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An experimental study of the organic charge-transfer salt N-methyl-phenazinium tetracyano-
quinodimethan (NMP- TCNQ) is presented. Magnetic-susceptibility, specific-heat, spin-
resonance, and conductivity measurements indicate a metallic state above 200'K with a con-
tinuous transition to a small-band-gap magnetic Mott insulator below 200'K. The ground-
state and lour-lying excitations indicate that this system can be quantitatively described in
terms of the one-dimensional Hubbard model with a transfer integral of 2. 1 xl0 2 eV and an
effective Coulomb interaction of 0.17 eV. These values are discussed in terms of the funda-
mental molecular physics of the TCNQ anion in the NMP-TCNQ crystal. It is concluded that
in addition to the Heitler-London correlation which reduces the interaction between two ex-
cess electrons on a TCNQ molecule, the NMP cation polarizability plays a significant role
in reducing the effective interaction. The transition to the metallic state is attributed to elec-
tron-hole correlations which become important when the number of excitations is large.
These correlations persist into the metallic state where the electronic system behaves as a
quasi-free-electron Fermi liquid as indicated by the unenhanced Pauli susceptibility and
simple transport properties. The low-temperature one-dimensional antiferromagnetic state
is studied using spin-resonance and specific-heat techniques. The linear temperature depen-
dence of the specific heat predicted for the one-dimensional antiferromagnet has been ob-
served. Electron-spin-resonance linewidth studies indicate motionally narrowed dipolar
widths with the correlation time determined by the Fermi velocity in the metallic state and
by exchange in the insulating state. The large fluctuations expected for a one-dimensional
"phase transition" show up as a maximum in the correlation time, which however never ex-
ceeds 10 '3 sec. The spin-lattice relaxation of the conduction electrons via phonons and
molecular vibrations in the metallic state has been observed. The results are consistent
with Elliot's theory in which T~" (~/g) 7'z, where' is the scattering time as determined
from the resistivity.

I. INTRODUCTION

The development of the one-electron band theory
in the 1930's was clearly the fundamental step to-
ward our present understanding of the solid state.
The success of this theory in explaining many of
the properties of solids is well known. However,
in 1949 Mott' first raised the very interesting ques-
tion of how one visualizes the transition from a col-
lection of isolated atoms with localized bound elec-
trons to a solid where the electronic-band wave
functions are spread over the entire crystal. Mott'
pointed out the crucial role of the electron-electron
Coulomb repulsion in this process. The essential
point of Mott's argument is contained in the follow-
ing discussion. Given a collection of well-sepa-
rated identical atoms each with a single electron out-
side a filled core (e. g. , Na, etc. ) in an expanded
regular lattice, the energy required to remove an
electron from a given site and place it elsewhere
in the crystal is given by

~=I-A,
where I is the ionization potential of the atom and
A is the electron affinity (i. e. , energy gained in

forming the singly negative ion). A one-electron
treatment of the atoms in question would of course
lead to ~ equal to zero. However, the existence
of electron-electron Coulomb repulsion on the atom
makes ~ large and positive. One thus identifies~ with the Coulomb interaction Uz between two
electrons in the outer atomic orbital in question.
The appropriate numbers for the hydrogen atom are
I=13.6 eV and A=O. 5 eVso that U0 =13 eV. Since
the outer orbits of al) atoms are approximately the
same size, we may take this number as typical. It
is precisely this Coulomb repulsion which keeps the
electrons localized and prevents them from wander-
ing about through the lattice in a band. Such locali-
zation, although advantageous insofar as the Cou-
lomb interaction is concerned, is energetically cost-
ly in that if the electrons were allowed to delocalize
into a band, the average one-electron energy would
be lowered by an amount of order 4 Wwhere Wis
the bandwidth arising from the one- electron attrac-
tive potentials of the nuclei plus filled cores of the
atoms in the solid. In a tight-binding theory, Wis
directly related to the transfer or hopping integral

~
g

= —f 9'y ( r) + 9'r (r) d 'r
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where H is the total Hamiltonian for the system and
where y~ (r) is a Wannier function which is localized
about the jth nucleus at R&. The basic competition
therefore is between the electron-electron Coulomb
repulsion energy which tends to localize electrons
and the band energy which tends to delocalize elec-
trons.

However, the bare Coulomb interaction has long
range; thus, for the electron transfer to occur,
the energy given by Eq. (1) should actually be re-
placed by

AE, qg =I—A —Up~

The result is that the creation of a subsequent ex-
citation is made easier by the existence of the pre-
viously excited pairs. Energetically this would
show up as a decrease in the magnitude of the energy
gap, a renormalization of the gap toward zero, at
which point the system is metallic. Doniach argues
that given N, thermally excited e-h pairs, an elec-
tron going through the crystal experiences a ran-
dom array of sites at which there is a hole. Averag-
ing over the hole positions, the electrons see an
average potential of AU(1 —N, /N)= AU(1 —n). Thus
the average energy is given by

= Up —Up~ = + U
~

H'p = (EU)n —2 (bU)n (4)

where Up represents the repulsion between two
electrons on the same site and Upg represents that
between two electrons on separated sites at Rp and

R&, respectively.
In Mott's original paper, he suggested that the

change from localized (insulator) to band (metal)
states would be catastrophic: a many-body phase
transition. He argued that if one begins to make
excitations of electron-hole pairs from the insulat-
ing ground state, the resulting free carriers can
effectively screen the Coulomb interaction between
other electrons, thus reducing the range of the in-
teraction, and he predicted the existence of a first-
order discontinuous phase transition. However, it
seems evident that such screening effects, although
important, can only be effective in reducing Up&

but can never significantly reduce the dominant on-
site interactions Up. Nevertheless, energetically
a transition from insulator to metal will result as
the atoms are brought closer together. There seem
to be two dominant effects: (i) As the lattice con-
stant is decreased the transfer integrals T~& will
increase in magnitude. The resulting increase in
bandwidth favors the metallic state. (ii) As the
lattice constant is decreased the near-neighbor
Coulomb interactions increase in magnitude (to-
ward U0) again favoring the metallic state. One
expects (i) to be the more important since the tails
of the localized wave functions will vary exponen-
tially with distance, while Up& should vary more as
d ' where d is the lattice constant; but both effects
must be taken into account.

Given a system with insulating ground state, one
can expect a transition from insulator to met-
al with increasing temperature. Neglecting for
the moment thermal-expansion effects, the argu-
ment is somewhat more subtle. Starting from zero
temperature one expects an ene'rgy gap for the ex-
citation of an electron-hole pair given approximate-
ly by Eq. (2). (The actual gap is reduced by finite
overlap as described below. ) However, having
made a few e-h pairs, the electrons and holes are
delocalized and free to move through the crystal.

and the temperature (excitation) dependent gap is
of the form

In Eq. (5), Ez(0) may differ from AU because of
finite overlap. Given Eq. (5) it is easy to see in a
qualitative sense how the gap might renormalize
with increasing temperature with an eventual transi-
tion to the metallic state. However, in addition to
these average effects one must certainly include
electron-hole correlations, particularly as the me-
tallic state is approached. The physical point in-
volved is the obvious tendency for electrons to
correlate to stay apart in orde~ to minimize the
effect of the Coulomb repulsion. Such correlations
give rise to the so-called "Coulomb hole" in the metal-
lic state. Coulomb correlations might well be ex-
pected to be the dominant effect in reducing the
effective ~U in the metallic state as well as in the
insulating regime at relatively high temperatures
where many excitations are present.

The nature of the proposed phase transition from
insulator to metal has been the subject of consider-
able speculation. Mott originally argued for a first-
order discontinuous transition, but in later papers
he suggested the possibility of second-order transi-
tion. Kohn' predicted a continuous change from
semimetal to insulator via a series of "nested"
transitions. The theoretical situation remains
somewhat unclear. Experimentally insulator- to-
metal transitions have been observed in a variety
of transition-metal oxides. ' In these cases the
transition is usually highly first order with the con-
ductivity changing by many orders of magnitude at
the critical temperature. (Continuous transitions
have also been observed; the case of SmB6 is a
prime example. )' However, the fact that large lat-
tice distortions are often involved as well as the
possibility of multiple bands playing a role makes
it difficult to say anything definitive in connection
with the ideal transition discussed above.

A detailed theoretical description of the Mott in-
sulating state and the M-I transition is not yet avail-
able. However, important progress has been made
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by Hubbard in an extensive series of papers. Hub-
bard has attempted to describe the relevant physics
in terms of the model Hamiltonian

where t represents the nearest-neighbor transfer
integral between %annier functions on neighboring
sites in the lattice, U represents the Coulomb re-
pulsion between two electrons on the same site,
and C;, C, , and n& are the creation, destruction,
and number operators for the localized Wannier
states in question. Transfer integrals other than
nearest neighbor are neglected. The Hubbard
Hamiltonian, representing the simplest model that
explicitly includes Coulomb repulsions, has been
studied extensively in connection with the M-I transi-
tion, metallic ferromagnetism, and the general
problem of Coulomb correlations in metals. ' Equa-
tion (6) explicitly neglects the long-range Coulomb
forces. However, one can perhaps view U in Eq.
(6) as an effective interaction representing the
Coulomb energy difference in making an excitation
as given in Eq. (3), and we shall in fact take this
point of view throughout this paper as discussed in
Secs. IIIand VI. Hubbard" has shown the existence
of a correlation energy gap in the excitation spec-
trum. Moreover, it is known that in the large Cou-
lomb-interaction limit, the ground state is an
antiferromagnetic insulator with exchange coupling
between neighboring sites of order 2t /U. 3 Vari-
ous workers have provided approximate treat-
ments of the problem that suggest a phase transi-
tion to a metallic state as a function of temperature
or pressure. However, the problem is far from
solved.

Exact solutions of the Hubbard model are avail-
able for T= 0 Kinthesomewhatsimplifiedcase of
a one-dimensional system. The solution was first
demonstrated by I ieb and Wu. "Ovchinnikov' '
was able to use their results to derive expressions
for the single-particle energy gap and the spin-
wave collective excitations. The direct relationship
of the spin-wave dispersion relation to the zero-
temperature susceptibility was pointed out by Taka-
hashi. ' These solutions and results are exact at
T= 0 K with respect to the model. Since the M-I
transition seems to be conceptually difficult and
since our understanding of these phenomena is so
crucial, it is clear that an experimental system
that approximates the one-dimensional Hubbard
model would be of fundamental value. Such an ex-
perimental study of a system showing a Mott transi-
tion as a function of temperature and appearing to
be an experimental realization of the one-dimen-
sional Hubbard model is presented in this paper.

The localization of electronic wave functions
from a single band by electron-electron interactions

is not the only means of achieving a metal-to-insu-
lator transition. Two other principal mechanisms
have been proposed. The first was originally put
forward by Peierls' and developed in detail by
Adler and Brooks. Peierls observed that a crys-
talline distortion would give rise to a lower symme-
try with the result that additional one-electron
band splittings would appear. If such splittings
were to result in an energy gap at the Fermi energy,
an insulating state would be obtained. This model
was developed by Adler and Brooks' who included
the lattice strain energy and worked out the thermo-
dynamics for a narrow band model. The principal
difference between the Mott insulator and the Adler-
Brooks insulator is that the former is magnetic
whereas the latter is a simple nonmagnetic state.
The distinction becomes less clear if one allows the
possibility of symmetry lowering because of an
antiferromagnetic (AF) ground state. ~' However,
if the insulating state were to arise from the AF
symmetry, the M-I transition would always accom-
pany the disordering of the magnetic system.

A second model was recently proposed and de-
veloped by Ramirez, Falicov, and Kimball. They
consider a system consisting of truly localized
(e. g. , 4f) states plus a band at slightly higher en-
ergy and show that under appropriate conditions a
metal-insulator transition will result. The impor-
tance of the spin entropy in the transition is empha-
sized in their model by associating the entropy
change with the fact that in the two-band model the
ionic configuration remaining after excitation of a
carrier has higher spin than that before the excita-
tion. As a result extra entropy is released thus
favoring the transition. The entropy change in the
case of the Hubbard model is less clear. However,
a disordering of the AF ground state increases the
entropy in the insulating phase and would appear
to tend to inhibit the transition. The comparison
which must be made is between the entropy in the
insulating phase, which includes both spin disorder
and single-particle excitations above the gap, and
the band entropy in the metallic phase. This will
be discussed in connection with experiment in Sec.
VII.

II. WHY ORGANIC SOLIDS

This paper is concerned with an experimental
study of an organic molecular solid. Such systems
appear to offer unique opportunities for studies of
phenomena that we traditionally associate with solid-
state physics. The fundamental breakthrough in
this ar ea was the discovery of organic donor-accep-
tor radical-ion charge-transfer salts. ~3 These
salts represent the experimental realization of novel
molecular compounds in which the ionization poten-
tial of the donor molecule ID is relatively small and
the electron affinity of the acceptor molecule A&
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is relatively large. The result is a charge-transfer
salt with unpaired electrons appearing on the acceptor
or donor, or on both. The existence. of unpaired elec-
trons in the highest occupied molecular orbitals allows
suchasystem to be potentially a magnetic insulator34

or a metal, "' depending on the crystal structure,
the strengths of the various interactions involved,
and the temperature. The most interesting systems
studied so far have been based on the acceptor mole-
cule tetracyanoquinodimethan (TCNQ). 2 The fas-
cinating molecular physics of this molecule will be
discussed in detail in Sec. III. Here we wish to
make some general comments on the use of organic
systems in studying ele"tronic phenomena in solids.

Given the existence of such char ge- transf er salts,
the organic molecular solids offer some unique
advantages. Since only the lowest unfilled m molec-
ular orbital (MO} of the acceptor is usually in-

volved, one can hope to deal with a single-band
system. This is to be contrasted with the presence
of multiple bands in transition-metal oxides where
M-I transitions have been extensively studied. The
multiple-band aspects of the problem, although
interesting, certainly do not lead to a simplification.

Another advantage results from the usual flat
planar structure of m molecular systems. Quite
often the crystal structures ' turn out to consist
of simple linear chains of molecules stacked face
to face. The resulting pseudo-one-dimensionality
of the electronic structure is an essential simpli-
fication as well as being of interest in its own right.
Moreover, since the typical radii of the z-electron
wave functions ( 2p, ) are quite small compared to
the observed intermolecular spacing, a tight-bind-
ing theory of the band structure should be adequate.

Use of organic molecules also provides means
for reducing electron-electron Coulomb repulsions
in solids. As mentioned above, a typical number
for the Coulomb repulsion on an atom is of order
13 eV. This energy follows directly from confine-
ment of the two interacting electrons in the region
of order of the Bohr radius. From this point of
view, molecules as fundamental units in a solid
are particularly attractive, for their larger size
makes possible a significant reduction of the effec-
tive Coulomb interactions. A further reduction of
the effective Coulomb repulsion results from in-
corporating into the lattice large highly polarizable
molecular cations which can in effect screen out
Coulomb fluctuations. These points will be dis-
cussed in detail in Sec. III. The over-all result
of the relatively weak intermolecular forces to-
gether with the small Coulomb interaction is the
achievement of systems with U and S'both of order
0. 1 eV (103 'K). Under such circumstances, it is
perhaps not surprising that relatively low tempera-
tures are sufficient to drive the system from insu-
lator to metal, etc. This is again to be contrasted

with the situation expected for elemental compounds
(e.g. , transition-metal oxides) where both band-
widths and Coulomb interactions are of the order
of a few eV. ' With such large fundamental inter-
actions it must be considered at best a fortuitous
accident that temperatures of order 10' 'K (0.01
eV) are sufficient to cause a major transition in
the electronic structure.

Finally, the flexibility of organic chemistry to-
ward producing molecules of desired structure and

properties is quite clear. What is needed is an
understanding of the molecular physics in sufficient
depth to allow the design of properties on the molec-
ular scale such that, when these molecules are put
together into a crystalline solid, the resulting
system will show solid-state properties of particu-
lar fundamental interest.

III. MOLECULAR PHYSICS OF TCNQ IN SOLID STATE

The TCNQ molecule is a closed-shell planar
quinoid molecu"ar having four highly electron-with-
drawing cyanide groups located at the terminal
methylene carbon atoms as shown in Fig. 1(a).
These characteristics account for its very large
electron affinity" and associated behavior of taking
one electron when placed in contact with virtually
any electron donor to form the open-shell TCNQ
monoanion radical. The single unpaired electron
on TCNQ occupies the lowest-energy empty n.

level and is expected to reside mainly localized on
the terminal dicyano methylene carbon groups
in order to take maximum advantage of the strong
electron affinity of the cyanides. This picture of
the electronic structure is confirmed by the theoret-
cial results of Lowitz, by the small hyperfine
coupling to the ring protons in solution studies, '
and by analysis of the x-ray bond lengths associated
with TCNQ

In the NMP-TCNQ salt, the positive charge re-
sides in the 0 structure of NMP primarily on the
C and N atoms involved in the dative bond between
the CH, ' group and the phenazine molecule [ see
Fig. 1(a}]. Thus the NMP cation is fully spin
paired and should play no essential role in the
physics of the NMP-TCNQ solid other than acting
as a highly polarizable cation site.

X-ray studies of NMP-TCNQ show a monoclinic
structure consisting of linear chains of TCNQ
anions stacked essentially face to face. A diagram
of the crystal structure is shown in Fig. 2. Simi-
lar parallel chains of NMP cations are found be-
tween TCNQ chains. The interplanar distance be-
tween TCNQ molecules within a given chain is 3. 26
0
A, whereas separation distances between TCNQ
chains measured normal to a given TCNQ chain
are 7.78 and 15.73 A. Thus one expects the elec-
tronic structure can be described as pseudo-one-
dimensional with maximum m-electron transfer
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FIG. 1. (a) Molecular structures of NMP and TCNO. (b) Reaction equation for TCNQ.

occurring along the TCNQ chain axis and nearly
zero transfer otherwise. This tendency toward one
dimensionality is enhanced by the directional na-
ture of the 2I', orbitals.

The energy required to transfer a single m elec-
tron in the solid from one TCNQ site to an adjacent
TCNQ site depends on the effective Coulomb re-
pulsion between the two odd electrons on the re-
sulting TCNQ dianion. The Coulomb repulsion
between two outer electrons on a single C atom is
about 10 eV. ~s However, on a TCNQ site the
characteristic separation distance can be greatly

increased. Analysis of the bond lengths in the
NMP-TCNQ x-ray structure shows the TCNQ anion

to be in the planar quinoid form (I) in agreement
with theoretical expectations and not the canonical

nonplanarbenzenoidform (I') as shown in Fig. 1(b).
We conclude that in the NMP-TCNQ salt, as well
as the free TCNQ ion, the excess charge density
of TCNQ resides primarily on the ends of the
molecule where the one-electron attraction is
greatest. In the event of an ionic fluctuation with
two excess electrons on a single TCNQ molecule,
there is a clear tendency for the two electrons to

FIG. 2. X-ray crystal structure of
NMP-TCNQ showing linear chains of
TCNQ" anions stacked face to face with
similar parallel chains of NMP cations
between TCNQ chains (from Fritchie,
Ref. 32).
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localize at opposite ends of the molecule and cor-
relate to stay apart in order to reduce their mutual
Coulomb repulsion (II). This correlated structure
may be schematically described by a generalized
~Heitler-London-type wave function

g = 2 W2 [ q „(1)ys (2) + p„(2) ps (1)],
where p& denotes the wave function in the region
of one dicyano methylene group (A) and ys denotes
the wave function at the opposite group (B). As a
result, when electron (1) is on group A, electron
(2} is on group B, and vice versa. The character-

0
istic distance now between electrons is 5. 5-7 A,
so that the estimated Coulomb repulsion is drasti-
cally reduced to 2. 0 —2. 5 eV. Allowing delocaliza-
tion into the ring raises this energy somewhat.
From semiempirical self-consistent-field molec-
ular-orbital (SCFMO) theory, the value of Uo has
been estimated as ' 3.5-3.9 eV. As in any self-
eonsistent-field method, however, SCFMO theory
probably underestimates the effect of electron
correlation. Thus we estimate Uo to be about 2. 5-
3.0 eV. The bare Coulomb repulsion U, between
adjacent TCNQ anions has been estimated as
3.0 eV also using SCFMO charge densities for
TCNQ . This too is probably somewhat of an over-
estimate for similar reasons. It seems likely, there-
fore, thatthe difference Up —Uy is ofthe order of
0. 5 —1.OeV. This value is confirmedbypolarized
optical-absorption spectra of K' TCNQ of Hiroma
et al, "who find the associated charge-transfer
band at 0. 9 eV.

However, in the NMP-TCNQ solid, the energy
involved in making the charge-transfer excitation
( Uo Uy) should be significantly reduced as a re-
sult of the presence of the highly polarizable NMP
cations in the nearby NMP chains. As pointed out

by LeBlanc ' this reduction is the result of induced
electric dipoles on the NMP molecules in response
to the electric fields resulting from the local charge
fluctuation. The reduction is expected to be rough-
ly by a factor of (1 —ot/r ') such that to a first ap-
proximation the effective interaction U& would be
given by

U~ —= (Uo —Ui) (1—n/r ) =(Uo —Ui)q

where n is the polarizability of NMP and x is the
nearest distance between NMP and TCNQ. Values
for x of about 5 A require polarizabilities of about
100 A3 to reduce ( Uo —U, ) appreciably. Values for
n of this order of magnitude for heterocyclic aro-
matic cations are not unreasonable. ' Thus U~

might easily be reduced to a value of the order 0. 1
eV in the NMP-TCNQ and related TCNQ salts con-
taining polarizable cations. This mechanism of
reducing U~ by cation polarizability is closely re-
lated to Little's indirect electron-electron interac-
tion via polarizable side chains. 3 The reduced in-

teraction introduced here can be thought of as aris-
ing from virtual excitons on the NMP chain, but
the basic idea is quite similar. We shall see thai
a sizable reduction factor g is implied by experi-
mental studies of the NMP salt.

Experimental measurements independent of those
reported below are available that suggest U~ may
indeed take on values as low as 0. 1 eV. The po-
larographic half-wave potentials c, /& of the single-
electron reactions'7

TCNQ - TCNQ + e

TCNQ + e TCNQ

(9a)

(9b)

measured in the highly polar solvent CH3CN, are
+0. 129 and —0. 294, respectively. The energy
change for the reaction 2TCNQ -TCNQ + TCNQ
is given by

~Ey /g = &1 / g+ & f. /p
= 0 16 eV (io)

where the superscripts (-) and (- —) denote the re-
actions (9a) and (9b), respectively. The energy
contribution in this case that reduces Up is usually
denoted as the solvation energy ~E, , such that

Up = &E(/p+2&E, ,

U. r~ = ~Bi/a = Uo —2&Es

(ii)
(i2)

Values of ~E, have been estimated for aromatic
hydrocarbon anions by Hedges and Matsen4' to be
in the range 1-4 eV, which are quite adequate to
reduce Up of several eV to a U~ of tenths eV. That
this difference in half-wave potentials for TCNQ
imbedded in a highly polarizable cavity is similar
in the two cases is not unreasonable. The polar
liquid in solution, roughly speaking, plays the role
of the cation polarizability in the solid. We note
in addition that the half-wave potentials can be used
to obtain information on the relative magnitude of
Uo for different molecules provided the same sol-
vent is used for comparative measurements. Thus,
polarographic studies are useful for determining
likely candidates for organic metals.

IV. EXPERIMENTAL TECHNIQUES

The tetracyanoquinodimethan (TCNQ) was pre-
pared following the procedure of Melby etal .2~

The resulting material is believed to be the best
reported to data, since recrystallization from
Ar-bubbled acetonitrile (MCB chromato-quality
grade} resulted in crystalline yellow-orange materi-
al which when viewed under a microscope was
found to be composed of bright yellow well-formed
crystals. The TCNQ gave brilliant yellow-orange
solutions when dissolved in Ar-bubbled acetonitrile.
TCNQ was originally reported27 as a rust-brown
powder giving yellow to yellow-green acetonitrile
solutions. NMP-TCNQ was prepared according
to Meiby4~ from NMp methosulfate (Aldrich Chem-
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ical Co. ). All elementary chemical analyses were
carried out in duplicate by Galbraith Laboratories,
Knoxville, Tenn. The analyses for samples used
in the experiments in every case indicated stoichi-
ometry with correct elemental composition to with-
in the experimental error. Each NMP-TCNQ pow-
der sample was compacted into pellet form for
specific -heat determination immediately upon com-
pletion of the magnetic -susceptibility measure-
ment. Single crystals, where used, were obtained

by rec rystallization from solution.
The classic techniques for measuring magnetic

susceptibility (Faraday, Gouy, and Foner methods)
measure the total susceptibility of a bulk sample.
In general,
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FIG. 3. Electron-spin-resonance spectrometer: (A)

sample, (B) field modulation coils, (C) electromagnet,
(D) marginal oscillator, (E) frequency meter, (F) lock-in
amplif ier f (S) signal, (R) reference, (0) output], (G) audio

amplifier, (H) g -y recorder (analog data output), (J)
multiplexer, (K) analog-to-digital converter, (L) parallel
to series converter, (M) Teletype (digital data output) .
Hp is the applied magnetic field.

X tot —X n +Xe +Xu

where X „ is the static nuclear paramagnetic sus-
ceptibility, and X, and X & are the static electron
paramagnetic and diamagnetic contributions, re-
spectively. X & includes the diamagnetism of the
inner valence shells of atoms, ions, and molecules,
and the orbital diamagnetism of conduction elec-
trons . For most situations the nuclear contribu-
tion is much less than that of the electrons, and

X, and X & are often of the same order of magni-
tude, making it very difficult to separate their
contributions. To deduce X, from X „,, X „may
be estimated using Pascal' s constants' and sub-
tracted from X «, .

Using the technique of Schumacher and Slichter"
it is possible to measure X, directly and thus avoid
the ambiguities inherent in the classical techniques.
Qualitatively, the technique is to perform electron
and nuclear (proton) paramagnetic resonance on

a sample at a constant frequency, changing only

the applied field by three orders of magnitude. The

4,M, ck~ X,H, cH,
A.p KpMp Kp XpHp XpHp

(l4)

or

where H, and H~ are the external applied resonance
fields for electrons and protons, respectively.
is the static proton susceptibility which can be
calculated exactly from a Curie law. Since the
technique is basically a resonance experiment, con-
tributions to X, which do not involve angular mo-
mentum (e.g. , the Van Vleck temperature-inde-
pendent susceptibility) will be specifically excluded.

Phase- sensitive detection was used to observe
the derivative of the absorption curves, care being
taken to prevent over modulation and saturation of
the signals. The components of the spectrometer
used are shown in Fig. 3. As a marginal oscilla-
tor responds only to absorption y

'
(the dispersion

producing only a slight frequency shift) a true mea-
sure of static susceptibility is obtained. The
curves were automatically digitized and then inte-
grated by computer. Figure 4 shows the typical
digital data.

The NMR curves, being almost Gaussian in

shape, presented little difficulty. Having estab-
lished the temperature independence of the appa-
ratus sensitivity, the NMR curves were integrated
only at low temperatures to obtain a calibration.
The ESR curves, being approximately Lorentzian
in shape, require a more extensive analysis. Be-
cause of finite signal to noise it was possible to
integrate only part way into the wings of the Lorent-
zian derivative line. To properly account for this,
all ESR curves were integrated to the same rela-
tive position in the wings (integration was carried
out with limits of seven times the peak-to-peak
linewidth on either side). This technique under-
estimates the size of the electron resonance ab-
sorption by a constant percentage, characteristic
of the line shape. The results of the numerical
quadrature were therefore averaged with that of an

areas under the recorded absorption curves (A,
and A. ) are proportional to the electron and proton
spin magnetizations, the constants of proportionali-
ty for the electron and proton resonances differing
only by known changes in amplifier and modulation
settings. Defining these constants as K, and K~
for the electron and proton resonance, respectively,
K, equals cK~ . It is obvious that c involves only
easily calibr ated amplifier settings because in
going from electron to nuclear resonance or vice
versa, only external field, amplifier, and modu-
lation settings are changed, leaving the rf (30 MHz),
rf level, circuit Q, and sample skin depth constant.
Taking ratios of the recorded areas, we have
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FIG. 4. (a) Typical digitized ESR derivative signal
(T =2.89 K), plotted in relative units vs applied magnetic
field (in gauss). (b) Plot of absorption (relative units) vs
applied field obtained by numerical integration of the curve
in part (a). The ratio of the full linewidth at half-ampli-
tude of the absorption curve to the peak-to-peak linewidth
of the derivative curve is 1.73, exactly what is expected
for a Lorentzian curve.

ideal Lorentzian of the same linewidth in order to
estimate the true absorption (e.g. , a correction
factor of 9%%uo was used). Using these techniques,
the reproducibility of the measured susceptibility
for different samples was found to be plus or minus

The heat-capacity measurement on NMP- TCNQ
utilized a standard continuous heating and drifting
technique. The calorimeter is schematically drawn
in Fig. 5. The sample is a compacted pellet and is
placed between the two smooth faces of the sample
holder (SH) using a small amount of Apiezon grease
for thermal contact. The sample holder has two
parts: The lower part is hung by three silk strings
(SS) from the frame (F) and carries the heater (H)
as well as the phosphor bronze heat conductor (MS)
of the mechanical heat switch. The upper part of
the sample holder carries a germanium resistance
thermometer (T) and is attached to a screw assembly
(SA) by additional silk threads. By turning the
screw one can squeeze tight on the sample.

The frame carries an auxilliary heater (AH) which
can be adjusted manually to minimize the heat loss

through electrical leads. On top of the frame are
thermally anchored but electrically isolated copper
studs (TA) which provide the connection between
incoming copper leads (CL) and the superconducting
electrical leads (SC) to the thermometer and heater.
The entire frame is in turn hung by silk threads
from a thermal station (TS). If necessary one can
maintain a large temperature difference between
the sample and the bath by introducing another
auxilliary heater at this point. A nylon screw (NS)
joins this thermal station to the brass top flange
(TF).

The mechanical heat switch uses a bellows assem-
bly (BA} which can be lowered or raised from the
outside. An indium covered copper heat sink (CS)
is attached to the bottom of the bellows. By lower-
ing the bellows, the head conductor (MS) is pressed
against the switch base (SB}making the thermal
contact.

The specific heat is measured by introducing a
known amount of heat &Q and measuring the cor-
responding temperature change &T„as a function
of time. In order to compensate for thermal drift
due to vibration, radiation, and residual thermal
contact, the temperature is monitored during the
drift cycle before and after each heating cycle. By
observing the temperature change in these two

DP EI

Io
~CS—$p'

NS . P ill-
—CI

TS
AH ~ &«W'

SL

T
S

SH — -' ' -H

CC

~yigxmizxy z i vi
Not to Scale

FIG. 5. Specific-heat cryostat: {AH) auxilliary heater,
(BA) bellows assembly, (CC) calorimeter can, (CL) copper
leads, (CS) copper sink, (DP) diffusion pump, (EI) elec-
trical inlet, (F) frame, (H) heater, (IO) Indium O-ring,
(MS) mechanical switch, (NS) nylon screw, (SA) screw
assembly, (S) sample, (SB) switch base, (SH) sample
holder, (SL) superconducting leads, (SS) silk string, (T)
thermometer, {TF) top flange, (TS) thermal station.



960 EPSTEIN, ETEMAD, GARITO, AND HEEGER

~P
~ ~ ~

~~ ~ ~ ~ e
~ ~ ~

I
0)

12—

10—

O 8-

6—
~ 4

o oC+
~ y ~

4

~ rt/
e ~

~ + ~
~ ~ ~

Yo
~ W

~ /

or 0

'r

FIG. 6. Inverse electron
spin susceptibility per molecule
vs temperature for NMP-TCNQ.

0 40
I

80
I

l20
I I

160 200
T ('K)

I I

240 280
I

520

drift cycles one can calculate the correction ~T,
due to drift. The net temperature change due to
the measured heat input is, therefore, &T = &T„
—&T, , and the average specific heat over the in-
terval &T is then C =b,Q/&T.

The low thermal conductivity of the organic sam-
ples requires the use of long drift periods and slow
heating in order to assure thermal equilibrium.
As a result, an attempt was made to minimize the
unwanted heat input due to vibration, etc. For
vibration isolation the Dewar assembly was placed
at the center of a 1-ton triangular-base concrete prism
which was in turn supported on three air springs.

The data were taken in digital form. The system
was fully automated with the timing of the heating
and drifting periods as well as the sampling times
controlled by a standard oscillator and a set of
scalars. To measure the temperature change and
the drift, ten temperature points were taken during
each 250-sec heat or drift period. The thermal
relaxation time of the measured samples was esti-
mated from the temperature-vs-time profile to be
about 50 sec. This was taken into account in the
subsequent data analysis. The sample-holder con-
tributions were separately measured so that the
data analysis by computer gives directly the sample
specific heat.

V. EXPERIMENTAL RESULTS

A preliminary account of the experimental results
obtained for the NMP-TCNQ system has been pub-
lished elsewhere. ' Analysis of the susceptibility Xx a~&t

= 2k a p(0} ~ (l6)

and specific-heat data aided by the temperature
dependence of the electrical conductivity yields a
picture of a transition from metal (above 200 'K)
to small band-gap magnetic insulator at lower tem-
peratures. The low-temperature properties are in
quantitative agreement with the predictions of the
one-dimensional Hubbard model.

The temperature dependence of the electron sPin
susceptibility is shown in Fig. 6 plotted as y

' vs
T. We emphasize once again that the resonance
technique utilized gives the spin susceptibility di-
rectly; diamagnetic and Van Vleck temperature-
independent contributions to the total bulk suscep-
tibility are specifically excluded. Above 200 'K,
the susceptibility is relatively small (6.2x]0 ~'

per molecule} and temperature independent. Since
the conductivity (Fig. 7) is large and shows a
negative temperature coefficient above 200'K, it
is natural to associate this high-temperature region
with the metallic phase. Further corroboration is
found in the thermoelectric power (TEP) measure-
ments of Buravov et al. '6 (Fig. f}. Above 200 'K,
the TEP is small and negative, and has a linear
temperature dependence with negative slope char-
acteristic of a metallic system. Thus the high-
temperature susceptibility is, in fact, the Pauli
spin susceptibility of the interacting metallic elec-
trons. The value of 6. 2&10 per molecule corre-
sponds to a density of states of 5. 8 states eV '
molecule ' using the simple expression for the Pauli
susceptibility:
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where p(0) is the band density of states for a single
sign of spin. Equation (16), however, neglects
electron-electron interactions. Including the short-
range (5 function) repulsion as in the Hubbard
model, the standard random-phase-approximation
(RPA) (Hartree-Fock) result may be written"

p(o)XB I Pp(Q)

where U is the Coulomb repulsion. From a single
susceptibility measurement one cannot tell if en-
hancement effects are important. We shall return
to this in Sec. VI where the analysis will be given
which indicates little or no enhancement of the Pauli
susceptibility in the metallic phase.

Below 200 K, there is a broad range of tempera-
tures in which the susceptibility follows a Curie-
Weiss law

2 5 4
1sT (10 K )

X = C/(T+ 0) (18)

where 8= 61 'K, and the Curie constant C = 1.7 &&10 5

'K per molecule. Using the standard expression
for the Curie constant

C=N (P,ff Ps/3K'), (19)
200—
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FIG. 7. (a) Temperature dependence of the conductivity
for single crystals of NMP-TCNQ (from Ref. 45). (b)
Conductivity vs temperature for NMP-TCNQ showing the
high-temperature behavior in more detail. Low-tempera-
ture points (x) are from Ref. 45, the higher-temperature
points were obtained from crystals prepared in our labora-
tory. {c) Thermoelectric power (TEP) vs temperature for
single-crystal NMP-TCNQ (from Ref. 46).

one finds an effective moment P,«= 0, 9p, ~ . Our
interpretation therefore is that below 200 K the
system is at least partially described as an ensem-
ble of disordered paramagnetic "localized moments. "
For a fully formed spin-one-half system one ex-
pects P,«= v 3, a value considerably larger than
that obtained from the experimental slope of X

' vs
T. We emphasize that the linearity of X

' vs T per-
sists over a factor-of-5 change in temperature
so that the magnitude of the effective moment is
apparently constant throughout this interval. In
the vicinity of 200 'K, the moments go away as the
system goes over into the metallic state. The tran-
sition is gradual (see the conductivity in Fig. 7),
but over a region of not more than bT- 30 K the
susceptibility evolves from the Curie-Weiss form
with constant P,« to an essentially temperature-in-
dependent Pauli contribution.

The existence of disordered localized moments
is consistent with the picture of the metal-insulator
transition, driven by Coulomb correlations which
prefer one electron per site with minimal double
occupancy fluctuations. The general ar guments
given in Secs. I and III suggest that if V& is large
enough, a gap appears resulting in a low-tempera-
ture magnetic state for the system. Clearly, as
UI/t -~ there will be exactly one electron per site.
In this limit one expects P,z, = v 3 as described
above. The experimental results thus imply a
system with intermediate coupling strength; U~ is
large enough to localize the electrons into a low-
temperature magnetic insulating state, but not large
enough to achieve the maximum value of spin one-
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half per site.
Let us carry this argument one step further.

The constant slope of y
' from 40-180 K was used

above as an indication of localized moments with

a constant P,«. Since the size of the magnetic mo-
ment is directly related to the strength of the Cou-
lomb interaction, this result may be used to infer
that the renormalization effects on U~ discussed in
the Introduction are relatively unimportant at least
until the temperature approaches close to the metal-
insulator transition temperature.

In the relatively large UF limit which seems to
be important here, there are basically two energies
in the problem: (i) U~, the effective Coulomb
interaction which forms the moments, and (ii) 2t /
U~, the transfer antifer'romagnetic (AF) exchange
energy between localized moments. The latter is
a perturbation-theory result' based on the zeroth-
order picture of the ground state as having one
localized spin per site in which the energy is low-

ered by allowing virtual charge transfer onto neigh-
boring sites. Because of the one-orbital nature
of the problem, the energy lowering appears only
if neighboring spins are antiparallel; hence (ii)
may be thought of as an antiferromagnetic exchange
interaction.

The experimental evidence of antiferromagnetism
at low temperatures is twofold. -First, the extrap-
olated Curie-Weiss 0 of 60'K implies the exis-
tence of antiferromagnetic interactions. Equally
important however is the observed rounding off of

X to a constant value below 30 'K. This is qualita-
tively as expected for a Id AF system. The rapid
downturn of X

' below 10'K is the result of im-
purities. From the magnitude of the contribution
one can estimate the impurity content as about

0. 2/0. This low impurity level is crucial in obtain-

ing the correct picture of the behavior of the sam-
ple susceptibility at low temperatures. The sam-
ples used in the susceptibility experiment were in

the form of powders. This would present possible
difficulty were it not for the fact that the system
in question is essentially one dimensional and made

entirely of first-row elements. Consequently an-

isotropy effects are negligible, and the measured y

may be regarded as a perpendicular susceptibility.
This will be discussed in more detail in connection
with the dynamics of the resonance in Sec. VIII.

From the susceptibility results we therefore
conclude the following: (i) There is a metal-insu-
lator transition at approximately 200 'K. (ii) The

system cannot be treated in the strong-coupling
limit, for a reduced effective moment is observed
in the paramagnetic state. (iii) The local moments

"turn on" relatively quickly with decreasing tem-
perature below 200 K, and remain at fixed mag-
nitude as the temperature is lowered. (iv) The
ground state is an antiferromagnetic insulator. (v)

C = o„T+PT~ (20)

where &„=1. 9&&10 erg/'K g and p= 5. 5 erg/'K g.
The T term is the expected Debye lattice contri-
bution and implies a Debye temperature of 0 D= 90
'K. The linear term we associate with the spin-
wave contribution. We emphasize that the data of

Fig. 8 cover a temperature range of 1.8-4. 2 K
where the system is insulating with a resistivity
greater than 10 0 cm. Thus the linear term is in

no way connected with the yT term expected for an

electron gas.
A specific-heat contribution linear in T for an AF

system implies that the system in question may be
regarded as one dimensional insofar as its electronic
excitation spectrum is concerned. (Of course, the
macroscopic lattice is three dimensional, and the
phonon restoring forces, although anisotropic,
average at low temperatures to give a three-dimen-
sional Debye lattice contribution. ) The argument
is straightforward. Assuming the spin waves are
bosons, their contribution to the internal energy is

(21)

where &~= hVP is the (low-k) dispersion relation
and P=1/k~T. Thus, changing variables, we have

xdx @~2 T~

p hV, 0 e"-1 hV, (22)

The resulting specific heat is linear in T with a
coefficient depending inversely on the spin-wave
velocity. For two and three dimensions the integral
in Eq. (22) is correspondingly modified, yielding
the general result that the spin-wave contribution
is proportional to T" where d is the dimensionality.

The experimental fact that the system can be re-

The fact that two transitions are observed (a Mott
transition at 200 'K and an AF transition at 30 'K)
implies Ur/t &1. Note that the svord "transition"
is used in a qualitative sense throughout this paper.
There are no sharP Phase transitions in this one-
dimensional system. '

To investigate the low-energy elementary exci-
tation spectrum in the AF state we have measured
the low-temperature specific heat of NMP-TCNQ.
One expects that the predominant electronic excita-
tions (i. e. , neglecting phonons and molecular vibra-
tions and rotations, etc. ) will be spin waves. The
existence of the unshifted electron spin resonance
signal (k = 0) indeed implies zero gap for the spin-
wave spectrum. Thus one naively expects the spin-
wave spectrum with linear dispersion relation
characteristic of antiferromagnetic systems.
The experimental results are shown in Fig. 8 plott-
ed as C/T vs T . Below 4. 2'K, the specific heat
can be represented as
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garded as one dimensional is remarkable. Although,
as discussed above, the lattice structure lends it-
self to a one-dimensional point of view, that inter-
chain transfer matrix elements are truly negligible
is an important and simplifying result. The essen-
tial point is evidently the directional nature of the

P, orbitals which make up the & system of the TCNQ
molecule together with the chainlike structure.

Since long-range order cannot exist in a one-
dimensional system, one might question an analy-
sis in terms of spin waves. Such arguments are
unjustified, for recent experimental and theoretical
work has clearly demonstrated the existence of
spin waves in one dimension. " The inelastic
neutron data of Birgenau et al. ' for the system
(CH3)4 NMnCls give direct evidence of spin waves.
Moreover, Blume, Watson, and Vineyard5~ have
shown that chains consisting of as few as 30 spins
are sufficient to show collective spin-wave exci-
tations, and the numerical calculations of Bonner
and Fisher' independently indicate a linear tempera-
ture dependence to the specific heat. The specific-
heat results presented here thus provide further
evidence, and in fact suggest that such spin waves
contribute to the thermodynamic properties in a
relatively straightforward manner. The specific-
heat results thus represent one of the first obser-
vations of the linear temperature dependence pre-
dicted for the one-dimensional antiferromagnet.

One might argue that the insulating state described
above is the result of the well-known Peierls in-
stability of one-dimensional systems to small lattice
distortions. This is particularly important for
narrow bands as shown by Adler and Brooks. That
this is not the case for NMP-TCNQ is demonstrat-
ed by the magnetic character of the insulating

phase. Although the existence of a small lattice
distortion belwo 200 "K cannot be ruled out without
x-ray data on the tom:perature dependence of the
structure, the magnetic properties of the low-tem-
perature phase imply that the insulating state re-
sults from Coulomb correlations, i. e. , the system
is a Mott insulator. One further comment is in
order. The ordinary thermal expansion of the crys-
tal with increasing temperature tends to increase
the lattice constant and thereby decrease the trans-
fer integral slightly. Thus, the effect of thermal
expansion is to favor the insulating state; it does
not drive the transition from insulator to metal.

VI. ANALYSIS OF LOW-TEMPERATURE RESULTS

The low-temperature magnetic susceptibility and

specif ic- heat r esults presented above can be analyzed
in terms of the one-dimensional Hubbard model
with one electron per TCNQ site. '4 When attempt-
ing to justify the application of such an idealized
model to a real physical system, two questions
arise. First, is the NMP'- TCNQ system truly one
dimensional' We have argued this point above
the lattice structure together with the linear (in T)
term in the specific heck aypears to provide ade-
quate evidence. Second, is it reasonable to repre-
sent the Coulomb interactions in a real system in
terms of a single parameter aa in the Hamiltonian
of Eg. (6)P It was showa in Sec. I that the energy
involved in making a charge-transfer excitation is
[see Eq. (3)]

Uo- Uo

where Uo& is the long-range Coulomb interaction
between two electrons, respectively, on sites 0 and

j. There are two simplifying features. In the me-
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tallic state, where the electrons are free to move,
one can expect screening effects to make the long-
range interactions negligible. Note that although
the electronic structure is one dimensional, the
parallel chains exist in a microscopic crystal so
that three-dimensional metallic screening should
be effective in reducing non-nearest-neighbor in-
teractions. Moreover, Kuper" has considered
metallic screening in pseudo-one-dimensional con-
figurations with characteristic cross-sectional
diameters of several angstroms. The cross-sec-
tional diameter of a linear TCNQ chain in NMP-
TCNQ may be considered as the molecular dimen-

0

sion 7 A which according to Kuper's treatment re-
sults in a screening length of order one lattice
constant. In the insulating state a small energy
gap appears reducing the screening response. In
this limit, the electronic system has the properties
of a dielectric medium with dielectric constant

0-
U

ILJ
Z,'

LLI

u-oe

E-1+ '(d
&/ (d c (24)

where (u~= 4vNe /m is the plasma frequency and
h&uc=Ec. Although Eq. (24) was d.rived assum-
ing E& resulted from a single-particle band gap,

'
the essential point is the existence of a finite energy
for making charge-transfer (ionic) excitations.
If G is small, one can expect a large dielectric
constant in the insulating phase. The experimental
value for the dielectric constant of NMP- TCNQ at
low temperature has been measured by Buravov
et a/. ' who find &-400. Thus using metallic
screening and large dielectric constant in the two
appropriate regimes, one concludes that long-
range effects can be neglected We shal. l therefore
assume the effective interaction to be dominated
by Uo when the two electrons are on the same
molecule, and U, when the two electrons are on
nearest-neighbor molecules, all other interactions
being negligible. Thus we have

FIG. 9. Exact single-particle excitations for the one-
dimensional Hubbard model as derived by Ovchinnikov

(Refs. 16 and 17). The drawing is appropriate only to the
strong-coupling limit of U&/t » 1.

particle excitation spectrum is sketched in Fig. 9
in the limit where UI/t » 1. One sees an electron
band and a hole band separated (at k = 0) by the Cou-
lomb interaction U&. The electron and hole bands
are of the form &~= t costa, where a is the lattice
constant. As a result the excitation spectrum for
taking an electron from k and putting it in k+ q is
given by (again in the limit Uz/t» 1)

&,(q) = UI + t [ cos (k+ q)a+ coska ]—2t (26)

The minimum ener gy gap occurs at k = m, q = 0 so
that the Hubbard gap has the limiting form(Uz/f» 1)

Ur= ( Uo Ug) q, (25)
EH —U~- 4t+ ~ ~ ~ (27)

where q = (1—n/r ) is the cation polarizability re-
duction factor introduced in the discussion of Sec.
III. For the much simpler problem of a two-atom
chain Falicov and Harris have explicitly shown
that inclusion of both on-site and nearest-neighbor
Coulomb repulsion can be rigorously represented
in terms of a simple Hubbard Hamiltonian of Eq.
(6) with U~ taking the form of Eq. (25) (with q in
this case being obviously unity).

The exact zero temperature solution of the half-
filled one-dimensional Hubbard model [Eq. (6)]
was first demonstrated by Lieb and Wu. ' Ovchin-
nikov' ' has developed the solution in considerable
detail deriving expressions for the dispersion re-
lations for single-particle as well as collective
(spin-wave) excitations. The Ovchinnikov single-

16t
&a(&)=

U

(X'- 1)' "dS
sinhxy (28)

The Hubbard gap as computed from this equation is
plotted numerically in Fig. 10 as a function of the
variable x = 2vt/U~. One sees the two limiting
forms: For U~/t»1, Eq. (27) is valid, whereas
for U~/t «1, the Ovchinnikov result is

E„=(8/v) (tU )'~ e (29)

The latter result is reminiscent of the spin-density
wave solution expected for such a system as a re-

Equation (27) is approximate; the exact result valid
for all values of the parameters was derived by
Ovchinnikov"
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The parameter V, has the dimensions of a velocity
and is given by

2at f,(x)
k Io(x)

(31)

where Io and I, are modified Bessel functions of
the argument x= 2wt/U~. Takahashi observed that
the velocity V, is precisely the spin-wave group
velocity as derived by Ovchinnikov:

de'(q) =kV, (q-o, ~)
cia

This definite numerical rela. tion behveen g(0) and

the spin-wave dispersion relation has been used
as a numerical check on the validity of the model
to the NMP-TCNQ system.

Given the spin-wave spectrum, the appropriate
contribution to the low-temperature specific heat
is readily computed. The internal energy of the
spin-wave system is given by

0.01 I 4 I

6
(E) = P«E«n«, k =0, + 2m/L, + 4m/L, (33)

FIG. 10. Hubbard gap as a function of g =2&/Uz. The
open circles are computed numerically using the Ovchin-
nikov expression tKquation (28) of the text). The solid
line indicates the M)oak-coupling limit of Eq. (29). Value
of EH appropriate to NMP-TCNQ is indicated.

(e8« / «rs]) 1 (34)

Converting the sum to an integral

where E~ is the spin-wave dispersion relation de-
fined (for small k) in Eq. (32), and the Bose fac-
tor n~ is

y(0) = 2Pe (Na/mkV, ) (30)

suit of the divergence in x(q) at q = 2k+ for a one-
dimensional metal.

The nonanalytic form of the energy gap in the
small interaction limit is of interest from another
point of view. Lieb and Wu" state that there is no
Mott transition for the one-dimensional Hubbard
model at T= 0 K. Their statement rests on the
fact that for arbitrarily small U, the single-parti-
cle gap is finite. However, in contrast to their
assertion in the paper, Eq. (29) shows the resulting
gap to be a nonanalytic function for small U. '
This strongly suggests by analogy with other many-

body phenomena that when k~T is of order the

Hubbard gap, the system will go over into the
metallic state. This is discussed in more detail
in Sec. VII.

In addition to the single-particle charge-trans-
fer excitations the collective spin-wave modes are
included in Fig. 11. The precise form for the

spin-wave dispersion relations again depends on
the value of Uz/t; the sketch in Fig. 11 is drawn
for a value of U~/t appropriate to NMP- TCNQ.

Takahashi' has derived an expression for the
zero- temperature magnetic susceptibility using
the Lieb and Wu solution

e/a
(E)= AVP(e" & «& —1) 'dk

-n/a

E

E„

FIG. 11. Spin-wave dispersion relation and single-
particle excitation band for the one-dimensional Hubbard
model (see Ref. 16). The curves are drawn approximately
to scale for NMP-TCNQ where EH is approximately 0.1
eV at low temperature.
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where

L (kgT)3 " xdx
NV, 0

e" —1 (35)

x„=h V,v/akim T (38)

2L kTo
(37)

where 1'(2)=+op . Using L=Na, the specific-heat
contribution is found to have the expected form

(38)

The factor of 4 in Eq. (35) arises from the + k

symmetry (a factor of 2) and the symmetry about
k = v/2a arising from the doubled unit cell of the
AF ground state (a factor of 2). At low tempera-
tures the integral in Eq. (35) is dominated at
large k by the exponential so that negligible error
is involved taking the limit of xM-~. The result,
then, is

tion of the elementary excitations in one dimen-
sion. Again, it would appear that this is a question
of the spectral weight. If the multiple spin-wave
bound states contribute, they must "steal" spectral
weight from the one spin-wave band. This shifting
of spectral weight would tend to cancel in over-all
effect on the thermodynamic properties. Again,
a quantitative treatment would require a Green's-
function theory. Our feeling, based on the above
arguments, is that little error is involved in Eq.
(39). Some quantitative insight into the accuracy
of the theoretical result may be gained by consid-
ering the situation in the case of the Heisenberg
model. Since the spin-wave result given in Eq.
(39) is independent of the parameters U~ and t,
and since the Heisenberg model is identical to the
Hubbard model in the limit as U~/t-~, the Heisen-
berg results are relevant. In this case one has
the numerical results of Bonner and Fisher ' for
the specific-heat and Griffiths's expression ' for
the zero-temperature susceptibility. Their ratio
is

Combining Eqs. (38) and (30) for g(0) we obtain
the result

Heisenberg

X( ) theory
=1.73 —' (40)

2

=3.29 kB

theory t B
(39)

There are two theoretical ambiguities involved in
the specific-heat calculation, both having to do
with the detailed nature of the spin-wave spectrum.
First, Eq. (38) assumes each spin wave contributes
with unit amplitude, i.e. , the spectral weight as-
sociated with each mode integrates to unity. This
is surely the case in the Heisenberg limit as U~/t- ~ (except for the possibility of spin-wave inter-
actions and of multiple spin-wave bound states; see
below), but it is by no means obvious as U~/t de-
creases. In fact, Takahashi shows the persistance
of the spin-wave spectrum tothe limit U~ =0, where
one knows there is no spin-wave contribution. The
suggestion, therefore, is that the spectral weight
uniformly decreases as U~/t decreases. A detailed
Green's-function theory is required before this
can be quantitatively cleared up. Fortunately, how-
ever, the analysis given below yields U~/t-8, so
that the correction, if any, should be small. Such
a correction would tend to decrease the theoretical
value for o~/y(0) given above. The second question
involves spin-wave interactions and the possibility
of multiple spin-wave bound states. Ovchinnikov
in fact calculates the two spin-wave bound-state
spectrum, and multiple spin-wave bound states
will certainly exist in one dimension. This is in-
timately connected with the well-known fact that
long-range order cannot exist in one dimension. 48

In spite of this it is known experimentally that the
simple spin-wave theory provides a good descrip-

The experimental results presented above indicate
that the strong-coupling limit is inappropriate for
NMP- TCNQ. Nevertheless the Bonner- Fisher-
Griffiths calculations suggest a limit for the error
involved in Eq. (39). The exact result should be
within the well-defined limits

8 M (3 29 (41)

Given the present status of the theory it is not pos-
sible to determine the theoretical ratio with better
accuracy.

The theoretical prediction given in Eq. (41) may
be compared with experiment by utilizing the mea-
sured specif ic- heat coefficient and the (extrapolated)
zero-temperature susceptibility. The experiment-
al ratio is evaluated as

+M kB
2

= (2. 8+0. 3)—
X(0) . ,

(42)

y(0)mt/Po = Io(x)/I&(x) (43)

The numerical agreement plus the over-all qualita-
tive features of the susceptibility and conductivity
data combine to provide strong evidence of the ap-
plicability of the idealized one-dimensional Hubbard
model to the NMP-TCNQ system.

The consistency of y(0) and u„with the model
provides us with a numerical curve relating U~
and t for NMP- TCNQ. Equation (30) can be put in
the form
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where, again, x= 2w t/U~. A second and indepen-
dent relation is obtained from Ovchinnikov's ex-
pression for the single-particle energy gap as given
in Eq. (26). This can be manipulated into the fol-
lowing form:

X(0)et i 2 X(0) @ [ ~( ))
(

p, &
(44)

where

(46)

Regarding Eqs. 43 and 44 as two independent equa-
tions for the left-hand side as a function of x, we
seek the value of x which gives a simultaneous solu-
tion. In computing the right-hand side of Eq. (44),
the experimental values for X(0, = 2. 2&&10 per
molecule and E~=O. 1 eV were inserted. The
former is the extrapolated zero-temperature sus-
ceptibility value obtained directly from Fig. 6.
The value utilized for the Hubbard gap is obtained
from analysis of the low-temperature conductivity
data of Shchegolev et al. ' The data approach a
straight line below 100'K when plotted as lno vs
I/T with a slope corresponding to 0. 035& —,'E„&0.06
eV (see Fig. 7). At the lowest temperatures the
data curve away from the straight line; however,
it seems likely that this is due to a small residual
impurity induced conductivity. We shall assume the
0. 05-eV value although a more direct measurement
of E~ would be desirable. Evaluating the Hubbard

gap from the conductivity involves the assumption
that the exponential prefactor (essentially the car-
rier mobility) is only weakly temperature depen-
dent. This is experimentally verified above 200'K
in the metallic phase; but has not been independent-
ly checked below 200'K. If a better value of E~
becomes available, the results are readily corrected,
for the value of the gap appears solely as a multi-
plicative constant on the right-hand side of Eq. (44).

The two relations [Eqs. (43) and (44)] are shown
numerically in Fig. 12. The solution occurs at

The values quoted in Eq. (47) are quite reasonable
in view of the discussion included in Sec. III.

The full bandwidth of g = 4T =0.085 eV is not
surprising for a molecular crystal. ~ The very
small value of U~ arises from a combination of the
two effects discussed above; U~ involves the dif-
ference between Uo and U„and each of those is
considerably reduced from the corresponding bare
values by cation (NMP) polarizability. Since es-
timates of the bare value of (Uo —Uq) fall in the
range 0. 5-1.0 eV and optical-absorption studies on
KTCNQ give a value of 0. 9 eV, the cation polariz-
ability effect for NMP-TCNQ evidently amounts to
a reduction by a factor of order 5. Thus the cat-
ion polarizability plays a crucial role in obtaining

organic metals. Continued systematic work in
this area with other cations will be quite valuable.

VII. TEMPERATURE DEPENDENCE

The magnetic susceptibility in the high-tempera-
ture metallic phase was identified above as the
Pauli susceptibility, possibly enhanced by inter-
action effects. To analyze this in detail requires
knowledge of the band structure of the electronic
system in absence of interactions [see, for example,
the bare susceptibility and RPA results of Eqs.
(16) and (17)j. Within the tight-binding model this
is easily obtained; the one-electron energy-band
dispersion relation is given by

xo =2vt/Up= 0. 76 . (46)

Inserting this value into Eq. (30), we obtain, for
NMP- TCNQi

Cko,

U~ ——0. 17 eV, t = 2. 1 & 10 eV . (47) 8 2
vr2 X(0)
e pi H

The accuracy of these values (aside from the
over-all question of the validity of the model) is
limited to about 20% because of uncertainty in the
correct value of the Hubbard gap as obtained from
the conductivity data. Examination of Fig. 12
shows that because of the steepness of the numeri-
cal curves, the resulting values of U~ and t are
relatively insensitive to small changes in EH.

0
I

.4
I

.8
X- 2

U

l

1.2
I

1.6

FIG. 12. Numerical solution of the coupled equations
[(43) and (44)] for determination of Uz and t for NMP-
TCNQ. The crossover occurs at U&/t = 8.
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e(k) = —2tcoska, (48)

from which the density of states per unit energy
can be calculated:

2p (e ) d f = (2N/77 ) (4 i —e ) d E (49)

This is to be compared with the measured value
6. 2&&10 above 200'K. The agreement is quite
good. The point of particular interest is the ob-
vious discrepancy with the RPA result of Eq. (17).
In fact, using the low-temperature values of U~ and

t, the RPA result is divergent predicting metallic
ferromagnetism t The source of difficulty is clear;
the RPA expression assumes that the Coulomb in-
teraction can be treated in a Hartree or average
way whereas the true situation involves strong
Coulomb correlations which tend to keep the elec-
trons apart. Theoretical attempts at building such
correlations into the metallic state have been mod-
erately successful. ' ' The physics involved is
the creation of a Coulomb "hole" around a given
electron; the electron wave functions must be cor-
related to stay apart. Kanamori6' has shown that
under certain approximations the RPA result can
be generalized to a form

pX= Pa
C

(51)

where the correlated Coulomb interaction U, is
given by

UU= «Uc 1 U G
(52)

and Go is a factor of order the reciprocal of the
bandwidth. Detailed numbers are perhaps not im-
portant here; the important point is that correla-
tions in the metallic state reduce the effective
Coulomb interaction to a value much less than the
bare value which dominates the low-temperature
properties. This correlation can never reduce
U, all the way to zero, but the resulting actual en-
hancement factor for the susceptibility can be of
order unity. We note that the measured value of
6. 2&10 ' is actually less than the bare Pauli

The energy is measured relative to the center of the
band. The above expression is the full density of states
including the factor of 2 for spin [p(e) is for one kind
of spin only]. The Fermi energy E~, when mea-
sured relative to the bottom of the band, is equal
to twice the transfer integral for the case of one
electron per molecule.

Using the value for t= 2. 1&& 10 eV obtained from
the low-temperature numerical analysis of the
Hubbard model, one can estimate the bare Pauli
susceptibility

(li~)„„„~=p~/mt=8. I x10 8 per molecule. (50)

value 8. 1&10 obtained from t. This difference
is probably not significant and points not surpris-
i.ngly to some limitation on the literal validity of the
model. There is, however, the interesting possibil-
ity that the small experimental value is correct
and is a manifestation of the reduced density of
states near the Fermi surface predicted by Hubbard
and Mott' as a precursor of the formation of the
energy gap. A more direct measurement is needed
as conf irmation.

We conclude that Coulomb correlations in the me-
tallic phase reduce the effective interaction essen-
tially to zero leaving little or no enhancement to the
susceptibility. On the other hand, as discussed in
Sec. VI, the existence of a constant p, «at least
up to approximately 180-190 K implies a rather
sharp temperature variation of the effective cor-
related Coulomb interaction; the effective inter-
action remains large and temperatur e independent
up to roughly 180'K and then correlations take it
rapidly toward zero. The correlation "hole" effect
which seems to be so effective in the metallic state
plays essentially no role at low temperature, for
the system is condensed into an insulating phase
where the electrons in the vicinity of an excitation
cannot move out of the way without paying an energy
at least equal to the single-particle gap E„.

Note added in Proof. In the atomic limit (f/u-0)
all correlation arguments for reducing U(t) are in-
valid, for an electron cannot "get out of the way"
when another hops onto a given site [T. A. Kaplan
and P. N. Argyres, Phys. Rev. B 1, 2457 (1970)].
On the other hand, for. finite t, correlation is possi-
ble. Detailed theoretical studies are required to
decide if it is possible, for u/t-8 within the Hubbard
model, to have sufficient correlation to explain the
experiments.

In contrast to the variation of the effective Cou-
lomb interaction with increasing temperature, the
single-particle energy gap E„(T) appears to fall
off more rapidly as can be seen simply from the
conductivity data. The plots of o vs T and ln 0

vs T ' indicate deviations from exponential behavior
with fixed activation energy at 100'K or below
whereas the constant p,« implies constant U~ below
180 K. We conclude therefore that at relatively
low temperatures either the gap begins to renor-
malize toward zero or, alternatively, conducting
states begin to appear in the gap possibly because
of fluctuations. More direct measurements of the
temperature dependence of the gap are needed.

The picture presented for the metallic state is
thus essentially that of the Landau- Fermi liquid
where the electron-electron Coulomb repulsion has
little effect. The noninteracting low-energy quasi-
particles give the system free- electron properties.
For example, the magnetic susceptibility and elec-
trical conductivity behave simply indicative of a
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7t'u~ 8 lno
3e 86 5=0

(53)

noninteracting electron system with a weakly tem-
perature-dependent scattering time. The thermo-
electric power (TEP) appears to be similarly simple
above 200'K. Figure 7 shows a negative TEP
increasing in magnitude with increasing tempera-
ture. Such behavior is expected for a metallic sys-
tem where the electronic contribution to the TEP is
given by

l5
w 1.2-z
0
Vl

o6CL

I-

.3

(a)

INSULATOR MFTAL

where 0 is the conductivity considered as a function
of energy. The fact that S does not extrapolate to
zero at T = 0 in Fig. 7 implies the existence of an
additional positive contribution. Equation (53)
may be evaluated assuming the scattering time &-

is not strongly energy dependent:
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where C, is the electronic contribution to the spe-
cific heat. Equation (55) is obtained by assuming the
one-dimensional density of states given in Eq. (47)
taking into account both signs of spin. Again taking
a Fermi-liquid point of view, the effect of electron-
electron interactions would be a small mass en-
hancement in the electronic specific heat. Thus
Eq. (54) can be applied directly. From the experi-
mental slope above 200'K, ss/BT = 0. 17 pV/'K,
one obtains —,'E„=t=0. 046 eV. The result is of the
same magnitude (differing by only a factor of 2) as
that obtained from the low-temperature analysis
and the Pauli susceptibility. Again the analysis of
the TEP must be considered only a crude first
guess, a detailed transport theory not being avail-
able. Nevertheless, the agreement in the magni-
tude of the transfer integral gives the argument
some credibility. Below 200'K, a change in slope
is observed and the electronic contribution appears
to sharply decrease. This seems directly related
to the transition to the magnetic insulating phase.
It is clear that experimental studies of other trans-
port properties, e. g. , thermal conductivity, 7~ to-
gether with related theoretical work wouM be valu-
able.

The ground state of the experimental NMP- TCNQ
system is that of a magnetic insulator. The transi-
tion to the metallic phase is governed by the free
energy [E=U(T) TS(T)j and the-refore is driven
by the entropy. Fundamentally, it is the entropy
which thermodynamically forces the creation of
electron- hole excitations. When the excitation

0 40 80 I20 I60 200 240 280 320
T ('K)

density gets high enough for the formation of a
significant Coulomb "hole, "

U~ correlates toward
zero, and the metallic phase results. There are
three contributions to the entropy:

(i) In the low-temperature insulating phase, when

the spins begin to disorder, the entropy increases
toward a value of order ka ln2 per molecule (the
exact value is unclear for this is not truly a spin-

system). An idea, of the functional dependence of
the entropy on temperature can be obtained by going
to the strong-coupling limit and examining the en-
tropy for the Heisenberg model. The results of
Bonner and Fisher for the one-dimensional Heisen-
berg infinite chain assuming J=2t /Uz-— 5. 2x10
eV are shown in Fig. 13(a). The initial linear de-
pendence is characteristic of the one-dimensional
problem. Although the Heisenberg results are not
directly appropriate to the NMP- TCNQ system,
they should represent a reasonable approximation
at low temperatures since experimentally Uz/t-8.

FIG. 13. (a) Computed entropy as a function of tempera-
ture for the linear Heisenberg AF chain (after Bonner and

Fisher, Ref. 53) and the one-dimensional tight-binding
metal. The curves were computed using values appro-
priate to NMP-TCNQ, J=2t /Uz=5. 2xl0 eV for the
AF chain an5 t=2. 1x10 eV for the band entropy. (b)
the curves of 13(a) are redrawn. In addition the approxi-
mate form of the true entropy for NMP-TCNQ is sketched.
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(ii) At intermediate temperatures where the spin
system is highly disordered each single-particle
excitation removes of order 2kB ln2 while creating
some free-carrier entropy (each excitation destroys
tuo local moments at low temperature). Thus in
this intermediate temperature regime we expect
the actual NMP- TCNQ entropy to fall somewhat

below the Heisenberg results.
(iii) In the metallic phase the entropy is given by

S = —k Q, [f Inf, +(1-f„)In(l-f~)], (58)

where the sum is over all single-particle states
(including spin), Using f~ = (1+e' '~'~ "&r and the
one-electron dispersion relation for the tight-bind-
ing energy band [Eq. (48)] one obtains

Nke ' ln(e '""+1) ln(e '"+ 1)B
w 0

coax +. 1 eD cosx+

(57)

where D = 2t/k~T and N is the number of electrons.
Assuming t= 2. 1x 10 eV and performing the nu-
merical integration, one obtains the computed band
entropy curve shown in Fig. 13. At high tempera-
tures the entropy asymptotically approaches NkB ln
4. This limit follows from the finite bandwidth and
is easily understood. When the temperature ex-
ceeds the Fermi temperature each of the N k states
is accessible and for each there are four possibili-
ties: singly occupied with spin up, singly occupied
with spin down, doubly occupied, and unoccupied.
Since each of these has equal weight, the resulting
entropy is kB ln4.

Figure 13(a) gives a reasonably clear picture of
the physical situation. At low temperatures the
antif erromagnetic disorder favors the insulating
state, whereas above roughly 150 K the metallic
state would have the higher entropy. Evidently
the system evolves continuously from one limit
toward the other with corrections due to the single-
particle excitations in the insulator as discussed
above. Since the existence of a gap must decrease
the band entropy and since the existence of these
excitations decreases the disordered localized mo-
ment contribution, the true entropy curve might
have a temperature dependence roughly as the dot-
ted line in Fig. 13(b). This dotted curve in Fig.
13(b) is a sketch based on the above arguments and
the computed curves of Fig. 13(a). It is of interest
to note that, if the M-I transition temperature is
comparable with the Fermi temperature, Fig. 13
(b) suggests a diffuse and gradual transition. In
fact, since in one dimension the ground state is
insulating for any finite U~, and since the entropy
curves in Fig. 13(a) cross only once, the M-I
transition in a one-dimensional system must occur
at a relatively high temperature and must be very
smooth. The situation for a three-dimensional
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FIG. 14. Specific heat, per gram of NMP-TCNQ as a
function of temperature. For details of the low-tempera-
ture behavior see Fig. 8.

system is fundamentally different, for the low-tem-
perature AF spin disorder entropy varies as 7."'

[rather than T as in Figs. 13(a) and 13(b)]. As a
result, in three dimensions the band entropy is
greater than that of the AF insulator for a sizable
range of temperatures less than the Neel tempera-
tgye. In this case the curves would cross twice so
that there would be two temperature regions where
the entropy favors a transition to the metallic state.
Again if the M-I transition temperature is compar-
able with the Fermi temperature, the transition
will be gradual. However, if the energetics are
such that a transition could occur below the AF
transition temperature (i.e. , if the ground-state
energies are sufficient close) one can see a
tendency toward a first-order transition driven

by the increased band entropy relative to that of
the ordered AF state. The latter alternative is
reminiscent of the experimental situation in such
systems as V20,.

It seems evident from Fig. 13(b) that no large
specific-heat anomaly is to be expected at the met-
al-insulator transition or in the region of AF dis-
order in NMP- TCNQ. In both cases the breadth of

the one-dimensional transition together with the

large molecular background specific heat makes
it unlikely that any anomaly would be observable.
The theoryfor the one-dimensional Heisenberg AF '4

predicts no sharp peak at any temperature, and

attemps to observe the magnetic contribution in

other systems have failed. Estimates for spin
—,
' indicate a broad specific-heat maximum of less
than 1 cal mole ' deg ' which would be difficult to
separate from the lattice contributions which domi-
nate in the range 30-60'K. The full experimental
specific-heat curve is shown as a function of tern-
perature in Fig. 14. The heat capacity is clearly
dominated by molecular bending and rotational
modes as well as lattice phonons at all but the low-
est temperatures.
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VIII. SPIN-RESONANCE STUDIES J- PsHs —2t /U~ —ks Ts (60)

Because of the relatively small spin-orbit con-
stants associated with the first-row elements (C,
N, H) from which the molecules of NMP- TCNQ are
synthesized, the coupling of the spins to the lattice
is extremely weak. This fact has made it possible
to use the spin resonance as a means to measure
the susceptibility in the metallic phase, through the
metal-insulator transition and into the insulating
regime (both AF and paramagnetic).

High-field spin-resonance studies on single crys-
tals (at X band and Q band) showed a narrow line
with g value extremely close to the free-electron
value. The anisotropy in g was of order

I g. gI-/g=4xlo-

and the deviation from the free-electron value was
of the same magnitude. A g shift of this magnitude
is quite reasonable. One expects ~g/g-X/hE,
where ) is the spin-orbit coupling constant and ~E
is the energy separation to the next band. The
strong visible absorption of the TCNQ radical im-
plies a value for b,g-2eV. Thus the measured
(&g/g) requires a value for & of order 8&&10 4 eV
in good agreement with the known magnitude of the
spin-orbit interaction for carbon and nitrogen.

DetaiJi. ed linewidth measurements as a function
of temperature were carried out at 30 MHz (approxi-
mately 10-6 external magnetic field) on powder
samples. The advantages of the low-frequency
powder measurement are threefold. First, the
very low field makes small g-value anisotropy com-
pletely unimportant, so that the measured line-
width is intrinsic. Second, the low frequency elim-
inates any possible skin depth problem associated
with resonance in the metallic state. Third, our
chemical synthesis techniques provided maximum
purity on the powder samples. The linewidth re-
sults are shown in Fig. 15. Throughout the entire
temperature range the line remains unshifted (a
shift of a fraction of a gauss would easily be de-
tected).

The existence of an unshifted narrow resonance in
the antiferromagnetic phase is of particular interest.
Although the argument given above concerning the
small spin-orbit interaction is correct, convention-
al theory (either semiclassical or spin-wave anal-
ysis) based on the Neel model of the AF state yields
the well-known result that in zero field the AF re-
sonance occurs at '

~AF ( 2H II )1/2

where II~ and H„are the exchange and anisotropy
fields, respectively. One can estimate II~ from
the measured values of t and U~ for

giving II~ = 10 G. Thus the above simple expres-
sion would predict a shift of order 10 8„ indicat-
ing that anisotropy fields as small as 10 G would
have a large effect. This is not observed experi-
mentally.

The error in the above argument is that it is
founded on a small-deviation spin-wave theory based
on the Neel model of the AF state. Although such
a picture gives an excellent description for large
spin in three dimensions where the coordination
number is large, it is grossly misleading for the
highly quantum-mechanical spin- —,

' AF in one dimen-
sion. In the latter case, the correlation time for
a particular Neel configuration is evidently ex-
tremely short, of order 0/Z. It is for this reason that
the AF zero-point deviation diverges in one dimen-
sion4 whereas in a typical three-dimensional case
the zero-point deviation amounts to a few percent
correction to the sublattice magnetization. The
short correlation time in one-dimensional spin- —,

case is to be contrasted with Anderson's estimatev
of several years for the lifetime of a typical Neel
configuration in a three-dimensional system.

The detailed spin-resonance dynamics have not
been worked out for the one-dimensional antiferro-
magnet including anisotropy and dipolar effects.
Ovchinnikov's spin-wave specturm goes to zero
energy as k-0, z implying the existence of the
usual two AF resonance modes. However, we ex-
pect the low-spin one-dimensional case to be insen-
sitive of anisotropy effects. The essential question
is whether or not a particular Neel-like configura-
tion persists long enough for the system to precess
in, and thereby sense, the anisotropy or dipolar
field. The relevant comparison has its origin in
the uncertainty principle and is between 7, and

(&oo ) . If 7', is much less than (~OF) ' the aniso-
tropy effects are essentially motionally narrowed
out of the picture. We therefore suggest that the
unshifted narrow resonance in the AF phase pro-
vides considerable insight into the nature of the one-
dimensional antif erromagnet. The correlation
time is evidently very short, suggesting a picture
of resonating singlets.

Evidence for a short correlation time can be ob-
tained directly from the linewidth data of Fig. 15.
For reference, the temperature regions corre-
sponding to insulating AF, insulating paramagnet,
and metal are indicated on the figure. The over-
all shape suggest two mechanisms. At high tem-
peratures a contribution linear in T appears to dom-
inate. Below the M-I transition the linewidth goes
through a broad maximum with decreasing tempera-
ture, the maximum occuring roughly at the tempera-
ture where the AF spin correlations become impor-
tant. As anticipated the narrow Lorentizian lines
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FIG. 15. Half-width at half-amplitude of the ESR ab-
sorption curves for NMP-TCNQ in milligauss vs tempera-
ture. Since the line shape was Lorentzian, the half-width
at half-amplitude (2~&~2) is related to the measured peak-
to-peak linewidth of the derivative curve (~ P by (2~t/p)/
(m,g =-,'&3.

Naturally, since the system evolves continuously
from metal to insulator, the correlation time will
vary continuously as well. The dipolar contribu-
tion to the second moment of the resonance line can
be estimated from the Van Vleck formula 7 using
the crystal structure of NMP- TCNQ, '~ and the
molecular spin density distribution of Lowitz, and
the reduced moment found in the insulating phase.
The resulting value (including the —

a factor) of

(AuPv & = 2. 7& 10 'a sec can be used to obtain r, di-
rectly from experiment with the relation

+exyt = ( +a v) 7'q (62)

The resultant 7, should reflect the correct tempera-
ture dependence although the precise value is scaled
to the estimated dipolar contribution. ~~,„„is ob-
tained from the data of Fig. 16 by subtracting off
the underlying linear term and attributing the dif-
ference to Eq (62). This. assumes the linear term
arises from spin-lattice relaxation and that this

indicate motional narrowing of the dipolar line-
width. 75'76 In the insulating phase, such motional
narrowing is expected as a result of the exchange
interaction between sites which gives rise at low
temperatures to the antiferromagnetism (v, = &o,'„).
In the metallic phase the electrons move more or
less freely through the crystal in the tight-binding
energy band; the resulting correlation time should
be of order 7, = a/v~, where a is the lattice constant
and v~ is the Fermi velocity, vz=h 'de„/dhl e. Thus
we expect

v, = tu, „=h/Z= 10 "sec, paramagnetic insulator

(61)
aS 8 j4=—= 10 sec, metal.

contribution persists to low temperatures; however,
the effect of this assumption on the resulting low
temperature 7, is minimal so long as this contribu-
tion to T& decreases uniformly with decreasing tem-
perature. Since as shown below the linear term
arises from the coupling of the spins to phonons
and molecular vibrations, this should be the case.

The experimentally determined 7., is shown as a
function of temperature in Fig. 16. One sees a
value of the expected magnitude in the metallic
state. As the temperature decreases 7, increases
smoothly reaching a maximum of 7. 5&10 sec at
50'K. On decreasing the temperature further well
into the AF regime 7', again decreases apparently
stabilizing at 7,= 5&&10 ' sec at the lowest tempera-
tures. Thus the experimental linewidth studies in-
dicate that the one-dimensional AF ground state is
characterized by a correlation time 7 —Q) „as
argued above.

The maximum in 7, corresponds to the slowing
down of the fluctuations in the vicinity of the mag-
netic "transition. " For a true phase transition in
three dimension, 7, slows down essentially to zero,
giving a divergence in the linewidth7e (the full di-
polar second moment becomes operative), and at
lower temperatures the resonance is shifted ac-
cording to Eq. (59). Because of the large fluctua-
tions in the one-dimensional system, 7, remains
relatively short throughout the broad transitional
region. These experimental data provide a unique
picture of the one-dimensional AF transition show-
ing c].early both the large fluctuations as well as
the broad transitional region.

The question of exchange narrowing in one-dimen-
sional systems has recently received special atten-
tion in the literature. ' Experimental studies on
single crystals of TMMC have shown large aniso-
tropies in linewidth and line shape. Such effect are
not evident in our low-field powder data, although
the over-all magnitude of the linewidth may be af-
fected. However, averaging the TMMC data over
all angles yields an estimated powder linewidth with
magnitude in close agreement with the results of
conventional exchange narrowing theory. Thus
the use of Eq. (62) to obtain 7, from the powder
data should involve little error.

The linear temperature dependence of the line-
width which becomes evident in the metallic phase
suggests a direct spin-phonon relaxation process
where the rate is proportional to the number of
thermal phonons. Such a process was first pro-
posed by Overhauser, and the mechanism was
developed by Elliott~ and Yafet. ' Elliott argued
that the spin-flip lifetimes v, should scale with
the simple scattering lifetime r~, there being a
finite probability of a spin flip whenever the elec-
tron is scattered. The dimensionless scaling pa-
rameter in Elliott's theory was the g shift which
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8.0

6.0—

and 2v/b and 2m/e are lattice constants. The in-
tegral in Eq. (68) is restricted to the first Brillouin
zone. The result therefore is

2Na
e 7„v~E„,

'1JN
(70)

2.0—

40 80 l20 l60 200 240 280 320
T ('K)

so that the conductivity is given by

J„Ne v'~v~2 2
0'"" E„mt

Substituting the Fermi velocity from Eq. (61), one
finds

FIG. 16. Correlation time ~~ vs temperature for
NMP-TCNQ as obtained from the linewidth data of Fig.
15.

where C is a constant of order 10 '. Since we know
from the spin resonance that (hg/g)0 is of order
10, T, can be estimated from the electrical con-
ductivity in the metallic phase. Following Ziman, 00

the conductivity is calculated from the expression
for the current density J:

0

J =2&~ e'r„v„(v, E)—
a BE

(64)

where E is the applied field, v„ is the velocity for
an electron in the state with wave vector k, and

f0 is the Fermi distribution function. Using the
one-dimensional tight-binding band structure given
by Eq. (48) with the implied planar Fermi surface,
the current density can be evaluated:

J= v„— i vs (v~ ~ E)d0k, (65)2m' " Be&

where dS is the differential area on the surface of
constant energy at &. Solving for J„with E =E„x
(x is taken as the unit vector in the direction of
highest conductivity) we obtain

2V e 7&E„=( ), „" ~a~dS, (68)

2v e'~„z, -

(a~)(a~)

is a measure of the strength of the spin-orbit inter-
action:

~,'= c(~g/g)'~g

4N e 7'g
Oxx =

@p fQ ~

7r

From the measured value of g at room temperature
one can estimate 7~ - 10 '4 sec. Using this together
with the value for ag/g, we estimate b, &v= 7,'-100
in agreement with experiment. Thus the order of
magnitude is correct, and the linear temperature
dependence is consistent with the observed decrease
in conductivity with increasing temperature in the
metallic phase. The microscopic treatment of
this relaxation mechanism has been developed by
Yafet. ' Using Yafet's theory, one finds that in
order to obtain a relaxation rate in agreement with
experiment requires a spin-flip matrix element via
the spin-orbit interaction which is roughly one-third
of the corresponding value for sodium metal; this
is a reasonable value, since C and N are expected
to have spin-orbit coupling somewhat smaller than
Na. Clearly, as in any relaxation or linewidth
study, other mechanisms for a linewidth linear in
T are possible. However, the order-of-magnitude
numerical agreement described above suggests that
the process is correctly indentified.

IX. SUMMARY AND CONCLUSION

The experimental studies and analysis presented
in this paper give a detailed picture of the metal-
insulator transition and the associated evolution of
a single system from metal to paramagnetic insula-
tor to antiferromagnetic insulator as the tempera-
ture is lowered.

Comparison of the low-temperature experimental
results with the predictions of exact solutions of
the one-dimensional Hubbard Hamiltonian imply
that NMP- TCNQ is a nearly ideal example of this
important and much studied model. The tempera-
ture dependences of the experimental parameters
are in qualitative agreement with expectations.
However, the need for a satisfactory finite-tempera-
ture theory is all too evident. Of particular impor-
tance is a sound treatment of the build-up of elec-
tron-hole correlations toward the formation of the
Coulomb "hole" responsible for the small effective
electron-electron Coulomb repulsion in the metallic
state.
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The low-temperature one-dimensional antif erro-
magnetic state was studied by resonanceandspecif-
ic-heat techniques. The predicted linear term
characteristic of one-dimension has been observed
in the specific heat. The resonance studies, includ-
ing the unshifted position of the spin-resonance line
together with the observed temperature dependence
of the linewidth have provided insight into the one-
dimensional antif erromagnet. The fluctuations ex-
pected for a one-dimensional "phase transition"
have been seen in the linewidth study. A slowing
down of the fluctuations is observed in the transi-
tional region; however, the correlation time never
grows longer than roughly 10 "sec. The implica-
tions of these studies on the general question of one-
dimensional "phase transitions" are clear. The
transitional regions are broad (b T- 20 'K) both in
the case of the M -I transition near 200 K and the AF
transition near 40 ' K. Nevertheless, below the transi-
tional temperature region the physical properties of
the system are established; i. e., the system is defi-
nitely insulating with an energy gap below 100 K, and
the AF spin waves exist and are well defined below
10 K. It would thus appear obvious that the theo-
rem regarding the absence of long-range order in
one dimension should not be used as an argument
against the study of and search for interesting
phenomena in one-dimensional systems.

The basic parameters relating to the molecular
physics in the solid are the effective Coulomb in-
teraction U,f f 0. 17 eV and the intermolecular
transfer interaction t = 2. 1&&10 eV. The latter
implies a metallic bandwidth of order 0. 1 eV, a
value which is reasonable for a molecular crystal.
However, wide variations in the transfer integral
can be expected to result from small changes in
lattice structure and from small changes in the
detailed m molecular wave functions in the particu-
lar structure of interest since the intermolecular
overlap is extremely sensitive to such effects. A
direct tight-binding band calculation in which t is
evaluated from the SCFMO wave functions for
TCNQ in the lattice structure of NMP- TCNQ for
comparison with the experimental value would be
of considerable interest. The small value for U
is somewhat more surprising. The basic mechan-
isms for reducing the effective Coulomb interaction
are discussed in Secs. I and III. First, molecular
correlation effects reduce the interaction from an
atomic value (-10eV) to an order of 2-SeV. The
importance of the molecular correlation cannot be
overemphasized, for without this effect metallic
organic systems would not be possible. Second,
the bare interaction is reduced by a factor esti-
mated to be of order 5 by the cation polarizability
of the NMP molecules. The experimental evidence
on this important point is quite convincing. The
optical data on KTCNQ and on Cs~TCNQ3 show the

charge-transfer excitation at aoout 1 eV. This
band is definitely shifted to lower energies in the
N-methyl-phenazinium salt. Resistivity studies are
inconsistent with a low-temperature gap larger than
about 0. 1 eV. Diffuse reflectance studies show an
absorption band at about 0. 4 eV, but the position
of the band edge (which determines the gap) cannot
be determined from the data, nor is it clear that
this absorption corresponds to the production of
current carrying excitations. In any case, there
is no doubt that the effective Coulomb interaction is
significantly reduced in the NMP salt as compared
with the alkali salts. The bare on-site interaction,
Uo should be insensitive to the detailed surroundings.
The nearest-neighbor interaction U& might well
change with the detailed molecular arrangement in
the crystal. However, it is unlikely that U& could
increase by 20% on going from the alkali to the NMP
salt, especially since the molecules are displaced
from one another in NMP- TCNQ in such a way as
to decxease the near-neighbor Coulomb interaction.
Moreover, the general tendency toward better con-
ductivity (and hence smaller band gaps) with polar-
izable organic cations has been clear for many
years. 23 Thus, the experiments indicate a reduc-
tion of the difference Uo- U& by the polarizability
factor to the relatively small value of 0. 17 eV for
NMP- TCNQ. The cation polarizability evidently
plays a key role in making the metallic state pos-
sible; without it, the basic Coulomb interaction
would be in the range of 1 eV as compared with
a bandwidth of 0. 1 eV, and the metallic state
would be out of reach.

The chain of TCNQ molecules stacked face to
face with surrounding chains of NMP is in a crude
sense reminiscent of Little's suggested model for
an organic superconductor. ' From this point of
view the NMP cations play the role of the side
chains to the TCNQ "spine. " Although the ideas
originally put forward by Little have received con-
siderable attention, we believe the work described
in this paper represents the first example of an
experimental situation in which the cation polar-
izabil. ty can be shown to play a definitive role.
Although we have not yet pursued this in depth, it
seems evident that in the metallic state a mass
enhancement of the electrons is implied as a result
of virtual emission and reabsorption of polariza-
tion quanta (excitons) which at the same time pro-
vide an indirect attractive term to the electron-
electron interaction. Whether the over-all inter-
action can ever be attractive with the proper fre-
quency dependence to give super conductivity is
much less clear; although possible, it is perhaps
not likely except under very stringent conditions.
However, it is worth emphasizing once again that
further reduction of the basic intramolecular Cou-
lomb repulsion through correlation is quite pos-
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sible. ' lt seems that the best procedure at pres-
ent is to attempt to maintain the metallic state to
lower temperatures.

In addition to the many aspects of the metal-in-
sulator transition, the theoretical description of
the transport properties in a narrow-band system
at temperatures comparable to the Fermi tempera-
ture is a fascinating and challenging problem. The
difficulty can be seen from an estimate of the mean
free path A- v~v, where v~ is the Fermi velocity
and v the scattering time. Using the values esti-
mated in Sec. VIII, one obtains a value for A of
roughly one lattice constant; the electrons in effect
scatter at every site! This represents a break-
down of the adiabatic approximation as discussed
by Ziman. The essential difficulty can be anti-
cipated by looking at the widths of optical-absorp-
tion lines corresponding to the m-~* transition in
arorratic systems where a typical width of a few
hundred cm ' is found at room temperature. Since
the electrons in question here propogate in a band
arising from such a m* level of TCNQ and since
the resulting energy bandwidth is of the same mag-
nitude, the difficulty is clear At lo.w temperatures,
where the one-molecule levels would be sharp, a
conventional theory is adequate, and 7 could be cal-
culated with perturbation theory. At higher tem-
peratures, when 7 E~-S, the usual approximations
break down. In this regime the situation is perhaps
more properly viewed as that of electrons propagat-
ing in a band and simultaneously subjected to a
random (in space and time) scattering potential of
rms amplitude proportional to kT. The question
of electrons propagating in a random potential has
recently become of interest in connection with the

problem of amorphous materials. There, where
the potential is spatially random but time indepen-
dent, Anderson's theory predicts the formation
of localized states. The random time dependence
qualitatively changes the problem. In this case it
seems that the electrons would continue to propa-
gate, but in a hindered fashion depending critically
on the time fluctuations in the local potential. This
interesting problem requires further study before
the conductivity in such narrow-band metals can be
understood.

In this paper we have presented a detailed ex-
perimental study of the metal- insulator transition
and related phenomena in the organic solid, NMP-
TCNQ. This system is particularly interesting,
for it is representative of a class of materials which
heretofore have had little impact on the electronic
aspects of solid-state physics namely, solids made
up entirely of organic molecules consisting solely
of carbon, nitrogen, and hydrogen. The possibility
of designing and synthesizing molecules to achieve
properties on the molecular scale that will lead to
interesting and fundamental solid-state physics
suggest an exciting future for this area of research.
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The anisotropic-Heisenbe rg-ferromagnet formalism developed previously is examined to
include an applied magnetic field for the isotropic case in the random-phase approximation.
Thermodynamic quantities such as magnetization, susceptibility, and the derivative of mag-
netization with respect to temperature are studied near the Curie point.

INTRODUCTION

According to the gneiss theory, a ferromagnetic
material possesses an internal field which is pro-
portional to the magnetization. As the temperature
of a ferromagnet is increased, the magnetization
decreases until, at a temperature known as the
Curie temperature T„ the material becomes para-
magnetic. This change from ferromagnetism to
paramagnetism is r'eferred to as the ferromagnetic-
phase transition. Experiments and theory have
shown that electrical, mechanical, and many thermo-
dynamic properties of a material are altered when

the material undergoes a phase transition.
The effect of an external magnetic field is two-

fold: (i) The magnetization is increased above its
zero-field value and (ii) the transition region is
broadened. Even though increasing temperature
tends to destroy spin alignment, the field causes
some ordering to be present. Thus, instead of an
abrupt change at the critical temperature there is

a more gradual transition.
This report investigates some thermodynamic

properties of the Heisenberg ferromagnet in an ex-
ternal magnetic field. The quantities studied are
the magnetization, susceptibility, and the deriva-
tive of magnetization with respect to temperature.
The last of these can be used to calculate entropy
and the magnetocaloric effect, which are useful for
investigating various recently proposed magnetic
refrigeration systems. '

' Model

The Heisenberg model assumes the magnetic
electrons are in states localized about the lattice
sites with an exchange interaction taking place be-
tween electrons. The model does not take into
account itinerant electrons and is considered valid
for insulating ferromagnets such as EuO but not
for conductors such as iron and nickel. However,
it appears that this model gives better results for
conductors at low temperatures than those calculat-


