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constant of the doped sample. In Fig. 4, the
curves using Eq. (4) are drawn for C~= C. This
means we have assumed that the line shape does
not change with Mg doping. Experimentally, how-
ever, we have observed a slight change in the line
shape from Lorentzian towards Gaussian as the
Mg doping is increased. Unfortunately this change
in line shape is very difficult to take into account
quantitatively in Eq. (4). Because of this and the
line-shape problem even for the undoped KMnF„"
the qualitative agreement shown in Fig. 4 is con-
sidered satisfactory. We also note that if the 1.ine

were Gaussian for a doped sample (definitely an
extreme limit) and v e adjust C to fit the linewidth
for KMnF„ the ratio C/C~= 1.33. In this case the
theoretical curves in Fig. 4 would be considerably
lower than the experimental points. 'Therefore, it
seems reasonable that the discrepancy between the
theoretical curves and the experimental points may
mainly be due to the change in the line shape with
Mg doping. Consequently because of the line-shape
difficulties we cannot choose between different
values of I3 in Fig. 4 and the qualitative agreement
may be all one should expect at present.
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It is proved that ideal spin waves (magnons with Bose statistics) describe the asymptotic
behavior for t +~ of certain collective excitations in the infinite Heisenberg ferromagnet.

It has been shown by Bloch' and Dyson' that the
thermodynamic behavior of a three-dimensional
Heisenberg ferromagnet for T 4 0 is correctly de-
scribed by an ideal Bose gas of magnons. The

relation of the ideal many-spin-wave states to
physically realizable states of the ferromagnet has
been illuminated by remarks of Dyson and Watts:
They should correspond to scattering situations
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"in which a finite number of spin waves interacts in
an infinite and otherwise empty lattice. " In this
note we shall apply the time-dependent scattering
theory of quantum spin systems to show how in
the Hilbert space X of the infinite Heisenberg
ferromagnet Fock spaces X, of magnons are im-
bedded, and that on X, the Hamiltonian of this
model is diagonal.

We consider an infinite cubic crystal, where
every atom is labeled by a lattice vector x c7'.
For each xc7 there is a two-dimensional state
space C (x) and spin operators S;(x) satisfying

[S;(x), S;(y)] =i Z, ~„„S,(x) 6(x -y )

S(x) ~ 8(x) = —,
' .

In the incomplete tensor product

(flf)=p (2p) "l~ dk ..dk„lf„(kg . ~ k„) I

n=p ~~n

let

f„(x,".x„)=(2~) '"J dk, " dk„f„(k," )

(6)

and define

x exp(iZ x,. ~ k,),

If)= Z Z f„(x, x„)(nl) '
MO Xg'' X

xa*(&g) ' ' ' a~(x„)
I
0) . (7)

Let B=(kcR: lk, l & 7), i = 1, 2, 3] be the first
Brillouin zone. Then 5 is isomorphic to the Fock
space 6:(B)over L (B): For every f=(f„)cP(B)
with

&=;" C'(x)

with respect to y =e p'(x) = 10), the Heisenberg
Hamiltonian H is defined by4

HII, s.(,) I0&=[K,II,s, (,)]Io&,

Let E(k) be the spin-wave energy:

E(k) =L+2 J Z;(1 —e'"') .
A self-adjoint magnon Hamiltonian Ho is defined
on 5 by

(6)

I(m(x))&=II-„S.(x)"'*) Io&,
where

m(x)c(0, 1] and Z'rm(x) &~ .

(3)

Besides X we introduce the Fock space F with
vacuum l 0), where magnon creation and annihila-
tion operators a~(x), a(x) (xc7 ) act irreducibly:

[a(x), a"(y)]=5(x-y), [a(x), a(y)]=0, a(x) IO)=0

for all xc7 . An orthonormal basis of 6' is given

by all

( ) f)=[II ( )l] "'II *( )"'*'Io), (4)

where m(x)=0, 1, 2, ... and gm(x) &~.
Let T be the contraction -X, defined by linear

extension of

0 if some m(x) &1
TI(m(x))) =

I(m(x)]& otherwise .

~

~

~

K=LES„(x)—2
J' Q 8(x) 8(x+a) .

X X~I,

Here I & 0, J &0, and the summation extends over
all x c73 and the six nearest neighbors a of 0. H
has a natural self-adjoint extension such that

Ac8- a (A) =e'"'Ae '"'

is the time-evolution automorphism of the quasi-
local algebra 8, associated with K in the y rep-
resentation. H & 0 is reduced and bounded on every
eigenspace X„of the spin-deviation operator
$[s~(x)+—,']. An orthonormal basis of K is given
by the states

Tkeoxem 1. For a,ll l f)c 6',

iim (f'IT*TIf') =(fIf).
g w + oo

(10)

Proof. Since Te '"o' is a contraction from every
F„-K„, it is sufficient to prove (10) for a dense
set f„cL'(B"),„.Now, we have

(f.lf.) -(f' IT"TIf'. ) =~If!(xi "x.) I', (»)
where the sum extends over all (xq ~ ~ x„)c7 "
with x, = x, for some i +k. Equation (ll) can be
majorized by

!n(n-1) 2
I
1"„(x,x, x, " x„) I'

Qo ~ ~

,'n(n —1)(2v)—3~~~)J dk ~ ~ ~ dk n

xj dkdidm '"'"'-'

where

xf„(2k+I, ~k —l, f~. ~ ~ k„)*f„

x (-,'k+ m, —,'k —m, ka ~ ~ ~ k„), (12)

D=((k, T, m) cR~:—2k+le B, —,'kame 8],

-fH pt

(g)
n

f'„(f, f.) f„(f, k„)exp((-ii E z(k,.)).
Observe that formula (26) of Ref. 2 does not define
a linear operator Ko on 3C by Ko la &

= H I a &

—Z@.(lf &.

We shall show that T e ' o' is asymptotically
isometric from 5 to X:
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E(f, 1, m) =E(—,'k+1)+E(—,f -1)
—E(-,'f+ m) —E(-,'f -m)

Theorem 2. For all I f)c 6:,

s lime 'Te '"p'~ f)=0,
~ f)

tw+eo
(14)

= 2Z 2 cos(2h, ) [cosl~ —cosm, ] . (18)

Let f„(-,k+1, —,'k-l, k, ~" k„)cnbe symmetric
and vanish in a neighborhood of fV, E(k, 1, m) = 0].
For such f„, which form a dense set in L (B"),„,
E(I. (11) is O(ltl ") for all t)t . QED

exists and satisfies

A~+A~= 1,
$Ht ~ ~ ~got (16)

Proof. Again, we need only to consider a dense
set of f„cLo(B"), . Now we have

e&ltf Te IHPt
~
f } i else

T~g )n n

n

=i/(n() I (2w) "~ dt's ' ~ dk„/ (lt~ K„„)exP( —(t Z B(l7,))
5~1

xe'"t II- Ek, 8 k, " 8 k„O, 1V
k=1

where by Ref. 2

s,(f) =Q s.(x) e'"'*

g„(kg ' f„)= Z dl V(fq, k), 1)
1& $&g& n

&f„(' '' k, + —,I .
k& —ol ~ ~ ~ }exp(it [ E(k&)+. ~ . E(k, + 21)+.. . E(k& —o 1 ) ]]'~ (18)

I'(p, g, 1)=&(») Z cos[a ~ (p —g)/2]icos[a ~ (p+g)] —cos(a ~ I)).

For a dense set of f„the Lo(B") norm of (18) is
O(lt I ") for all E, and therefore II TIg'„) ll =O(I tI ").
This leads to (14), while (15) and (16) are im-
mediate conse(luences of (10) and (14) (see Ref. 5).

QED
Hence X contains Pock spaces X,=Q,S of scat-

tering states, whose asymptotic incoming and out-
going configurations are characterized by noninter-
acting wave packets of magnons:

lim II e '"' 0, f f) —T e-'"o'
[ f) II = 0,

t ~ y ao
(20)

and which diagonalize B. An isometric scattering
operator S is defined by SQ, I f) = & I f). It is
known that XX, and that a multichannel scatter-
ing situation occurs. Our methods can be gen-
eralized to bound-state scattering and to a large
class of other quantum-spin systems.
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