s,s&)
—(s, ) (s&), and the subscript c refers to the crit-
ical value.

For the case of v(r) given by (1), it is instructive
to begin by following the same line of thought that
we have previously pursued for short-range poten-
tials. A priori, there is no less reason for believ-
ing that thermodynamic homogeneity will be satis-
fied when v(r) is given by (1) than when v(r) is of
short range, and all available evidence indicates
that such homogeneity can be expected for long-
range as well as short-range v(r). In particular
we have in mind the exact results for the spherical
model (SM) when (1) is satisfied, as well as all
known van der Waals-like results' for systems
that have a potential of the form

v(r) = vo(r) + limr"f(rr),
y~ Q

where f(r) is well behaved and & 0, and vo(r) is
short ranged. Likewise, within experimental un-
certainty, the behavior of real fluids also appears
to be consistent with thermodynamic homogeneity.

The arguments concerning the manifestation of
density fluctuation that lead to 0 & 1 rather than 8 = 1
also seem as sensible when v(r) is given by (1) as
when v(r) is of short range. In fact, the heuristic
argument given in Ref. 6 in support of the conclu-
sion that 61 is a nonincreasing function of d with
8 & 1 for large enough d can equally well be used to
conclude that 8 is a nondecreasing function of g for
fixed d with 0&1 for small enough 0. From the
more detailed plausibility argument of Ref. 8, we
further anticipate that 8 is no larger than its Orn-
stein-Zernike (OZ) value ' ' (i. e. , its spherical-
model values'~) for a given d, which is found to be
[through Eq. (10) below]

priate g exists in the case of v(r) given by (1); there
remains the problem of precisely defining this $.
When (1) is satisfied, lim[lnE(r) ]/tas'r ~, which
is often used to define —$

~ in the short-range case,
can be expected to be zero, and when 0 & 2, the
quantity [ fr F(r) d rj fE(r) d r ]~~, which also pro-
vides a popular definition of g, cannot be expected
to exist. However, suitable definitions do exist;
for example,

g', "= fE(r)dr (6)

can be used, as can"

]l=[f
I
~I"E(r)dr/fF(r)dr]"' (7)

then $z will be independent of p over its permissible
range, and we shall have g~= $2= $. Alternatively,
we could consider F (k), the Fourier transform of
E(r). If there exists a v such that F (k) is homoge-
neous in k and w for k-0, ~-0, then (6) and (7)
can again be expected to yield $&= $z= $. Even if
additional correlation lengths of the form A = g~,
8 & 1, are present in the structure of E(r), as we

believe, "we would not expect them to show up in
the dominant contribution to the pth moment of
F(r), p& o. Thus if v, r, e, and 6 —1 are defined
as usual by the relations z- t", K~- t" for m=0
and a - m', K r - m for t= 0 [where t= (T —T,)/T,
and m=( I p —p, I jp,)], we still expect

(2-q)v=r, (2 —g)&=6 —1.
Taken together with the result of our fluctuation
argument,

2= (d —2+q)&8, (10)

and the relations that follow from thermodynamic
homogeneity, such as (in standard notation)

P=r/(6 —I), o. = o", r=r',

2P+ r = 2 —o.'~ (if 2P+ r 4 2),
we have a full set of weak-sealing relations among
the most common exponents used in describing
fluid in the bulk. One simple way to relate these
to previously derived "strong" scaling laws is to
introduce q by means of the relation

d —q = 8d+ (I —8)(2 -q) . (12)

Then weak-scaling relations follow from the strong
upon replacement of d by d —q, which can be seen
from (12) to be an "effective dimension" that ap-

with o & 2p+ O. As long as the dominant contribution
to the right-hand sides of (6) and (7) can be assumed
to come from an F(r) of the form

(6)

where

f(0) = const 0 0,
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years as a linear combination of the actual d and
2 -g, looking like d for 8 = 1 and like 2 -g for
small 0.

Although we have succeeded in obtaining a set of
relations among exponents, it would be reassuring
to have an argument such that thermodynamic ho;-

mogeneity and the asymptotic homogeneity of
F(r, $) in r and g come out of, rather than go into,
our considerations. The Kadanoff cell-site ap-
proach ' provides such an argument. For sim-
plicity we use Kadanoff's magnetic language: h

is field and m is now magnetization per site.
Tildes refer to cell-system properties for cells
of length L. Assuming

h= L"h,

I;=L"I;,

we are led by the observation that the cell-system
description and site-system description describe
the same thermodynamics to the equation

G(h, t) =L'G(h, t), (14)

where in the Kadanoff picture s is identified with

d, and G(h, t) is (the singular part of) the Gibbs
free energy per site. The function C(h, t, L) dis-
cussed below, will denote the Gibbs free energy
Per cel/, which is just L2G(h, t). Equation (14)
immediately implies thermodynamic homogeneity
in the sense of Widom, with

(x/s)(1-x/s) '= 5,

s/y = y+ 2P = y+ P (5+ 1),

s/y=2 —(2, (if s/yv2).

We note the great generality of this argument for
homogeneity. The restriction that h/h and t/t
should be powers of L, rather than any smooth
functions of L, is really unnecessary in order to
arrive at homogeneity, as Cooper has pointed out. "
Moreover, no reference whatsoever has been made
to the range of the interaction. The only way we
can imagine the range entering is via the s in (14),
but in that equation the role of L' is simply to de-
fine the volume of a cell, once we agree that G(h, t, L)
= G(h, t ).~2 However, even if we agree only to a
weaker statement C(h, t, L) = L~G(h, t), so that the s
in (14) can turn out to be different from d, one
would still have (11). Thus not only does the cell-
site scaling argument strongly support thermody-
namic homogeneity independent of potential range,
but the homogeneity assumption is seen to be weak-
er and more fundamental than the cell-site assump-
tions that lead to it.

Kadanoff also concludes that for the asymptotical-
ly dominant part of F, which one expects to depend
upon r only through I r ) = r, one has

F(r, h, t) = L"""F(r, h, t ),
where

(17a)

s, =L
gal

(18)

where i c n means that the sum runs over sites in
the cell n. As long as 0 «L/A «1 we would expect
to be able to approximate Z by

)2 ~~ g ( ( J) L-(2-2+8)s L Lgd

However, as soon as we wish to consider all L such
that 0 «L~ «1, we must measure L on a scale on

which g = (( is the unit of length. On this scale our
weak-scaling postulate tells us that 8 will no longer
be of the same order of magnitude as the (s)~ de-
fined above; it will have dropped quite precipitously
because clusters of mostly up or mostly down spin
that attain a diameter of $ are so exceedingly rare.
We write then

g(L) L-(d 2+q+/)/2-

where we are introducing f& 0 with f& 0 when 8 & 1,
and f= 0 when 8 = 1. If we could easily guess how

rare are clusters of diameter L for all L~ A at
given d and r/, we could give f=f(8, (7, d). Instead
we shall let f(8, r/, d) come out of our scaling
theory. 2 To do this we note that since m(h, t)
= —9G(h, t)/sh, if m(h, t) is defined as —BG(h, t)/Bh,
then

m(h, t)=L" m(h, t), (20)

whereas our definition of s implies

Here we argue otherwise. It is clear to us that
for low enough cr/d, it will be the value of o/d rath-
er than the scale of the cell length that will prin-
ciyally determine the asymptotic range of the cell-
cell correlations, compared to that of the site-site
correlations. Hence we consider the scale change

(17b)

where we might expect d/2 to be a function of g and
d only through o/d for small enough o/d, as long
as g itself is small enough compared to certain
numbers in the problem [such as the 2 in Eq. (5)]
that determine the a at which v(r) can be treated
as if it were truly short ranged. [We write the
power of L in (17b) as a ratio involving d for sub-
sequent notational convenience. ]

Our weak-scaling postulate that microdomains
of spin Quctuation are generated with a character-
istic volume of order A'- $" rather than ("enters
as follows: Letting s, = +1 be the site spin and s
the corresponding cell variable, also with values
+1, we consider the function Z(L) defined by
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(s ) =m(h, t),
and from this and (18) we conclude

m(h, t)=&m(T, t).

(21)

(22)

Taken together, (20) and (22) give 2- L" ~, and
comparison with (19) yields

x —d = —(d —2+&i+f)/2 .
From our weakened alternative to (16), given by
(3) plus the equation

F(r, h, t) = L~""F(r,h, t) (23)

along with (17b), we can get the scaling properties
of the dominant asymptotic contribution to F(r).
They imply

F(r, h, t) =L-'" '+"&t'F(-r/L~t', hI,*, tL') (24)

from which follows

Since L is a construct in the first place, D equal
to a power of L should do as well as L itself as a
cell length, and a priori we see no reason to
single out for special consideration the particular
D that happens to be associated with s = d.

To our mind, the notable aspect of the above
development is not that f& 0 can force a breakdown
of cell-site scaling, but that it can do it in such a
graceful way that one is left with essentially the
same simplicity of the cell-site transformations
that makes scaling theory so attractive to begin
with.

In the case of the spherical model, the x/d=X,
y/d=y, and sz/d= z that are given in terms of the
usual critical exponents by (25) and (26) and the 8
that is given by (10) can be immediately found,
sine& the critical exponents are known exactly. In
terms of a„/d= a * one has, in addition to (4),

d/zy= v, d/xz= ~/5 . (25) 3 for 0+& 2
1

—,'(a*+1) for a*& —,',
Equation (24) also implies (8), another relation
necessary to our weak-scaling theory, from which
we have (9). From relations (15), (9), and (25),
all other weak-scaling relations follow, with the
combination sz/d appearing as d —q, according to
(10) and (12),

2
1 for o
] 0+ for g+ )

2g+ 1f O

if g*& —,',
sz/d= d —q = 8d+ (1 —8)(2 —rt), (26)

showing that sz/d is playing the role of the "effec-
tive dimension" noted below (12), and L't' the role
of an "effective cell length. " The 8 also appears
in a comparison between the way F(r) and m scale.
We have

F(r, h, t) m(h, t)

F(r, h, t) m(T, t)

while in Kadanoff's theory the power on the right-
hand side is 2.

We note that if we measure or calculate the usual
exponents 5, g, etc. , for a system and find that
q+ 0, we have no way of telling whether it is s & d
or red that is responsible. This is consistent
with the absence of L in all our final results and
is worth considering further. Suppose for cells of
length L our weak-scaling equations (14), (24), (17b),
etc. , are satisfied with s= dandy 4d. We can intro-
duce new cells of length D= L~t' and we have
F(r, h, t) =D " F(r, h, t) with r= r/D (so that z=d),
h = hD", t = tD', wher'e x = c/6 and y = 1/v. We shall
also have G(Ti, t) =D'G(h, t) withs equaltotheoldz.
Thus the question of whether we choose to let s = d
and z 4 d or s & d and z = d is a matter of language.
Moreover, we see something else worth noting;
within the framework of the cell picture, the orig-
inal scaling formulation is artificially restrictive.

which imply that 5, y, p, n, dv, de, and (2-&7)/d are
all functions of d and a only through a /d for a & 2

and also that 5, y, Pn, dv, de, and q "stick" at their
nearest-neighbor (nn) values when a&a„. On the
basis of their study of the linear Ising chain, Nagle
and Bonner4 (NB) have suggested that for the Ising
model these same exponents might depend upon o.

and d again only through a/d as long as a & az(d),
sticking at their nn values for a & o»(d), where os(d)
is no longer 2 but depends (weakly) on d. It can
readily be seen that the NB conjecture is equivalent
to the assertion that x, y, and Z are functions of
o*, but with o* now given by

a~ = min[a/d, as(d)/dj.

A somewhat weaker version of this conjecture that
appears very natural within the context of our scal-
ing relations is that 7, y, and Z stick at the values
a», „(d), o», (d), and as, (d), respectively, but with

o&,„&o& „&0&„allowable. Regardless of the de-
tailed form of x, y, and Z, it seems clear that their
behavior for fixed d as o- ~ and their behavior for
fixed 0 as d- ~ are closely related, and one would
expect the same set of cell-site scaling laws to ap-
ply in both cases.

The author is indebted to J. F. Nagle and J. C.
Bonner for many helpful discussions concerning
this work.
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Activation Volumes of Carbon Diffusion in fcc Iron-Nickel Alloys
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The disaccommodation technique was used to determine the activation volume of carbon
diffusion, &V, in six fcc iron-nickel alloys. Measurements were made at temperatures rang-
ing from 68 to 90 'C and pressures up to 6 kbar on samples having a nickel content between
31 and 63 at. %. A maximum activation volume of 3.9 cm /mole was found at 34 at. % nickel.
The compositional dependence of QV is satisfactorily reproduced by a magnetic-energy contin-
uum model in which it is-assumed that the activation free energy of diffusion is essentially
ferromagnetic in origin.

I. INTRODUCTION

A thermally activated process is characterized
by an activation free energy zP. In the case of dif-
fusion, gp is the free energy difference between
the energy minimum and the saddle point in config-
urational space' of the crystal in which diffusion is
occurring. The pressure derivative of the activa-
tion free energy is the activation volume b V. Phys-
ically, the activation volume of interstitial diffusion
represents the change in volume of the crystal when

a mole of interstitial atoms simultaneously moves
from equilibrium sites to "activated'sites. "

In order to relate thermodynamic parameters of
lattice defects such as the activation volume to the
properties of the host crystal a continuum model
may be used. In a continuum model the defect is
viewed as a distortion of. the continuum which dis-
plays the properties of the crystal being considered.
For an estimate of the activation volume a strain-

energy continuum model has been used, in which
the free energy of activation is assumed to be es-
sentially a strain energy. On the basis of this as-
sumption, the activation volume of diffusion was
found to be

where y is the Griineisen parameter and z is the
compressibility of the host lattice. Within the lim-
itations of a continuum model, the activation vol-
umes calculated from Eq. (1) agree with the experi-
mental data except for carbon and nitrogen in iron,
which were also the only ferromagnetic systems
examined. This apparent discrepancy inspired the
investigation of the pressure dependence of the in-
terstitial diffusivity in the nickel-carbon, cobalt-
carbon, and iron-silicon-carbon systems, where
it was also found that the strain-energy model did
not estimate satisfactorily the experimentally de-


