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The intraband electron-phonon coupling, calculated in the tight-binding approximation, is
derived from an effective deformation potential. This ‘coupling agrees with expressions ob-
tained by previous authors. The potential reduces to the Bardeen-Shockley deformation po-
tential and to the Longuet-Higgins—Salem result in the long-wavelength and short-wavelength
limits, respectively. The phonon-induced d-d coupling alone is shown to account for the order

of magnitude of the superconducting transition temperature in transition metals.

The McMillan

procedure for the computation of the superconductive coupling is analyzed in the case when the
Fermi level falls close to a pronounced Van Hove singularity in the electron density of states.
In this case the behavior of the density of states » may dominate the behavior of the product
nV, where V is the electron-electron effective interaction.

I. INTRODUCTION

Extensive experimental work shows clearly that
the cohesive properties of transition metals are de-
termined mainly by d-band electrons. Cohesive
energy, atomic volume, thermal expansion coeffi-
cient, elastic constants, melting pcint, and heat of
fusion all depend in a simple way (with rare excep-
tions) on the number of electrons present in the d-
band.

Many of these properties have been satisfactorily
explained® within a tight-binding approximation ap-
plied to the band structure of d bands. The elec-
tronic density of states depends critically on the
atomic arrangement, so that the energy of the d-
band electrons varies appreciably with lattice con-
figuration. The expansion of this variation in terms
of small spatially homogeneous deformations of a
given lattice yields the contribution of d electrons
to be taken into account in the determination of
equilibrium lattice parameters, #* thermal expansion
coefficients, % and elastic constants.?® Similarly,
the comparison of the energies of d electrons in
different crystallographic structures gives reliable
indications on the relative stability of different lat-
tices.™®

Phonons may be viewed as time- and space-de-
pendent deformations of the lattice, locally changing
the parameters—in the tight-binding approximation,
the overlap integrals —which determine the unper-
turbed band structure. The way that such an effect
gives rise to the scattering of electrons by phonons
was shown long ago by Bardeen and Shockley for
semiconductors in the limit of a slowly varying
deformation.® This limit is not appropriate to
transition metals, where phonons of shorter wave-
length are generally important. But there is no
conceptual difference: The local changes of band
parameters are effective over the whole range of
electron and phonon wavelengths.

len

To our knowledge, the first calculation of the
properties of the electron-phonon system in the
tight -binding approximation, whichis also used here,
is due to Ovchinnikov.'! He calculated the phonon
self-energy arising from the electron-phonon cou-
pling in the linear chain. Labbé extended'? this cal-
culation to three dimensions, but in his formulation
the coupling was not explicitly exhibited. This was
done’® by Mitra and applied to the superconductivity
of transition metals in Ref. 14.

An alternative derivation of the electron-phonon
coupling based on the deformation-potential approach
is presented here. Some difficulties of this ap-
proach are analyzed in the simple case considered.
The approximations and physics underlying the work
of Refs. 11-14 are also examined and raise in
an obvious way the question of self-consistency.

The self-consistent electron-phonon coupling will
be considered in Paper II; it will be shown that the
non-self-consistent theory''~!* may be expected to
give reasonable results at least for transition met-
als with a (nearly) half-filled band. Finally, our
derivation exhibits the basic equivalence of the ap-
proach of Ref. 11 with that of Refs. 12-14 and with
some well-known work'® !¢ concerning the lattice
stability of one-dimensional systems. At present
our calculations are restricted to a single nonde-
generate band. In this sense we compute the elec-
tron-phonon intrvaband coupling.

The model is applied to transition metals. In this
particular case the simplicity of the model precludes
all but semiquantitative or qualitative conclusions.
For transition metals the model shows unquestion-
ably that the intraband coupling considered here
cannot be neglected in superconductivity calcula-
tions. It is very likely that it would give the main
contribution to the superconductive coupling.

However, in his recent work, L7 Hopfield attributed
the electron-phonon coupling in transition metals
to a d-band-p -band term, i.e., his formulation,
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which can, in principle, account for the intraband
coupling, was interpreted as if this latter term
could be neglected for transition metals. The pro-
cedure employed in his computation was perturba-
tive; i.e., Hopfield computed the coupling among
the band states of the unperturbed lattice. This will
not be the case in our computation, where already
suitably deformed, but still approximatively ortho-
normal states are coupled among themselves. This
fact obscures somewhat the comparison of the two
methods, since the term “intraband coupling” does
not correspond to the same physical reality in the
two cases. It is believed!® that the present method
of displaced local electronic states accounts also
for an appreciable part of what appears as an intra-
band coupling in the straightforward perturbation
calculation, if such a calculation is convergent.

II. TIGHTLY BOUND ELECTRONS IN STRAINED LATTICE

In Secs. II and III we shall essentially rederive
Mitra’s result'® while pointing out that it is based
on the rigid-atom approximation, which is generally
non-self-consistent in the tight-binding situation.
Our derivation perhaps also clarifies his'® Egs.
(2.8b) and (2.12).

The one-electron tight-binding state in the unde-
formed lattice (with one atom per unit cell and six
nearest neighbors) is of the type

|49)=20;a%|a(F -R,)) . (2.1)
R ; is the equilibrium position of the atom in the
undeformed state, on which is centered the local
function |d). j denotes a set of integers defined by
equation R ;= 3, j, &4, where the &, are the lattice
unit vectors. Since (d(¥-R)Id(¥ -R)))~5,; the
coefficients a§ measure the amplitude of the prob-
ability of presence of the electron in the state
lda(r - ﬁj», i.e., roughly within the corresponding
Wigner-Seitz (WS) cell. For an energy eigenstate
this probability is, in the bulk of the material, in-
dependent of j.

In the presence of the (quasi) static deformation
the more or less deformed d function will follow the

<d(F— R, -i)

=-2 (¥ -R,;
6#0

Here, V is the potential of the neutral atom carried

by the moving atom and screened, in particular,

by the moving d function occupied by the charge Q.
Basically the most serious approximation in Eq.

(2. 6) is the omission of the interaction of the excess

charge 6p; with the excess charges on (the same

—-U,

moving ion because the circular motion of an elec-
tron about the nucleus is very fast. It is reasonable
to assume that the quasiorthogonality relation based
on the strong localization of the d states remains
valid,

@F-R,-8)|a(F-R,-8) ~5,, , (2.2)

provided that the atom displacements {1', are small.
Hence, an energy eigenstate (or an adiabatic one)
in the deformed lattice should be of the form

'Z[),>=Z>,a§|d(i‘.—§.j—ﬁ.j)> . (2.3)

The orthonormalization of these states is based upon
the orthonormalization of the a} because by Eq.
(2.2)

W, | bye) qu a5*05' .

Since the translational symmetry of the lattice is

broken, Iaf,l 2 depends on j. The Bloch-like states
studied by Mitra do not have this property and are
not the adiabatic states. It is physically important
to realize this point since the sum of the density of
presence |a}|2 over all occupied states [ yields the
total charge present on the site j,

p;i= 212 |a;’l2 ’

occ.

(2. 4)

(2.5a)

and the charge-density wave appears in the strained
state,

Op;=p; - @, (2.5b)

where @ is the average occupation of the site in the
undeformed lattice. Here we shall develop a method
for calculating the coefficients a} in a non-self-con-
sistent approximation which comes out to be physi-
cally equivalent to that of Ovchinnikov, Labbé, and
Mitra. But if the forces between the d electrons
are long ranged this is not strictly sufficient, ex-
cept when 0p; computed in the non-self-consistent
theory vanishes. This problem will be considered
in Paper II.

The tight-binding equations giving the one-electron
energies and the corresponding a} in the strained
lattice are

2
<21’77 +V(F-R; -1, —E,>,d(F—Rj—ﬁ,) a’

J)l V(F'— ﬁj-r-ﬁ —ﬁ.j*-ﬁ) |d(i‘.— ﬁj-)-b —aj-}‘ﬁ))a?rﬁ . (2- 6)

and) the other sites. In Paper II this will be justi-
fied, within the model, for particular deformations
and band occupations.

The two-center integrals

<d(;—ﬁj —ﬁ.j)‘V(i‘.-—ﬁha -Gj»rﬁ)ld(i:‘—ﬁj "‘{1.‘,)>7
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describing the interaction of the charge on the site
7 with the neighboring neutral atom, are for sim-
plicity discarded here, but were retained by Mitra'®
and in our previous work. 18 1 Paper II, we shall
argue that the charge-density wave 6p; compensates
these terms more effectively than the terms re-
tained here.

Related to terms of this type is also the problem
of the choice of the zeroth-order phonon frequen-
cies. Usually,!*-! these are chosen so as to vanish
in the long-wavelength limit, i.e., the interatomic
forces ia the zeroth-order phonon Hamiltonian are
assumed to be short ranged. Therefore the energy
of interaction of the charge @ with neighboring neu-
tral atoms is alrveady accounted for by the zeroth-
order phonon frequencies and should not be counted
once again in the Born-Oppenheimer phonon self-
energy. This complication does not occur if the
two-center integrals in question are small with re-
spect to the bandwidth terms retained in Eq. (2.6),
which is a condition sometimes accepted in the
tight-binding approximation. !

Equation (2.6) can be rewritten in the shortened
form:

(Eo ‘Ez)a;:—aE J(56u+‘715a)a54+5a . (2.7

Here we have introduced the following notation:
Ay, = ﬁma -R;=2d,,
{’.ioa =ﬁ.j+sa -4, (2.8)
I(Bg +V0,)= [ AT+, +9,5 )V(F)d(F) & 7,

where 6, denotes the two neighbors on the axis 2.
Equation (2.7) stands for a system of N coupled
linear equations each relating the amplitude of pres-
ence in the state d on the site j to the amplitudes of
presence on the six nearby sites. This linear sys-
tem can be readily transformed to a single differ -

ential equation (Appendix A) on introducing the
translational operator in the j space,

{Eo -E, +u26) J(dy, +V;,5,) exp[z'ba (—i 5—]3:)]}(1; =0.
b 4
(2.9)
Here j, is the site index running along the axis a.
This differential representation of the relevant
linear operator is valid under two not too restrictive
assumptions:
(i) The deformation is of the type

=01 a0, (2.10)
where U# is the homogeneous deformation changing
the reciprocal-lattice vectors from ﬁa to ﬁ; (such
that 2,0, =2 .b s = 6,4) but not altering the number of
first neighbors, while 4 obeys the Born—von
Karmin boundary conditions on the homogeneously
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(3]

deformed lattice.

(ii) The electronic states of the homogeneously
deformed lattice obey the Born-von Karmin bound-
ary conditions.

Then the differential version (2.9) is valid for
all deformations (2.10) and not, as usually used, *°
only for long-wavelength ones. One can differenti-
ate with respect to j as if it were a continuous
variable.

With the help of Eq. (2.9), the general form of
a} in the presence of the (periodic) deformation is
immediately obtained [Eq. (A3)] and it is shown
that a charge-density wave actually appears [Eq.
(A5)].

III. EFFECTIVE DEFORMATION POTENTIAL

In this section we shall consider in some detail
that part of the effective potential appearing in Eq.
(2.9), which is linear in displacements. In fact,
this term only is important for the conventional
theory of superconductive pairing of electrons.
The higher-order off-diagonal matrix elements
lead to effects of a higher order than that usually
considered in pairing, while the diagonal matrix
elements do not contribute to pairing at all, but
must, for example, be considered!!'!2 in the com-
putation of the phonon self-energy.

Following Ovchinnikov, Labbé, and Mitra we
expand Eq. (2.9) with respect to displacements and
retain only the linear term,

- - -, 8J(R) -
J(a6a+v16a)=J(aa)+_a_E_ iea, Vis »

(3.1)

o

It is here that the rigid-atom assumption is intro-
duced, since the deformation of 4 functions and
consequently of the short-range potential V in Eq.
(2. 8) would depend on displacements of all atoms,
especially if the charge-density wave 6p; does not
vanish. But in Eq. (3.1) only the relative distance
between the neighbors considered comes into play.
This is certainly a rather rough approximation be -
cause the atom is quite polarizable.

As far as the charge displacement is concerned
the rigid-atom assumption is more drastic in the
tight-binding limit than in the free-electron limit.
In the former case the entire charge density, re-
lated to the well-localized d function, follows the
moving ion. In the latter case only a small, but
long-range part, of the charge density, related to
the departure from the uniform distribution, moves
with the ion on which it is centered.® The strong
divergence of the bare d pseudopotential at the ionic
site justifies roughly the rigid-atom assumption
in the tight-binding limit.

If the band is of the s type, the overlap integral
depends only on the distance between sites; hence
we have



|

oJ(R .. 2
L‘R) :—qu(au) ba

3R ﬁ=iﬁa &gl

. (3.2

Here g;', related to the range of the d function, is
of the order of the interatomic distance.

This same relation should often be valid even for
more complicated d functions, but then the interband
coupling of several tight-binding bands must also
be taken into account. Combining Eqgs. (3.1), (3.2),
and (2.9), we get

(E, —Eg)a}=(K +Vgg)aj . (8.3)

Equation (3. 3) can be interpreted as an eigenvalue
problem for the effective Hamiltonian K +Vgg, where
K is the kinetic energy of electron hopping among
the sites in the undeformed state,

-2 JE ; __3_.>]
& J(au)exp[zba( 57 ,

and Vg is the (linearized) effective potential intro-
duced by the deformation of the lattice

-5 - . ;)
== J(3,) "t . o, (-i—)|.
Vas qo%i (a,) e Vit exp[z a< zan,)]

(3.5)
It describes the variation of the hopping frequency
of the electron towards the nearby sites when the
distance between atoms is altered by the deforma-
tion. This is a short-range phenomenon and hence,
as is easily seen from Eq. (A6), Vgs depends on j
through the derivatives of ﬁ', with respect to j rather
than through 4 ;itself, in agreement with general
theorems concerning broken symmetry. For slowly
varying deformations and a simple cubic lattice
with an s band, Vgzg reduces to

)
"57,

ou’ 9 du
+ 24 cos( z—)+—1
97y y 9j,-

(3.4)

du
Vs = Zqu[—]f— cos(
x

os<z%>] , (3.6)

where x, y, and z are the axes of the cube. For
electrons (or holes) close to the extremities of the
band, Vgg has the same form as the well-known
Bardeen-Shockley deformation potential, '° propor -
tional to the divergence of the displacement.
Intuitively, one expects!? that the static periodic
deformation will open gaps in the original band
structure, splitting the original Brillouin zone into
smaller ones, corresponding to the new periodicity
introduced by the deformation. This is established
in Appendix A for the simple case considered here.
For example, Eqs. (3.3), (3.5), and (A3) can be
combined in order to yield E, in the presence of the
short-wavelength static deformation u; =u,e*™ of
the linear chain of the initially equidistant atoms.
The result, shown in Fig. 1, is essentially equiva-
lent to the Longuet-Higgins—Salem “exact” elec-

RIGID-ATOM ELECTRON-PHONON COUPLING..

935

/
ES

[SIES
Nl=1 -

FIG. 1. Longuet-Higgins—Salem electronic spectrum
of an alternating linear chain, F;=x2J(cos’ +4qdu? sin?)!/?,
derived from the linearized potential Vgg for a real de-
formation u;=u,e'™.

tronic spectrum®® of an alternating chain. It is in-
teresting to note that 8p; [Eq. (A5)] vanishes'®
(whatever the occupation of the band), hence this
result is self-consistent.

In three dimensions, the perturbative theory can
be applied to the above set of equations. To the
first order in V35 the eigenstate (A3) of the Hamil-
tonian (3. 3) is of the form

eXp(iZ)a laja) +AlsexP[iEa(la +sa)ja] .

This agrees with Labbé’s variational choice. '?
Then, not surprisingly, Labbé’s phonon self-energy
is the same as that computed, in Paper II, from
the electron-phonon coupling, to be derived now.
First, we define a fermion operator ¢! creating
an electron in the state |I), Eq. (Al), and form the
operator %{I'l| Vgs ) cl.c; using Eq. (A2). In
the absence of the homogeneous deformation only
the off-diagonal terms appear inthe sum. Next, we
consider ﬁ, as time dependent, i.e., expand it in
terms of the usual phonon-creation-annihilation
operators. This yields the electron-phonon coupling

gre= (H?/2NM ) 21,
Il's= 2quEaJ(aa)( aa/|aa

Here, g}, describes the annihilation of one phonon
w1th the polar1zat1on €, and reduced wave vector
=Y Sq b with the scattering of an electron from

the state with reduced momentum k, = El b to the
state with reduced momentum k,,—k +0,+K,, where

= 27 Y nyby is the rec1proca1 -lattice vector re-
qulred for reducing K, +q s to the first Brillouin
zone. We note that a final state k ;+ is coupled to
the given initial state k; by a coupling which depends

(3.7)
|ag): € [sinl, —sin(l, +s,4)] .
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only on the reduced phonon wave vector q g irre-
spective of whether the process is a normal or an
umklapp one. This property of the model is, in
particular, in agreement with Sham and Ziman’s
statement that the umklapp matrix elements vanish
in the phonon long-wavelength limit.

Equation (3.7) is essentially equivalent to Mitra’s
expression except that the arbitrary polarization
replaces the longitudinal displacement, the variation
of the overlap is assumed of the form (3.2) and
the zeroth-order vibrational energy w?, is specified
to be related only to that part of d-electron energy
which is not involved in the band formation. In one
dimension it becomes the expression used by
Ovchinnikov.

In the simple cubic lattice and for an s-band state
I close to the extremity of the band I}, reduces for
small s to

(3.8)

irrespective of whether we go to the final state by a
normal or an umklapp process. The umklapp pro-
cesses do not favor in any way the coupling of
electrons to transverse phonons. However, Eq.
(3. 8) rapidly fails when the wavelength of the initial
electron is neither too long nor too short and these
electrons are coupled even to long-wavelength
transverse phonons. Note that such behavior is
particular to s electrons; the electrons with more
complicated local functions would be coupled to the
transverse phonons even in the long-wavelength
limit.

It is perhaps worthwhile noting that in the work
of Migdal and of Eliashberg, a model® was used in
which w?,~|s|, and the electron-phonon coupling
is of the type (3.8), as far as the s dependence is
concerned.

In this section we have derived the electron-pho-
non Hamiltonian using a one-electron effective de-
formation potential, which was shown to be consis-
tent with a Bardeen-Shockley or equivalent to a
Longuet-Higgins —Salem Hamiltonian in the long-
and short-wavelength limits, respectively. This
effective potential gives both Labbé’s renormaliza-
tion of phonon frequencies and Mitra’s electron-
phonon coupling, which, as expected, is formally
the same as that obtained in Ref. 14 from the Hub-
bard Hamiltonian.

?sg - ZiQoaJ(as 'Esh) ’

IV. APPLICATION TO SUPERCONDUCTIVITY

The single-band six-nearest-neighbors rigid-
atom model considered here is far too simple to
account for the details of the situation in real solids.
However, it allows more complete computations
and contains explicitly two properties usually not
found in the nearly free-electron models, namely,
(i) the well-separated van Hove singularities in the
electron spectrum, i.e., the points on the energy
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surface where the electron velocity vanishes; (ii)
an exact treatment of umklapp processes. We shall
discuss these points in some detail in relation to
the superconductivity problem. For present pur-
poses we need only the weak -coupling limit of the
strong-coupling equations® determining T,; i.e.,
we neglect the normal-state electron self-energy
arising from the coupling with phonons. In this
limit we have (see Appendix B)
N

lz%fn(w')VF(w', T,) %& dw',

(4.1)
where n(w’) is the electron density of states per
spin and V(w’, T,) the retarded® superconducting
interaction. Usually only the unretarded part of
V(w', T,) is considered (see Appendix B),

VF(O)f d"fvl, l 5,./
fdo_/v,: . (4.2

The electron velocity v, figures also in the definition
of §;:

ﬁ lIz,l z'l
Mw}s,

6,.=lim ReA;./A,, as T-~T,,

(4.3)
K=, L (aP/v)do/ fEF (do/v;) .

Here, I}, ;. is the coupling (3.7), 4. is the total
gap, and A% the phonon contribution to it. do and
do’ are the elements of the Fermi surface Ep at T,
corresponding to the integrations over / and I’, re-
spectively. It is convenient, although not neces-
sary, to define Z,h as in Eq. (4.3), and consequent-
ly Vz(0) by Eq. (4.2).

Equation (4.1) differs from the usual expression
by the fact that n(w') and Vz(w’, T,,) are retained un-
der the sign of integration. In fact the character-
istic variable in Eq. (4.1) is w'/k5T,; therefore it
is only when n(w’)Vz(w’, T,) varies slowly on this
scale that it may be reasonably replaced by the
Fermi-level value n;Vy=X — & of McMillan®; but
this is even better justified if the variation is slow
on the scale fixed by wp. Here A is the phonon con-
tribution,

X =np VE0), (4.4)

and i the Coulomb pseudopotential correction. V3!
is defined on replacing in Eq. (4.2) 5,, by 6;., where
8;+ is defined by an expression such as (4. 3) except
that the total average gap A replaces A,,. McMillan
puts also 63, =1,

In Refs. 22 and 17 it was proposed that nz V2" is
a smooth function of the position of the Fermi level
[and a fortiovi n(w') Vi w', T,) of w’]. We shall
examine this proposal within our tight-binding model
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and distinguish between two opposite situations: (i)
when the magnitude of the electron velocity is
(roughly) constant over the relevant energy sur-
faces; (ii) when it vanishes at certain points of the
relevant energy surfaces, giving rise to the pro-
nounced Van Hove singularities in the density of
states.

V. TRANSITION METALS

McMillan proposedzz that the computation of
V2(0), given by Eq. (4.2), may be separated in the
computation of an electronic quantity given by

By = dg ﬁ >y ’ do rdo’
/Ul/vl')« /f”l vy’
(5.1)

and a phonon quantity, which strictly speaking is
mixed, given by

M {(w?) =12 I%)/V20), (5.2)

V2! being itself defined below Eq. (4.4). As is
easily seen from Egs. (5.1), (5.2), and (4.2), the
necessary condition for (w?) to be determined by
the phonon spectrum only is that the electron-velo-
city weighting factor should not play an important
role. This occurs if the electron velocity is nearly
constant over the Fermi surface. Usually, this
amounts at least to the requirement that the Fermi
energy falls far from the Van Hove singularities in
the density of states, since in the Van Hove points
the inverse of the electron velocity diverges and
(w?) becomes a complicated mixed electron-phonon

A
Il,l-l'

quantity. An analysis of the tunneling experiments®

on Ta actually suggests that (wz) is, at least in this
metal, mostly determined by the phonon character-
istics. Hence we adopt the McMillan separation for
transition metals.

The computation of {(/2) within the model was de-
scribed in detail in our previous worku; the result
for an orthorhombic lattice was

np(I%y~q3EL, (5.3)

where Eg is the cohesive energy of d electrons
E,
E=-2 [T E n(E)dE. (5.4)

Therefore, far from the Van Hove singularities the
density of states is eliminated from the coupling
constant A. E? goes through a broad maximum® for
a half-filled band even if the density of states goes
there through a marked minimum. Such a minimum
occurs in our model when one overlap in Eq. (3.4)
dominates strongly over the two others. The max-
imum in n (I?) remains, however, since the pho-
nons which are important when the band is half-
filled are strongly coupled to the electrons.

One should be careful when applying result (5. 3)
to transition metals.

is fivefold degenerate. The densities of states in

In transition metals the d band

bce metals arising from e, and ¢,, d functions, how-
ever, have nearly the same form as the total density
of states.! As is easily seen the d-interband elec-
tron-phonon coupling is of the same order of mag-
nitude as the intraband one. According to Ref. 24
this can be roughly accounted for on counting EZ in
Eq. (5.3) not per atom per d function but only per
atom. If the whole procedure is meaningful the
effective g, should then be of the order of 1 AL,
Moreover it should be almost constant within a
period, even when the crystallographic structure
changes, and eventually weakly varying from one
period to another. The numerical results are
shown in Table I. The agreement of the empirical
values of np (I%) with our semiquantitative predic-
tion is astonishing. Thus, we believe that the
superconductivity in transition metals may be at-
tributed to d electrons coupled by phonons alone.
Moreover the relative smallness®~27 of ngp 2y in
the fourth (3d) period is understood from Eq. (5. 3)
without the introducing the qg values. In our model,
the relative smallness of overlap integrals in this
period is due to the better localization of the 3d
functions.

The elimination of #, from the product np {I2)
in Eq. (5. 3) should not be taken as a serious proof
that this occurs exactly also in A of real metals.
This result is based on the assumption that (w?)
is an electron-independent quantity and, further-
more, on the oversimplified model used in the cal-
culation of np {I2).

VI. VAN HOVE SINGULARITIES

The separation given by Eqgs. (5.1) and (5. 2) is
not useful when the Van Hove singularity is close
to the Fermi level, since, as has already been
pointed out, M(wz) becomes a mixed electron-pho-
non quantity, which must be calculated. Thus, we
must actually calculate V¥, The calculation of
n {I?) becomes superfluous.

For simplicity we shall consider only Van Hove
singularities such that most of the density of states
at relevant energies for superconductivity comes
from the energy surface elements close to the Van
Hove points. Then we have

n(w’) =23, nyw’), (6.1)

where n,(w’) is the contribution of the pth point.

The reciprocal of the vanishing electron velocity
appears not only in Eq. (6.1), but also in Eq. (4.2)
[and (4.3)]. I

Z) h—zllz’ . [2 ,
Mwi,. v
A I-1
is a slowly varying function, characterized by some
average value V,,, with [ and I’ each close to the
pth and gth Van Hove points, respectively, then from
Eq. (4.2)



938 S.

BARISIC 5

TABLE I. Starred elements are superconducting, E, are the measured values of cohesive energy. q(z, E_is ob-
tained on multiplying the first line by q(z, except for Cr, Mn, and Fe. ng (%) are the Hopfield (H) and McMillan (M) esti-

mations of this parameter. ¢ is fitted to V and Ta.

qp=0.93 A~ Ti* V* Cr Mn Fe Co
EC
(ev7at.) 4.85 5.3 4.1 2.9 4.3 4.4
BHE
't . . . ~4. = 4. .8
(ev/AS at) 4.2 (4.6) ~4.8 4.6 4.2 3
(72
nF(I ) H M
(eV/&2 at.) 2.7 &6
¢0=0.91 A-1 zr* Nb* Mo* Tc* Ru* Rh
(ef/cat ) 6.3 7.6 6.8 6.6 6.7 5.8
2
qp E¢
(V7 K2 at.) 5.2 6.3 5.7 5.5 5.6 4.8
2
np{l*) H M M
(V2 at.) 3.0 7.2 6.8
40=0.87 A1 HE* Ta* w* Re* os* ir*
EC
. 8. 8.6 8.1 8.1 6.9
(eV/at.) 6.3 !
2
a4 E
eV /A2 at.) 4.8 (6.1) 6.5 6.1 6.1 5.2
2
np i) 2,78 6.1M 6.3M 8.1H

(ev/A? at.)

VE(0)= 207,(0) 7,(0) Vo 23 1,(0) n,(0).  (B.2)
o] ba

Usually only one kind of Van Hove singularity will
appear in the relevant energy interval, i.e., n, is
independent of p. Therefore, according to Eq.
(6.2), V3*(0) is approximately independent of the
density of states. Note that, owing to the definition
(4. 3), 65 is roughly equal to one in the interesting
region. The argument (6. 2) can be readily extended
to small w'.

In the model considered in the preceding sec-
tions, such Van Hove singularities can occur at the
high-symmetry points X of the Brillouin zone. As
is easily seen from Eq. (3.7), if the vector joining
two points p, g is a reciprocal-lattice vector, then
by umklapp V.’ =V,, [and also (V,,=V,,)]. In the
computation of such V,,, the long-wavelength modes
lying approximately within the Van Hove energy
surface Ey are selected outfrom the phonon spec-
trum. But whenthe low-frequency phonons become
important, retardation effects are favored and the
validity of the replacement of V(w’, T,,) by the un-
retarded interaction (4. 2) should be reexamined for
each particular case (see also Appendix B).

In conclusion, if the magnitude of the electron
velocity is small over some localized parts of the
Fermi surface, then'the behavior of the density of
states may determine the behavior of the product
nV. However, according to Eq. (4.1) the density
of states at the Fermi level will not be the param-
eter determining 23T, if it varies rapidly on this
scale. '

This can be easily seen in an oversimplified
model where the “Van Hove peak” is represented by
a 6 function, i.e., n(w’)=Bd(w' -w§). Here 2B is
a total number of states per atom in the peak and
wS=Ey—Ep, where E is the Fermi-level position
at T,. Inserting this density of states in Eq. (4.1)
it follows immediately (V is the superconducting
interaction) that

(o]
ZCUH

arpT, =——1 7 -
3%¢” tanh ! (2w$/BYV)

(6.3)
This is exactly the Thouless “strong-coupling” re-
sult?® for T, [his Eq. (8)]. Thus, the BCS equation
for T, contains, as pointed out by Thouless, his re-
sult for w$=0, but it also contains his same result
for arbitrary w$§. Note that 7, is weakly dependent
on the occupation of the peak for w$~0, where it
goes through a broad maximum. A similar calcula-
tion® at 0 °K yields also the well-known relation
2A,=4k,T, for w5=0. Note that for w§=0 the
superconducting interaction V coincides strictly
with %(0, T,)= Vz(0).

This “strong-coupling” result is obtained here
from the weak-coupling equation (4.1); the term
“strong coupling” is taken here with a different
meaning from that given by Eliashberg, Schrieffer,
Scalapino, and Wilkins. Note however that Eq.

(6. 3) remains valid, with a redefined V, if the pho-
non-induced renormalization of electrons in the
normal state is taken into account.

The high values of T, in V3Si, NbgSn, ..., were
previously attributed by us®® to peak effect similar
to that first considered by Thouless, i.e., to the
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broad maximum of T, on the occupation scale. A
more detailed discussion of V(w’, T,) for this case
than that of Appendix B will be presented elsewhere.

VII. CONCLUSION

The approach presented here makes explicit the
close interrelationship of properties such as cohe-
sive energy, equilibrium lattice parameters, elas-
tic constants, and electron-phonon interaction.

This is achieved through the introduction of an ef-
fective Hamiltonian describing the tightly bound
electrons in the homogeneously or periodically
strained lattice. In particular, it is shown how the
variation of the electronic band energy due to the
opening of new gaps in the presence of periodic de-
formations is just a static counterpart of the elec-
tron-phonon interaction.

The part of this paper dealing with superconduc-
tivity is based on the single-band model and is
therefore only qualitative or semiquantitative. The
importance of the band-structure effects is exhibited
through the study of Van Hove singularities. The
answer to the question how important is #n, in the
product #p (I%) thus depends on the detailed knowl-
edge of the band structure of transition metals.

A hint was given by Ovchinnikov and Mitra on how
to obtain the electron-phonon coupling from a knowl-
edge of the band structure; here we show how im-
portant it is for superconductivity. This should give
rise to new developments in the vast and still so
superficially understood area of metals and metallic
compounds containing electrons which are far from
free.

ACKNOWLEDGMENTS

The author would like to acknowledge clarifying
discussions with Professor J. Friedel and Dr. J.
Labbé.

APPENDIX A

First we prove that Eq. (2.9) is valid under as-
sumptions quoted in the text. For simplicity’s sake
we limit the proof to the linearized potential (3. 5)
only; the proof can be extended to some more
complicated situations.

Owing to its additivity Vzg can be splitted into
Vgs + Vg, corresponding to the two deformations
(2.10). ¥j;, and hence Vs are independent of j;
i.e., Vi is of the same type as K, Eq. (3.4).
Hence the functions e’"¢’e/e are the (derivable)
eigenfunctions of K + V’B’s, whatever the magnitude
of V&, Here, 1, are the components of the recip-
rocal wave vector E’, =zala63; since the Born-von
Kiarman conditions are kept valid all along the
growth of 0}, I,, and thus the product 1,j,, is an in-
variant of the deformation 'ﬁf . The energy variation
(3. 3) of such states arises only from the variation
of overlap integrals, as required by Eq. (2.7).

When Vg is present the state e“e’e/e jg no longer
an invariant state of the effective Hamiltonian;
however the space spanned by these states is an in-
variant space. This is a sufficient condition for a}
to be derivable with respect to j. Again we split
Vis=2s Vis, each corresponding to a particular de-
formation component e‘Zse/e of the wave vector 4,
= Zasa-l;o',. Applying (successively) each Vg on the
given electron state e’Ce’eie we obtain, as re-
quired, the states e'Ce ‘e*Se)e pelonging to the
original space.

The only remaining complication arises from the
fact that when j is considered as a set of continuous
variables the states such as e’Fe’e/e gpd
e'fallar@adia 5 integer, are distinguishable,
while with j, discrete they represent the same elec-
tron state [I). This is taken account of if, affer
operating with Vgg(4j, 8/9j), the quantity j is taken
as discrete, i.e, the above two states are taken as

equivalent. This is explicitly exhibited through the
relations
1 1
(l’|l)=ﬁ?e’c°‘”°‘ la)iazg O‘a’[&+2naﬂ’! (Al)
(l"V|l>:l >3 e-italalay i 5 eifalady
N " 8j
=l 2 e-n:,,t&jm Veitalarrngdia (A2)

i

The above prescription conserves the property
that the space of functions e'Ce's’a is an invariant
space of Vgg, only ! now can be considered as be-
longing to the first Brillouin zone. The only thing
which remains to show is that Vg is Hermitian with
the prescription (A2). Using this equation it is
easily shown by explicit calculation that with U,
real,

| Vas|1)=1| Ves| ¥ )*,

as required.

Several difficulties® of the deformation-potential
approach related to the choice of the Brillouin zone
both for deformations and electrons in the deformed
state are avoided here by the use of the deformation
invariant variables j, s, I. Our formulation obeys
the analog of the “empty-lattice” test,® i.e., there
is no scattering if the bandwidth vanishes; the
spurious®! potential related to the Brillouin-zone
redefinition by a (quasi) homogeneous part of de-
formation does not appear.

Next we show that the static periodic deformation
opens the new gaps in the original band structure.
In the presence of periodic deformation, with the
period p, = 21/s,, the Bloch theorem can be applied
to Vig since the part containing 8/85 commutes
manifestly with the operator representing any
translation in the space of sites j. Therefore the
eigenfunctions of K+ V§g are of the form
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a}=eiFlala yl Finally, note that by the definition of 1;, Eq.
(2.10), ¥, can also be expressed in the differential
where form
w(jo +Pa)=w(ja)- (A3) v15¢,L.=(Ts,,‘—1)ﬁj, (A6)
Moreover, the functions a} are orthonormal in the where T, is the tensorial product of the translation
sense of Eq. (3.6), operator in the j space with the unity of the three-
dimensional space.
(@|a’y=2a]ay =11 6, 11,200 (A4) The introduction of the effective Hamiltonian
o playing only with the coefficients aj’ allowed us to
This establishes, according to Eq. (2.4), the ap- isolate the zeroth-order Hamiltonian for electrons
proximate orthonormality of the eigenstates of the (K) and for phonons (w%). Mitra’s state (2. 8b) is
one-electron Hamiltonian in the deformed lattice. an exact excited state of this Hamiltonian, and his
Equation (A3) gives for a charge-density wave Eq. (2.12) [our Egs. (3.5) and (3.7)] gives the exact
0p; the expression coupling of these states within a model.

6p;=2 2 |wl?-Q. (A5) APPENDIX B
loce

The gap Kph at the Fermi level, averaged over all

The cell with the dimensions p, is now a new directions, as in Eq. (4. 3), is given in the linear-
unit cell. ized weak-coupling limit by?'
|
2 2 ’
A, zf © )dwf /' PZ 11\2 pe | IA,. w}. ,.tanhgw_/ZkB /f dof . (B1)
Bp V1 JEp+ ot EA x Wi w Wiz Ep Ep+wt U1
[
The behavior of the expression involving long-wavelength acoustical phonons in
Eq. (B1).
E(w', w),)= WOy tanh(w /ZkTBT _E(— w', W) The negative contribution of the low-frequency
o' (¥, - w'?) [ .
phonons must be first compensated by somewhat
(B2) higher frequencies and by the region |w’|>w}_,..
is plotted in Fig. 2. We note that E(w’, w}_,.) may Even if Eq. (B3) can be used, V(0) in Eq. (4.2)
be roughly approximated by should rather be computed with a low-frequency
1 W’ cutoff in wj}_;.. This “cutoff frequency” is a com-
E(w', w}.,)= oo, tanho (B3) plicated function of T,, w’, and the “localization”
-1 B

of the Van Hove singularity; however, it is expected
i.e., V(w', T,) by Vg(0) (with a cutoff at wp), if the to be at least of the order of 25T,

phonons with w}_;.> 2k5T, contribute appreciably Such an effect may be partially responsible for
to the gap. In fact, for w’=0, say, the phonons with a relative insensitivity of T, in Nb3Sn to the cubic-
wh_p< 2kpT, contribute negatively to A,;. If there to-tetragonal transition, in which the frequencies
is a Van Hove singularity near to the Fermi level, of long-wavelength acoustical phonons, which are
this may become important for the gap at the Fermi strongly coupled to d electrons, undergo large
level because of the large weight of the processes variations.

Exo—F—
W ;‘_zlrw)

FIG. 2. Various limiting forms of
the expression E(w’, w}_, .), given by
Eq. (B2). Arrows indicate the region of
validity of each form. The curves on

tanh _@ which E(w’, w}_;.) changes sign are also
2k_T =
t_!' BC shown.
:>w)\
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The validity of the rigid-atom model for electron-phonon coupling in the tight-binding approxi-

mation is examined within the linearized self-consistent theory.

It is shown that the deforma-

tion-induced charge-density wave will generally reduce the strength of the coupling, thus re-
ducing the Kohn anomaly in the phonon spectrum and the superconducting transition tempera-

ture computed from the rigid-atom model.

The charge-density wave does not appear for cer-

tain modes; the optimal situation is that of the (nearly) half-filled band, when the rigid-atom

model gives approximately correct results.

I. INTRODUCTION

In Paper I of this work, referred to as I, an
electron-phonon coupling model was examined. In
I the long-range repulsive force acting between
tightly bound electrons displaced by deformation
was neglected. The elimination of the long-range

part of the interaction can be attributed, by usual
but more or less hand-waving arguments, to light
conduction electrons, which, owing to their high
mobility, are the only electrons effectively contrib-
uting to the screening. In particular, the model
Hamiltonian describing the deformed lattice was
shown, in this approximation, to be just a simple



