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The validity of the rigid-atom model for electron-phonon coupling in the tight-binding approxi-
mation is examined within the linearized self-consistent theory. It is shown that the deforma-
tion-induced charge-density wave will generally reduce the strength of the coupling, thus re-
ducing the Kohn anomaly in the phonon spectrum and the superconducting transition tempera-
ture computed from the rigid-atom model. The charge-density wave does not appear for cer-
tain modes; the optimal situation is that of the (nearly) half-filled band, when the rigid-atom
model gives approximately correct results.

I ~ INTRODUCTION

In Paper I of this work, referred to as I, an
electron-phonon coupling model was examined. In
I the long-range repulsive force acting between
tightly bound electrons displaced by deformation
was neglected. The elimination of the long-range

part of the interaction can be attributed, by usual
but more or less hand-waving arguments, to light
conduction electrons, which, owing to their high
mobility, are the only electrons effectively contrib-
uting to the screening. In particular, the model
Hamiltonian describing the deformed lattice was
shown, in this approximation, to be just a simple
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extension of the Hubbard Hamiltonian of a narrow
band. Such a picture probably gives a fairly cor-
rect physical description of transitional metals, but
is not entirely satisfactory as far as a basic under-
standing is concerned.

There exists, on the contrary, a simple situation,
which can be, at least mentally, formulated from
first principles, with successive approximations
which are much more clearly distinguishable. This
is the case of an isolated narrow band, i.e. , of
the band which is assumed to be also the only con-
ducting band present. Then, if any long-range
forces appear in the crystal, they can only be
screened by the narrow-band electrons. It is
probable that the real physical situation in transi-
tion metals is intermediate ' between these two
models-one of complete screening and one of no
screening by s-p electrons. It is thus of interest
to examine this latter model too. In this model,
there is added to the coupling which arises from
the rigid-atom potential a term coming from the
potential due to the redistribution of electrons over
sites in the deformed state. This correction to the
electron-phonon coupling will be shown to arise
from the same kind of approach as that now cur-
rently used" in the study of the stability of one-
dimensional systems.

The resulting self-consistency problem can be
solved for some simple situations in the adiabatic
approximation. However, the complete adiabatic
solution is available only for one-dimensional sys-
tems. New effects are found for a partially filled
band (nonintegral number of electrons per atom).
Of course, such a supposition is, strictly speaking,
inconsistent with the initial assumptions of a non-
degenerate band and a perfect crystal; it can,
however, occur when several narrow bands over-
lap, as in actual transition metals. The author
believes that the present results extend to this

latter case, although he has not examined it in
detail.

General expressions are given for an arbitrary
frequency co; however, in actual computations the
adiabatic (v =0) limit is always used, except in the
computation of the lifetime of a one-dimensional
phonon. The notations used here are the same as
in I.

II. SELF-CONSISTENT POTENTIAL AND CORRESPONDING
PHONON SELF-ENERGY

( ) ~ e'd'(r'-Ti. , —u, )
t r —r'

l

(2. 1)

This potential is a superposition of long-range con-
tributions from all sites i of the crystal, since we
assume the long-range forces to act between d elec-
trons. It represents a correction to the rigid-atom
potential, this latter being self-consistent, when d
functions are moved as in Eq. (2. 1), only with a
uniform electron distribution over sites.

This potential should thus be added to the rigid-
atom potential acting on the left-hand side of Eq.
(2. 6) of I, which in this way becomes

In Sec. II of Paper I we argued that, owing to
the breakdown of the translational symmetry, the
probability density of an electron on site i,

p, =2& /aI)',
10cc

is generally altered in the deformed state. There-
fore an excess charge e5p, d'(r —5, —u, ) appears on
the site i. 5p, is the charge-density wave (CDW) on

the site i and 6p, = p, —Q where Q is the number of

electrons per atom in the band. d(r —5; —u, ) is the
local tight-binding wave function, centered on the
position 5, +u, , where 5, is the equilibrium posi-
tion of the ion and u; its displacement. This excess
charge gives rise to a potential seen at the point r:

I 2

2m
d(r —g —u& ) + V(r —5& —u&) + 5V(r) d(r —5,

&
—q) —E, a&

= —Q (d(r —5, —u,.) ~
V(r —5„,—u&„)~d(r —Tt~. , —u...))a&. , (2. 2)

640

Here we retain only the forces of the longest range
and thus neglect the matrix elements of the type
(d„~I IV(r)ld~) for bo0.

The potential which acts on the electron is the
superposition of the rigid-atom potential and a cor-
rective term arising from small departures at each
site from electrical neutrality. Here we treat the
Hartree term (2. 1) in the linearized approximation,
i.e. , we calculate the linear self-consistent re-
sponse in 5p; to the deformation u, This com-
pletes the linearization procedure undertaken in

(Er —GUS —Eo)aI =(K+ Vss)ay (2. 3)

where

Eq. (3. 2) of I.
In order to shorten the actual calculations, we

establish the mathematical analogy of such an ap-
proach with the more usual jellium calculation.
First, we take the matrix element of the potential
(2. 1) on the left-hand side of the Eq. (2. 2) so that
the Eq. (3.3) of I is extended to
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TABLE I. The formal correspondence between the jellium and tight-bonding quantities entering the computation of
the electron-phonon interaction.

Jellium

Tight binding

Direct
space

Unperturbed
state

exp(iQ lJ~)

Unperturbed
energy

p'
2m

2g J'(a~) cos l

Charge
variation

gp(r)

Potential independent
of charge variations g p

potential of the
external field

Induced
potential

e &Pf',

f f

Zero th-order
phonon frequency

Qf,

(ion plasma fr. )

0

(see Sec. III of I)

5Ul —-Q; 5p(V(R~, Rl),
with

V(y g )
e'd'(r —5,)d'(r —5,.)

Ir -r')

(2. 4)

Go(l, (u') = [(u' —E, +i5 sgn(Z, —Z~}] ' (2.8)

for electrons with energy E, =2/, J(a ) cosl and
wave vector l, and

D'„(s, (u} = 2(u'„/((u' —u)0', + i5} (2.7)

for phonons of wave vector s, polarization X, and
frequency cu, ),. As pointed out in I, ~,„should van-
ish in the long-wavelength limit.

The "screened" electron-phonon interaction g„is
given by the usual diagrammatic expression shown
in Fig. 1. g„ is the coupling constant arising from
the rigid-atom potential V», Eq. (3.7) of I, and

Vsc is the Fourier component of the matrix ele-
ment V(R&), Eq. (2. 5), screened within random
phase approximation (RPA), as shown in Fig. 2.
V' is the Fourier transform of V(%&) itself:

V'=(1/N)Q V(% ) exp(iQ s j„) . (2. 8)
Defining

(2. 5)

For large distance 1%,—5l I, the matrix element
(2. 5) reduces to e /l%& —Rl~. This long-range
behavior requires, by usual arguments, a self-
consistent treatment of 5p;. We can thus establish
the correspondence between the quantities appearing
in the jellium and the tight-binding approach shown
in Table I. Thus the rigid-atom coupling constant
(3.7}of I arising from V» plays the role of the
unscreened coupling constant in the jellium case.
The charge variations are described by the correla-
tion function (p&„(t}, p&) instead of (p(r, t )p(r, 0) ) .
In the calculation of this correlation function we can
obviously use the same diagram rules as in the
free-electron case, but keeping in mind that the
space dual to j is E. Physically at least the non-
trivial modification arises from the fact that the
rigid-atom coupling constant depends not only on
the momentum transfer s, but also on the initial
electron state I, unlike the free-electron bare-
coupling term.

In respect to TaMe I the zeroth-order Green's
functions are to be taken as

I

I g(&) ~ +
2

G (lq ~ ) G (i+st (d+(d ) )
7T

(2. 9)

Qs(&) =NZ gl, I
2

G (I, ~'}G (l+s, ld+(u'),

(2. Io}
and using the usual diagram rules, we read Figs.
1 and 2 and obtain

j. 4ll s
gls num 0 I ls gls VSC Qs r2cVM40 )t

~sc = V~~ ™s~sc&

from which

gl. =gl. V'Q—.'/(I+ V'&.) .

(2. Ii)

(2. I2)

(2. 13)

g, =g, /e, for arbitrary s . (2. I4)

But even in the tight-binding limit this approxi-
mation is inconsistent because in order to have

+ ~a

Vsc

FIG. 1. Electron-phonon interaction, screened within
HPA.

The final expression (2. I3) for the coupling constant
is built up of two parts —the rigid-atom part g„and
the appropriately normalized matrix element of
5U&", calculated within RPA, (l +s I 5Ul'~ l ). Unlike
the almost-free-electron case, the dielectric con-
stant does not appear in the rigid-atom part simply
because in order to calculate the charge distribu-
tion around an ion we use the tight-binding approxi-
mation instead of the linearized Hartree approxima-
tion. On the contrary, the "dielectric constant"
e, = 1+V'P„corresponding to the correlation func-
tion (p&(t)pl(0)), appears in the second part since
the small variations of the probability density on a
site can presumably be treated by the linearized
self -consistent theory.

If the band is almost empty (or almost full), one
would be tempted to put g'„=g„as in Eq. (3.8) of I,
for the occupied (or unoccupied) states. For these
states one would then have Q,"=g',+, and Eq. (2. I3)
would formally reduce to the free-electron expres-
sion
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Vsc V Vsc

FIG. 2. Screened Coulomb interaction.

c, 0 1 over the finite portion of the phase space s
(and with RPA valid) we must have a finite number
of electron states filled, and hence take into account
the l dependence of g'„.

However, before leaving Eq. (2. 14), it is inter-
esting to exhibit its physical meaning. In the
Bardeen-Shockley limit (I small or large, s small)
I, , defined by Eq. (3.7} of I is linear in s, as, for
example, in Eq. (3. 8) of I. This limit corresponds
to the Thomas-Fermi (s-smaLL) approximation
for ~, , which thus diverges as l s I . Hence

I, , Eq. (2. 11), vanishes as a third power of

s. More physically, the Thomas-Fermi elec-
tron redistribution 5p& in an almost empty or al-
most filled narrow band is such that 5U& compen-
sates primarily for the Bardeen-Shockley deforma-
tion potential V» created by the deformation. This
in order to have 5p& as small as possible: The re-
maining coupling term is weak since it is two or-
ders higher in s.

Although inconsistent, this approximation exhib-
its the role of CDW in electron-phonon coupling.
The l dependence of g„will diminish both the rigid-
atom coupling and the CDW, relative to the values
corresponding to Eq. (2. 14}. The CDW is de-
creased more than the rigid-atom coupling, so that
the linear s dependence of I"„for small s is re-
covered. The l dependence of I,", leads even to
rather spectacular effects. Thus in Sec. III, we

shall show that, when the band in the linear lattice
of equidistant identical atoms is half-filled, Q,
vanishes in the adiabatic limit for any s, i. e. ,
I„=—I„for arbitrary l and s. There is no charge
transfer among the atoms in this case. The same
property is derived in Sec. IV for a half-filled s
band in the simple square lattice and a family of
deformations containing the longitudinal long-wave-
length deformation. The physical origin of the ef-
fect and its generalization to three dimensions are
also discussed in this section. These results are
to be contrasted to the free-electron theory, where
just the longitudinal long-wavelength deformations
produce the RPA variations of the charge density.

On the other hand, it is easy to see from Eq.
(2. 10) that the (110) shear deformation of the simple
cubic lattice does not produce the linear charge
variation, whatever its wavelength and whatever
the s-band occupation.

In order to calculate the energy of electron re-
distribution we can proceed by the simple second-
order time-independent self-consistent perturbation

theory applied to the Hamiltonian (2. 3). When one-
half of the Coulomb energy of the electron redistri-
bution is subtracted from this result we obtain the
required energy E,'&' . However, E,'&' still counts
some of the electron-electron interactions twice,
since the matrix elements are related to the one-
electron potential including a part of the electron-
electron interaction. With a suitable choice' of
d functions and potentials this correction is thought
to be small, and is usually neglected. '

The energy E",,', arising from the variation of the
band energy in a static periodic deformation, gives
in the Born-Oppenheimer adiabatic approximation
the phonon self-energy, i.e. , the renormalizatlon
of phonon frequencies:

~'„=~'„+(z,"„'+z,",' )/NM
l
u,'l'n '. (2. 15)

u, is the amplitude of the deformation. E,', ' is an
energy term, at present uninteresting, arising
from the second-order terms in the effective
Hamiltonian, such as those mentioned at the begin-
ning of Sec. III of I.

The phonon self-energy corresponding to E,&' can
also be calculated by the use of diagrammatic
methods. In fact, it can be readily shown (Appen-

dix A), that if we calculate the phonon self-energy
11,(&u) from the graph shown in Fig. 3, then

5 E' '/%Min
I

2&usivs(0) ~

as expected on physical grounds.
Inserting the coupling constant (2. 13) and using

the definition (2. 10) of Q„Fig. 3 reads

&, = &, —NV'(Q, ) /(1+ V'P, ) .
Here, &., is the self-energy corresponding only to
the rigid-atom interaction V~&..

X G '($~ (d )G (I +S~ (d +(d ) . (2. 1?)

Such an energy was first studied by Migdal, ' withg„
replaced byg, and a spherical Fermi surface. In Sec.
III of I, we pointed out that Labbe's" variational ap-
proach to the electronic deformation energy is equiv-
alent to the perturbation approach to the rigid-atom
deformation potential, [Eq. (3.5) ofl], which is in

turn (see Appendix A) equivalent to the Born-Oppen-
heimer treatment of (2. 17). Thus the effect of the
anisotropy of the Fermi surface on the energy

FIG. 3. Phonon self-energy due to the electron-phonon
interaction.
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(2. 1V) was already studied in Ref. 11.
The second term in the Eq. (2. 16) arises from

the self-consistent potential. By Eq. (2. 16) its
calculation is reduced to the calculation of Q,"; thus
it vanishes for the special cases mentioned above.
Physically, we expect that, being related to the
term which reduces the charge variation, it will
reduce the Kohn anomaly. This will be shown in
the one-dimensional case where the Kohn anomaly
in (2. 17) is so strong that it leads to the instability
of the linear chain of equidistant atoms.

III. ONE-DIMENSIONAL CASE

In one dimension' our approach is in many re-
spects similar to the Pariser-Parr-Pople approach
to & electrons in polyens, used by Harris and
Falicov' and more recently by Tric in Hartree-
Fock self-consistent calculations of the band energy
of tt' electrons. These allow for band alternation
combined with CDW's and spin-density waves
(SDW) over the sites. In the present work only the
terms linear in displacement are retained and we
look for Hartree-self-consistent CDW (we ignore
the SDW) with the same spatial phase as the phase
of the deformation, which, asfar as a linear re-
sponse is concerned, amounts to RPA. Within
these approximations we are able to extend the
study of the band alternation to any periodic de-
formation of the chain. However we are restricted
to energetic terms of second order in the deforma-
tion.

For bond-alternating deformation, our solution
agrees with that of the above-mentioned Refs. 4
and 5: No bond alternation is required to mini-
mize long-range Coulomb interaction, or, the
other way around, for such a deformation a CDW
does not exist in RPA. But CDW appears for de-
formations other than doubling of the lattice pe-
riod, for arbitrary occupation of the band, andcom-
pensates partially for the gain of energy due to the
rigid-atom potential. If the band is not half-filled,
this can even lead to the disappearance of the in-
stability of the lattice against the critical (longitudi-
nal} deformation q, = 2k~.

Since we are primarily interested in the stability
of the lattice we can use the adiabatic approximation
for ~, . If, for some s, the gain of energy E,' ' due
to the electron redistribution is larger than the in-
crease in the remaining terms, the lattice is un-
stable. In another way, the instability occurs if the
"Dyson equation" has a solution with ~ = 0,

—~0'=2~o&.(0) =«"'/AMla. l'.
Strictly speaking, we should add on the right-hand
side of the Eq. (3. 1) the term arising from the
second-order terms in the effective Hamiltonian,
as explained in Sec. II, but this term is not of in-
terest here and can be considered as included in

a renormalization of the phonon pulsation +', .
If the solution of Eq. (3. 1) exists (and it always

exists for a rigid-atom interaction; Appendix B}
it is of no great interest to consider the complete
Dyson equation with v, (~ 0 0), since the lattice will
be deformed by a static deformation and the vibra-
tions must then be considered about a new equilib-
rium position of the ions. It can be expected on

physical grounds that the hardening of the phonon
spectra by this effect is much more important than
nonadiabatic corrections to ~, calculated" with
respect to the lattice of equidistant equilibrium
sites.

The coupling constant g„ for the one-dimensional
case is obtained from Eq. (3.7) of I on retaining
only one component of the electron and phonon wave
vectors and on assuming e,)„parallel to the chain.
When such a g„ is inserted in the expression (A5)
of the Appendix A the integration can be carried
out in the closed form in the adiabatic (&u =0) limit,
and one obtains

(2NMh &u,)' Q, = 4iqoT, sin —,s,
where

tan/~+ tanas0

2rT, sin2s = ln
tanl~ —tan 2s

P, is obtained on replacing g„by unity in Q, :

P, = —(I/Z}l.. .
where

sin/~ + sln2s
2ml. , sin2s =ln - .

sinl~ —sin~s

l~ is the Fermi vector of the narrow band

i~=ah~= 2vQ, 0&Q &2

(3.2)

(3.3)

(3.4)

(3.5}

(3.6)

and Q is the number of electrons per atom present
in the narrow band.

Both Q, and P, diverge logarithmically for the
deformation with the wave vector

Q&1

=2g —2l, Q&1 .

A useful relation in this limit is

2v(T, —L,) sin2s =2lnlcosl~l . (3.7)

A glance at Eq. (2. 13}shows that in the one-di-
mensional case RPA is required not only by the
divergence in V' but also in Q, . Actually, by Eq.
(3.7), the divergences in Q, and P, compensate one
another, except in the vicinity of the half-filled band

l& = 2m. However, a word of caution should be in-
serted at this point: The RPA bubble graph is not
the only divergent diagram' in, say, the series for
the irreducible polarizability in the one-dimensional
case. From this point of view mean-field calcula-
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0:0 0:0 0:0 0:0
FIG. 4. and denote the long and short

interatomic distances, respectively, and thus (in absolute
value) the small and large overlap integrals. Each site is
surrounded by one large and one small overlap: Thus all
sites are electronically equivalent.

is added even this weak instability can completely
disappear, i.e. , the lattice is stable at 0 K. In
fact the total self-energy, obtained on combining
Eqs. (2. 16), (3.2), and (3.8), is

2MN~, A n, (0) =16qoJ sin (~s)

tions such as ours ~ may be oversimplified. Note
in this respect that T, (or Q,}vanishes for Is } =m,

whatever the occupation of the band. Within BPA
the bond alternation, Fig. 4, does not introduce
CDW for any band occupation. As seen in Fig. 4,
the existence of CDW would break the symmetry
of the electron Hamiltonian contained in K+ V» and
would thus be related to a supplementary phase
transition. " The RPA solution is a symmetry-
conserving solution. Moreover CDW does not
exist for a half-filled band whatever the wavelength
of the deformation. The physical origin of this
effect is explained in Sec. IV.

The only mathematical difficulty appears in the
point I'= I 2s ~

=—', m where Eq. (3.3} has an essential
singularity in the l~, s plane. The limiting value de-
pends on the path chosen to approach a singular point.
Two "physical" paths are l~ =-,'m, I sl -mand I sl = m,

l&- 2m, both yielding T, =0 in this limit. This value
should also be chosen by inspection of the integral
before integration (see Sec. IV), or with regard
to the fact that the exact diagonalization (Paper I)
of E+ V~& does not give rise' to charge fluctua-
tions, i.e. , 5 U&=' ———0. The vanishing of CDW in
the above situations can, on comparing with Eq.
(2. 14), be traced back to the l dependence of g„,
i. e. , to the nonlocality of the potential V», Eq.
(3. 6) of I.

With Q, known we can calculate the energy con-
tribution produced by CDW in Eq. (2. 16), and com-
pare it to the rigid-atom term (2. 17). First, from
Eq. (A2), we find the self-energy arising from the
rigid-atom potential

2MN~, II r, (0) =16qoJsin '(~s)(L, —S),

2 2 2

x ' '-S+ ' 3 9
L, (J- V'L,)L,

As readily seen from Eq. (3.7) the divergence, if
it exists, is contained in the term (L', —T,')/L, .
This term is plotted on Fig. 5 for three different
Fermi vectors. We see that for small (or large)
band occupations the divergence is eliminated. It
develops when the number of electrons in the band
increases towards the half-filled band, due to the
fact that the CD% becomes smaller for the critical
deformation l s l

= 2l~ as this deformation gets
closer to the highly symmetric bond alternation
(Fig. 4).

It is perhaps worthwhile to note that an analogous
result is obtained in the RPA linearized Hartree-
Fock approximation, with short-range electron-
electron interaction. In this case V, in Eq. (2. 13)
has to be replaced by 2VO, where Vo is the intra-
atomic matrix element of the short-range interac-
tion.

Inconclusion, the CDW reduces (within HPA) the
Kohn anomaly in the phonon spectrum of the linear
chain of equidistant atoms for small and large oc-

.0.1

where

S =(I/v) sinl' .
(3 8) 1.0

Equation (3. 8) is only a slight generalization to
arbitrary band occupation of the expression ob-
tained' by Ovchinnikov for the half-filled band.
Also, it is the first of the series of divergent terms
summed approximately" by Labbd.

In agreement with this latter result this term, by
itself, leads to the instability of the lattice at
Isl=2lo or Isl=2v —2l'„, for Q& 1, respectively,
whatever the parameters determining ~,.

The estimated' energy gap for this instability is
small' when /~ is small or close to m. But when
the CDW RPA contribution to the phonon self-energy

1.5

20 r (s)

FIG. 5. Plot of the function f(s) =2 m sin (2g) [(T~ -L~)/l. ~
+S] leading to the instability in the vicinity of the half-
filled band for occupation numbers 2Q (or 1—2Q) equal to

The dotted line gives the position of turning
points occurring for l z/2~) = ~Q (or 3, —2Q).
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FIG. 6. Band structure of the tightlybound s band in the
sixnple square lattice.

In this section we shall indicate which of the par-
ticular properties of an almost half-filled band
subsist in more than one dimension. Let us first
consider a half-filled s band in the simple square
lattice, deformed by a longitudinal static deforma-
tion along the direction (11), i.e. , s„=s, = so.
The variation of the band energy due to the rigid-
atom part of the coupling constant is obtained from
Eq. (A2) by the equivalence (A4):

rigid
&Spr,

lu, t
, = 16q,J sin(2sp)

~ cos [&(I„+I„+so)] coa[z (I, —I,)]
sin[2(l„+ l, +so)]

. (4. 1)

The trigonometric transformation to variables
2(l„+I,) and z(l„—I„) in Eq. (4. 1) is introduced be-
cause the limits of summation are simple in terms
of these variables. From Fig. 6, we see that a
half-filled band is characterized by

—-',
vr & &(I„+l„)& —,v .

Thus we have

(4. 2)

cupations of the band. In the vicinity of the half-
filled band the equidistant lattice is always unstable.
The width of the instability interval depends on vari-
ous parameters contained in ~,', and on the relative
strength of the bare electron-phonon coupling
—qpJ and the Coulomb interaction.

Before closing this section we note that Imv, (&u)

shows some interesting peculiarities arising from
the one dimensionality of the problem, discussed
in some detail in Appendix B.

IV. PLURIDIMENSIONAL CASE Q,', (0)- ~ cot~(l„+I„+so)=0 .
m /2 &(lg+ ly)/2 &3'/2

(4.4)
Q,o(0) vanishes for an arbitrary so because the in-
tegration with respect to —,'(l„+I,) runs over the com-
plete period of the cotangent. Note that neglecting
the l dependence of the coupling amounts to replac-
ing cot-,'(I„+I, +so) in Eq. (4. 4) by 1/sin 2(l„+ l, +so).
This would make the CDW reappear.

Next, we show that the vanishing of the CDW for
a half-filled band is related not to the existence of pla-
nar parts of the Fermi surface, as is the instability,
but rather to the fact that the band "breathes" about
its center (at least for long-wavelength deforma-
tions). Thus we consider the case of a half-filled
band with overlap integrals differing along differ-
ent axes. Generally this situation will not present
the lattice instability, and still the CDW will vanish.
In the long-wavelength limit for deformations of,
say, the orthorhombic lattice, Vas [Eq. (3. 5) of
I] becomes

eu;
Vas=2qoZ J(a, ) .' cos —i

2Qf 2(x )
(4. 5)

Further we assume that Bug/sj is independent of

When sp tends towards w the same type of instabil-
ity occurs as in the one-dimensional case, Eq.
(3.8). This instability obviously arises from the
existence of straight lines in the Fermi "surface"
of the half-filled band, so that the contact" of
these Fermi "surfaces" corresponding to E, and
Ep * p

for the critical so is pathological ly' strong.
On the contrary, the Fermi surfaces of arbitrarily
filled band axe curved so that, "unlike the one-
dimensional case, the instability disappears from
the rigid-atom part of the phonon self-energy.
For the same reason, it would be considerably
reduced or even would not exist for a half-filled
s band but with a more elaborate band structure.
This would also occur if the overlap integrals dif-
fered along different axes (non-s band; nonsimple
square lattice).

Note that the l dependence of the coupling con-
stant is not essential in this calculation: The same
physical conclusions would be obtained with a coup-
ling constant depending only on the momentum trans-
fer. On the contrary, this dependence is essential
in showing that the considered modes do not produce
CDW when the band is half-filled, i.e. , that Eq.
(4. 3) gives the total variation of the band energy in
the Iinearized theory. From Eq. (A5) one easily
finds
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FIG. 7. Thomas-Fermi local band structure in presence
of the long-wavelength "breathing" deformation.

~, i.e. , we consider the "breathing modes. " In
this case the Hamiltonian A. + V» still has the "free
states" exp(iK, /j ) as eigenstates if /, are such
that P, J(a„)cos/, =0. But this equation defines the
Fermi energy of the half-filled band. The energy
of the states on the top of the distribution is not
altered by the "breathing" deformation. For lower
states we use the Thomas-Fermi approximation,
solving for the local band structure. As seen on
Fig. 7 the number of states on both sides of the
Fermi level remains locally unchanged, the Fermi
level itself being unaltered by the deformation.
Therefore the deformation considered does not pro-
duce the CDW.

The reason for the vanishing of the CDW in the
opposite, short-wavelength limit is related to the
conservation of the symmetry of the system. The
short-wavelength deformations, such as (m, v, v)
or (vr, 0, 0) longitudinal modes, for example (Fig.
8) may produce an array which is highly symmetric
when seen by electrons. The nonvanishing CDW
would break this symmetry on the electronic level
and therefore does not appear within RPA. The
arguments following Eq. (4. 5) are of course inde-
pendent of the dimensionality of the lattice.

Some of the above arguments are quite general.
Let us briefly consider the static long-wavelength
limit for deformations. The eventual screening
of the electron-phonon coupling is most effective

in this limit. A necessary and sufficient condition
that the linear CDW does not appear is that the cor-
responding homogeneous deformation does not alter
the Fermi level position to the first order in the
deformation. Then there is no linear charge trans-
fer between the unit cells deformed by the long-
wavelength mode, since it can be considered as
locally homogeneous.

The shift of the Fermi level positions, F~ —E~,
in a cubic crystal deformed by the homogeneous
deformation & ~ is

E~ = E~+AZ~e + ~ ~ ~ .
Hence all long-wavelength volume-conserving
(shear) modes are coupled to tightly bound electrons
by an unscreened Mitra-like coupling. Unlike the
free electrons, the tightly bound electrons are
scattered by shear modes from one point of the
Fermi surface to another. This has been estab-
lished in the present model in Sec. III of I. How-

ever, the resulting charge redistribution is such
that the unit cell remains neutral to the first order
in deformation.

On the other hand, the vanishing of the coeffi-
cient A is related by Eq. (4. 5) to the vanishing of
the electron-phonon coupling over the Fermi sur-
face. In more complicated band structures this
need not be so. A will vanish if the Fermi level
coincides with the energy which separates the
over-all density of states in two regions which con-
tain the same number of states before and after the
hydrostatic deformation. In order to establish this
"breathing" property of the over-all density of
states it will usually be sufficient to consider its
several first moments. In the bcc transition
metals the mean displacement of the density of
states is much smaller than the variation of the
over-all bandwidth. The density of states is rather
symmetric and hence A =0 close to the half-filled
"band. "

If the mean displacement of the over-all density
of states is much larger than the variation of all
other moments, the CDW appears. In the present

FIG. 8. Lattice of overlap integrals,
like that of Fig. 1, for (a) (7r, 0) and

(b) (z g) longitudinal modes of the
simple square lattice. Dashed lines
are the unperturbed overlaps. Again
all sites are electronically equivalent.

(a) (b)
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simplified model this would occur if the only im-
portant bare electron-phonon coupling arises from
the variation of the two center integrals
(d, I V,. ~ Id; ), neglected in Egs. (2. 6) of I and (2. 2).
Such coupling depends only on the momentum trans-
fer s, in a linear way. It is therefore strongly
screened according to Eg. (2. 14). However, in
real metals the above mentioned integrals appear
in both, the over-all "bandwidth" and the mean
position of the band. They may contribute to some
extent to the self-consistent electron-phonon coup-
ling. But the variation of the overlap integrals
remains essential for transition metals.

Our results indicate that the superconducting
transition temperature T, is overestimated in com-
putations (Paper I) using the rigid-atom electron-
phonon coupling, but that this approach probably
gives the correct order of magnitude in the middle
of the transition series. At the extremities of the
series T, should fall somewhat more steeply than
predicted by the rigid-atom model. This effect
should go together with the reduction of the Kohn
anomaly in the phonon spectrum.

V. CONCLUSION

In this paper an additive self-consistency term
is derived which completes the rigid-atom electron-
phonon coupling. This term arises from the long-
range interaction between narrow-band electrons.
The self- consistent tr eatment of this term shows
some striking (and misleading) formal analogies
with the free-electron case but also fundamental
physical differences. These differences are empha-
sized for deformations in the long-wavelength limit,
in which it is sometimes incorrectly believed that
it is not necessary to distinguish between r and j
spaces; a belief based on the statement (subject to
criticism) that long-wavelength phonons do not see
the details of the lattice.

It is shown that the self-consistent correction
simply translates into the language of the electron-
phonon interaction some concepts well established
in the calculation of the stability of one-dimensional
systems. This is achieved by the use of an effec-
tive self -consistent one-electron Hamiltonian.
The stability of the partially filled band is examined
and it is shown that the energy loss due to the in-
duced CDW can compensate the corresponding gain
of the band energy, i. e. , to reduce the Kohn
anomaly in the phonon spectrum.

This reduction of the electron-phonon coupling
does not occur for certain modes. In the long-
wavelength limit these are the shear modes, while
for the "breathing" modes this occurs only for a
given band occupation corresponding to nearly half-
full bands. The elastic anomalies are thus more
"probable" in shear modes. They actually occur"'
in VSSi-like compounds.

Professor Friedel called my attention to the self-
consistency problem. I have also benefited from
discussions concerning the lattice instability with
Dr. J. Labbe.

APPENDIX A

The integral appearing in Eqs. (2.9), (2. 10), and
(2. 17) is given by the well-known expression

oo I

G (I, &u') G (I +s, v+ &u')

~00

n, (1-n„,) n„,(1-n, )
( )=i — " +

E, —E„,+(d+i6 E„,—E, —co+i5
s

~

Inserting it in Eg. (2. 17), for example, we find

ReII (e)=4P Q
~

g"
~

loee (Et Et+s)

I II". (~)= —2m' ~g'„~'n, (l-n„,)

(A2)

XI&(E) —Eg,~+ (u) + 6(Eg E( (g-)] (A3)

We note that for co = 0 ReG," is proportional to the
perturbative second-order energy arising from the
rigid-atom potential Vzz.

In Fig. 3 we replaced one g"„by g,",. The same
result for II, would have been obtained if we took
g,", on both sides of Fig. 3 but subtracted from such
a contribution one-half of the electron-electron in-
teraction between the charges 6p&" displaced in the
presence of a phonon. The diagram with g"„on both
sides corresponds, at ~=0, to the second-order
perturbation energy arising from linearized V~&
+ 5U~", from which we also subtract one-half of the
electron-electron interaction between the displaced
charges 5p,' in order to obtain E,'„' as defined in
Sec. II.

The details of the calculation of E„' are given in
Ref. (12), but the relation

E(2)
)

)t) 2
s

N K /2M+ (A4)

can be established already from the preceding dis-
cussion, since the factor

lu"
I

'
h /2M&v'

deduced from the rigid-atom calculation, represents
just the ratio of the amplitude of the ion displace-
ment in the classical treatment to that created by
the presence of one phonon. The steps in both
methods are the same, only the amplitude of the ion

The main shortcoming of the present theory
arises from the incomplete treatment of electron
correlations when several bands of different nature
are present.
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FIG. 9. The one-donen-
sional phonon lifetime aris-
ing from electron-phonon
interaction for E&& 4g and

l~ &4m. e = arc cos(/
4 I 4 I sings) and the shaded
regions denote the pairs
(s, n) for which one pole
(regionQ&) or both poles
(region) contribute.

b)QFO~
4

displacement may be different.
Finally, analogous to Eq. (A2), we have from

Eqs. (2. 10) and (Al)

q",(0)=- —I Z
l ace i &+a

APPENDIX I
In this Appendix, we consider the particular prop-

erties of the phonon attenuation due to the one di-
mensionality cf the system.

Using the Eq. (Al) and the relation g, ,= -g, , it
can be easily seen that II,(~) = II,(- cu) = II,(- ~). Thus
we can take without loss of generaliXy

m&0, 0&8&@', 0&E~& —,m. (»)
l& can be restricted to the abeve interval owing to
the electron-hole symmetry of our model with re-

spect to the half-filled band.
Then Eq. (AS) reduces to

o
2

ImII, (&u) = —2mB
4 ~g~ ( ) ( )

n, (l —n„,)

x [g(l —I(')i')+6(l —Io ')]. (82)

The poles retained in Eq. (B2) arise from two phys-
ically distinguishable zeros of the function E, -E„,
+(d:

E, —E„,+ (o = 4J sin( —,'s) cos(EO" + 2s) (I —Eo"),

where

l ' =-m--s +&(1 2) 1 1
0 2 Z

(BS)
n = arccos, , 0& n & —,m.

4) J) sin2s'

I "appears in usual calculations of the electron-
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E) Ef =0

FIG. 10. Line in two dimensions, or the plane in three
dimensions, definedbyE& —E&,~+ cu = 0, always intersects
the region of integration for small ( s) (Is ( &2lz) and
small v, but the corresponding point * in one dimension
may fall outside the region of integration (bold line) .

phonon phonon self-energy, while l' ' arises from
the introduction of the periodicity in the electron
energy +).

Note that the expressions for ImP, (&o) and Im[Q, (~)/
i] are obtained on replacing lg„i in Eq. (B2) by
—I/N and ig„/N, respectively. From (P, , Q,

IIO), the form of Imii, (~) is easily deduced.
In Fig. 9 we show the pairs (n, s) such that l"'

and/or I ' fall in the region of integration
n, (1 -n„,) = 1 for a given lz. In the (open) region
sonly l"' contributes while in the regionQ~both I"'
and l"' contribute.

Since
2 1/2

g) g 4 sgo 0 J sin —,'s cos —,'g+ n 84

the residuals of both poles in Imv, (u) are the same
and add in the region 0&. This happens also in
ImP, (e). On the contrary, Im[Q, (u)/i] vanishes in
the region a~because, as seen from Eq. (B4), the
residuals in l' ' and l' ' are in this case of the op-
posite sign.

The region 02 will usually be of little interest
since with u&& &oo, o. & —,'m —a&~/4!XI, i. e. , with
normal values of the parameters &un/4 ~

J'i «1. The
physically interesting values of & fall very close
to Q= —,'g.

Unlike the three-dimensional case the phonons
with arbitrary s & 2l~ are not attenuated. This is
easily understood from Fig. 10. The attenuation
exists only in the close vicinity of s = 2l~.
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