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Pair Propagator Approach to Fluctuation-Induced Diamagnetism in Superconductors-
Effects of Impurities
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We have obtained, within the ladder approximation, expressions for the electron pair
propagator of a dilute superconducting alloy (i. e. , subject to the condition coze»1) in the
presence of strong magnetic field and above the transition temperature. We then proceed to
calculate microscopically the free energy and the magnetization. The procedure used in an
earlier work on pure superconductors is justified, but important additional contributions are
found for alloys.

I. INTRODUCTION

Recently, Gollub, Beasley, and Tinkham' (GBT)
reported observation of universal behavior in the
fluctuation-induced diamagnetism of superconduc-
tors above the transition temperature. Owing to
the fact that fluctuations of very short wavelength
contribute to the diamagnetism, the data deviate
markedly from the calculation by Prange which
is exact within the framework of the Ginsburg-
Landau (GL) theory. Patton, Ambegaokar, and

Wilkins (PAW) have attempted to deal with the
problem by introducing an ad hoc cutoff energy E
into the fluctuation spectrum. However, it is
found that the parameter E required to fit the ex-
perimental data for clean materials is about ten
times smaller than expected from physical argu-
ments. ' In a recent work (hereafter referred to
as I) we pointed out that for pure samples in the
presence of a strong magnetic field the usua~ re-
placement j-q+ 2e A/& assumed by previous au-
thors is no longer valid. We calculated the mag-
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netization by constructing a free-energy functional
f(h) which reduced to the GL free-energy function-
al in the appropriate limit but which led to the
linearized Gorkov equation when its variation was
set equal to zero. Following Schmid, the parti-
tion function was then calculated as a functional
integral of e ' '. We were able to evaluate the
partition function and hence the magnetization while
including nonlocal effects due to the presence of a
uniform magnetic field B in detail. By including
nonlocal effects accurately results were obtained
which are in reasonable agreement with experi-
ments on clean superconductors. '

In the present work we approach the problem by
studying the electron pair propagator. We ob-
tain an explicit expression for the pair propagator
in the presence of a strong magnetic field and non-
magnetic impurities and from it we derive micro-
scopically the free energy and the magnetization.
We find that in the clean case the physical argu-
ment we used to obtain the free energy is justified,
whereas in the dirty case important corrections
occur. Furthermore, in the clean case the theory
predicts universal behavior in the sense that a
graph of —M/B'~ TV vs ink is the same for differ-
ent materials with the same T/T, p value (T,p is
the transition temperature, b = &() e'3/hc, and &p
= hvH/4pkT). We find that universal behavior is
only approximate for alloys with different degrees
of dirtiness.

After the writing of I, several other preprints
on fluctuation-induced diamagnetism have ap-
peared. A recent phenomenological theory by
Nam assumes the existence of bosonlike excita-
tions. His theory is mathematically equivalent to
a PAW theory with a field-dependent cutoff energy
E(H). As anticipated by GBT he finds that if E(H)
is chosen to be &&"' and & is used as an adjustable
parameter, he can fit the GBT data for pure super-
conductors very well. However, his argument for
a II ' behavior of E is unconvincing to us; particu-
larly in view of the fact that if his arguments were
taken seriously it actually predicts a value of &

that has little to do with the & he uses to fit the data
(n is finally chosen so that his theory goes through
the point where —M/81~P TV is reduced to one-half
the Prange value). Nonlocal effects are not in-
cluded in Nam's work. More recently, we have
received a preprint from Kurkijarvi, Ambe-
gaokar, and Eilenberger. 7 The latter workers
have arrived independently at many of the re-
sults reported in I and in the present work by using
Hubbard's method to express the partition function
as afunctional integral. A recentworkby Maki and
Takayama' treating the extremely dirty case con-
tradicts the conclusions reached by Kurkijarvi et
al. and the present work and will be discussed in

Sec. III.

II. PAIR PROPAGATOR

We would like to study the propagator of an elec-
tron pair under the influence of an interaction
Hamiltonian'

H, = —& f 4) (r) 4'(r)d r (2. 1)

where @(r)=g, (r)g, (r), g, (r) being the electron
destruction operator and & the coupling constant
times the volume V. It is understood that the in-
teraction is not truly 5-function-like, but that in

momentum space, only electrons within @~ of the
Fermi surface participate in the interaction. We
will also include the effect of nonmagnetic impur-
ities and a strong magnetic field by taking

D(1, 2)= ( T(C((1)4'1(2))),

where

@(1)
(Hp+H) )"H)T1 @( ) e (Hp+Hl ~ ~1

(2 3)

By summing the ladder diagrams" we obtain an
approximate D(1, 2) satisfying the Dyson equation:

D(1, 2)=G()(1, 2)G()(1, 2)

+ XfP d) p f dP)
p D (1, 3)G()(3, 2)G()(3, 2),

(2. 4)

where Gp(1, 2)= (T(g, (1)(,1(2)))p is the Green's
function for a single electron moving under the
influence of IIO. Performing an impurity aver-
age"' on E(l. (2. 4), we obtain an approximate
e(luation for D 6, 2), where the bar indicates the
average over impurity configurations,

D (1, 2) = ()) (1, 2)+ )(f d (3)D (1, 3)Q (3, 2), (2. 5)

where

(I) (1, 2) = (G() (1, 2) G() (1, 2)),„. (2. 6)

D and Go depend only on time differences and sat-
isfy well-known boundary conditions. We then
introduce Fourier series for B and Go,

D(1, 2)= (1/P)Q~ e '""'1 'P'D(r), rp, v ),
v = 2' Tm (2. 7)

and

Gp(1, 2)= (1/P)P~, e ' '"' ' 'Gp(r» rp, ()),)

(p, = 2wkT(s+ p) . (2. 8)

The Fourier coefficients satisfy the equation

Ho= d~~~, r
2

+ u] r, r,
6 2m

(2. 2)
where u;(r) is a short-range potential due to the
ith impurity. The pair propagator for a particular
impurity configuration is defined as
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D(r~, r2, v-)=Q (ri, r2)

+ Xfd r2D(r&, r2, v„)Q (r2, r2),
(2. 9)

where

volving P'(n, k). We shall return to this point in
Sec. IV. We can now solve Eq. (2. 11) in terms of
Q„,„„and P' .Furthermore, since Q„, , is indepen-
dent of s we obtain the following expression for
Q (ri, r2):

and

Q-(ri, r2)= ~~.Q: (ri, r2) Q (rq, r2)= Z II (n, k)(I)„*,,„(r&)Q„,)k„(r2),

(2. 16)
where

Q'(ri, r2)

= (1/p) (G()(r„r2; —~,)GO (r„r2,' (d, + v„))„.
(2. 10)

In general, Eq. (2. 9) can be solved once the eigen-
values and eigenfunctions of the integral operator
with kernel Q„(r„r2)are found. To solve this
eigenvalue problem we note that if we include only
s-wave scattering, '

Q~(rq, r2)= Q (rq, r2)+ [k/27)rN(0)]

x f d x2 Q~(I J« r3) Q'„(r2, r2),

tt„(«, k)=) P («, k) '(1 — P'(«, k)) .

(2. 17)
The pair propagator can now be written as

) IT (n, k) Q„*,„„(rg)Q„,)k„(r2)

(2. 18)
For m=n=k=0, 1 —&Ilo(0, 0)= 0 determines the

temperature at which a pole first occurs in the pair
propagator. This of course determines T, (I2I) and
we recover the results of Helfand and Werthamer.
It is useful to write

(2. 11)
g„2(v ) = 1 —&II (n, k) (2. 19)

where r= l/vz (l is the mean free path), N(0) is the
density of states at the Fermi surface, and

Q„'(rq, r2)= Go(rq, r2; —,) 0(rq, r2; &,+ v~) .

in terms of the zero-field transition temperature
T,o given by

(2. 12) N(0) &ln = 1 —2N(0) X Li
co s 0 2s+1 (2. 20)

Our task is now reduced to solving the eigenvalue
problem

f Q'(r~, r2)4„',„(r~)d'~&=P'()7)g', „(r2), (2. 13)

where g indexes the eigenvalues and eigenfunctions.
In I we solved a special case of Eq. (2. 13)where we
treated only clean superconductors and considered
only the m = 0 case. It turns out that the same tech-
nique can be used to solve the more general Eq.
(2. 13). The details are given in the Appendix. The
eigenvectors are simply the Landau states P„,,„(r)
for a doubly charged particle moving in a uniform
magnetic field and are independent of s and m,

0'...= 4., 2,.(r)=&r n, k, q),
and the eigenvalue is given by

(2. 14)

P' ('g) = P' (n, k)

(O) ( k)yk«« *«k,„(«)
2

tan '[&0(k + b'x)" /(s+ —,'+ 2 Im I+ p)]
no(k b'+)'ix

(2. 15)
where L„ is the Laguerre polynomial, b '= eB/Kc,
o.'0= hvar/4wkT, and p= o.'0/l. Equation (2. 15) is valid
subject to the condition ~7»1 and the understand-
ing that a cutoff is required in any sum over s in-

where A= R&uD/2&kT is the usual BCS cutoff. After
some algebra, we obtain

g„,(v )=N(0)

where

I' T '

&
(s+ —,'+ p)k, (n, k)+ —,

'
Im I

(T 0 0 (s+ 2) [s+ 2+ 21m I+pk, (n, k)]

(2. 21)

k, , „(n, k)= 2(- 1)"fo dxe " I.„(x) [1 —(tan v)/v]

v = &0(k + b 'x) ~ /(s+ 2+ 2 Im I+ p) .

The cutoff A = h(dv/2vkT 21m I is discuss—ed in the
Appendix. The quantity g„2(v„) is of special im-
portance because the contribution to the free energy
due to &z can be expressed in terms of it. The lat-
ter property of g„,(v ) will be discussed in detail in
Sec. III.

It is worthwhile to point out two limiting forms of
Eq. (2. 21). In both cases we assume that A is
large enough or that p, n, and k are small enough so
that we can let A be infinite.

(a.) Clean limit and m = 0. In this case p= 0 and
Eq. (2. 20) becomes

g., 2(o) =N(o) ~on(T/T. o)+ ' (- 1)"



926 P. A. LE E AND M. G. PAYNE

where

xfo e ~L„(x)K[(k'+b'x)"']dx], (2. 22) derived here may have wider applications, but in the
present work we will concentrate on fluctuation-in-
duced diamagnetism.

1 tan '(noy/(s+ —,'))Ey =(~ 1
d=O S + 2 Goy

The latter form of g„,,(0) was used in I where fluc-
tuation diamagnetism was calculated for pure super-
conductors with T & T,z(H).

(b.) Dirty limit. In this case p is so large that for
all relevant k and n, v «1 for the contributing x val-
ues and we can approximate

k, ~(n, k)- ~z(- 1)" fo" dxe " I.„(x)v /3

= —', o.'2o [k2+ 4b'(n+ 2)]/(s+ —'+
z ~m ~+ p)o . (2. 23)

Thus the nonlocal electrodynamics effect discussed
in I is not important for very dirty materials. For
large p the sum in E(l. (2. 21) converges before
s+ ~ lm i becomes comparable with p, and we ob-
tain

&...(v. )

=N( )&1
T ~~ q/3p+z Imi

T.o d=o (s+ —,')(s+ —,'+ —,
'

Im )+q'/3p)'
I 2

=N(0) & ln +)(/ —.'+ —.'~m ~+ ~

—q(3), (2. 24)
T,o 3p)

III. CONTRIBUTION TO FREE ENERGY
BY PAIR FLUCTUATIONS

We consider the grand potential

g(y') = kT In [Tr(e-o&"o+"i&') - » &)]

(3. 2)

where the average is over the ensemble described
by the Hamiltonian with the variable &'. We can
write E(I. (3. 2) in terms of the pair propagator D~.
as follows:

d xD~. r, 0; r, 5

= (I/3)) e'" 'fdrll„. (r, r;e ), (3. 3)

where 5 = 0,. Within the ladder approximation for
D~ we can use Eq. (2. 18) and the fact that (t)„, ,
are normalized to unity to write E(l. (3. 3) as

(3. 1)

where we have replaced ~ in 8& by the variable ~'.
Then

where q = o'o [k + b '(4n+ 2)] and g is the digamma
function. The latter limiting form has been used
extensively by de Gennes" and co-workers, as well
as by Maki. ' For most materials the use of an ef-
fective Hamiltonian with a BCS cutoff in the pres-
ence of impurities becomes incorrect long before p
becomes large enough for this derivation to hold.
In particular Anderson's arguments' indicate that
one must have k/r«h ~o)if one is to obtain correct
results from a theory based on the Hamiltonian used
here. In terms of p the condition becomes p «k~D/
4mkT=ln/4oT. For most superconductors this con-
dition limits p to be less than 10 and this is not suf-
ficiently large for the dirty limit to be reached.
Even though the present derivation of the dirty limit
of g„,)3(v„) fails unless8o/4mT, -30 the final result
may conceivably have a wider range of validity. The
reader should look at de Gennes's book" for a deri-
vation that proceeds from a different point of view.

It is well known" that the pole of D(r, r', r) that
appears at T= T, (H)ois due to the Cooper instability
which signals the onset of superconductivity. Thus
we expect that a propagator calculated in the ladder
approximation does contain the pair correlations
which should dominate any physical effects due to
electron-phonon interaction in the region just above
T,2(H). For a more general discussion of the use
of similar approximations to describe fluctuations
in the region just above phase transitions the reader
should consult Brout's lectures. ' The propagator

x/ Efdke" ' II„(n, k)/(I —k'II„(n, k)),
(3.4)

where we have inserted the degeneracy factor for
the Landau states. E(luation (3. 4) can be integrated
with respect to ~'. and we obtain the contribution to
the free energy due to the pair interaction:

Q~- Qo= -- — e'" ' dkln 1 —XII n, k

(3 6)
Within the ladder approximation of the BCS inter-

action it is well known that Dk(r, r, v ) is a function
only of l v I ~ This can be seen by direct computa-
tion as is done in E(I. (A4) and is actually a conse-
quence of particle- hole symmetry. Writing

f(v ), v &0

D), (r, r; v„) =

f( v), v &0- (3. 6)

f (-iz), Imz &0

D(r, r;iz) =

f(iz ), Imz &0 ~ (3. 7)

There is a discontinuity in D across the real z axis,

we obtain the following analytic continuation of D), to
the upper and lower z plane:
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given by the spectral function

A (r, r; (d) =i [D(r, r; —i (d)- D(r, r; iw)] . (3. 8)

From Eq. (3. 8) it is clear that A (r, r; ~)
=A(r, r, —~). The sum over m in Eq. (3.3) can
be transformed into an integral by standard tech-
niques. " A contour integral with the Bose factor
(e~ —1) ' is introduced with the contour surrounding
the poles of the Bose factor. The contour is then
distorted so that it runs above and below the real z
axis. The e'" ' factor assures the vanishing of the
contribution from the part of the great circle where
the Bose factor does not give convergence. We ob-
tain from Eqs. (3. 8) and (3. 3)

dQ eBVkT ~ ( 3
t
",d(u &(r, r;~)

dX' hem ~ J J 2& e~" —1

(3. 9)
Using the antisymmetry property of A. , we can write
Eq. (3. 9) as

(3. 10)
Using the explicit representation of A (r, r, &) in
terms of II„(n, k) we can integrate over r and &', and
obtain

Vk T p )» dk e + g~

It is interesting to observe that if the interaction
contained @'4 t instead of Ct4' we would have had
5 = 0 and the factor —(e

~" —1) ' would have been
introduced instead of the Bose factor in order to
ensure the validity of distorting the contour. How-
ever, owing to the antisymmetry of A(r, r, &), the
final result for 0,—0„is the same. This shows
that within the present approximation there is no
discontinuity in D(r, r; T) at r= 0. It must be em-
phasized, however, that the above arguments are
based on the properties of the approximate expres-
sion for D„(r, r; v„). In particular, the linear term
in X of Eq. (3. 5) is clearly just the Hartree contribu-
tion to the free energy. In order that this contribu-
tion be finite and equal to —~, where n is the den
sity of the electron gas, it is essential to keep the
e'"~' factor. This is related to the fact that the
linear term involves a sum over all momenta, and
particle-hole symmetry only applies near the Fermi
surface. However, higher-order terms in ~ in-
volve higher order in 0, and the sum over m is
then convergent without the e'" ' factor. Hence one
should first subtract the linear term and the argu-
ment beginning with Eq. (3. 6) should be applied to
II„[(1—XII„) —1] instead of D), itself. The conclu-
sion is then that Eq. (3. 5) can be written as

(3. 12)

where in the first term the factor e'" ' is unneces-
sary and has been removed. As pointed out earlier
the second term is just —% and does not contribute
to any fluctuation-induced property of the system.
An expression similar to Eq. (3. 12) but in the ab-
sence of field and impurities has been obtained by
Thouless. '~

We have also attempted to derive Eq. (3. 5) using
Hubbard's functional integral method, but we find
that the approximations are less transparent and
that the derivation is much more difficult unless
one starts with a symmetrized interaction

H,'= (&&) J d r [C'(r)@ (r)+ 4' (r)c'(r)]
As one expects, the symmetrized interaction leads
to Eq. (3. 5), but with e'" ' replaced by unity. We
find the derivation given here more satisfactory.

In the Ginsburg-Landau limit, g„,~(v„) is approxi-
mated by

In(T/T~)+& [k~+ 4b (n+ ,')]+8
~ v„~, —

where 4 and B depend on T and p. In this approxi-
mation the m = 0 term of Eq. (3. 5) is precisely the

expression obtained by Schmid' who calculated the
partition function as h functional integral of e ~"' ',
where E(n) is the GL free-energy functional. In
the integral form given by Eq. (3. 9) the m = 0 term
is recovered if the Bose factor is replaced by (P(d) ',
thus giving rise to a single pole at = 0. In I we
have considered only the m. = 0 term. In Sec. IV we
shall show that this is a good approximation for
clean superconductors, but not for dirty materials
unless p &1.

Recently Maki and Takayama have treated the
fluctuation- induced diamagnetism problem in the
dirty limit by using a GL approximation for II g, k).
They then write down an equation for the free ener-
gy which is very similar to Eq. (3. 11), except the
term e " in the first parentheses is dropped. After
dropping this very large term, the remaining term
has an exponential convergence factor and the result
is a strong suppression of the diamagnetism below
Prange's result. We believe that the term dropped
by Maki and Takayama would, if evaluated, con-
tribute significantly to the magnetization when B is
large. However, it does not appear to change the
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Prange limit (i. e. , B -0). We shall discuss this
in greater detail in Sec. IV.

IV. CALCULATION OF MAGNETIZATION

The fluctuation-induced magnetization is given by
differentiating Eq. (3. 5) with respect to B,

VkT e

9XZ dk )nd„„(v )+B )dd„, (v )), (4 ()
n J

Using Eq. (2. 20) with A ~, g„k is logarithmically
divergent for large n and k and the sum over n, k in

Eq. (4. 1) is divergent. Even within the spirit of the
BCS effective Hamiltonian, it can be shown that

gn. k-l —k7(A/o'p[4b(&+ k)+ k']"'
for op[4b (n+ k)+k ]" » A. In this regime the ex-
pression for g„„is linearly dependent on the cutoff
and should not be trusted; but even with the cutoff
the sum over n, k in Eq. (4. 1) is still divergent. We
assume that a more detailed treatment of the cou-
pled electron-phonon system would show that con-
tributions to M from large quantum-number fluctu-
ations are strongly suppressed so that the sums
over n and k are effectively convergent. Thus, we

will feel free to rearrange the order of terms in the
sum over n in the hope of obtaining a series which

converges rapidly enough so that only values of g„„
for o'p [4b(n+ —,')+k ]"p«h are important. This
point of view seems to be implicit in Prange's trick
of obtaining convergence by doing partial integra-
tions and neglecting the contribution from the limits.

In I we rearranged the first term in Eq. (4. 1) by

writing

hler = —~ ("+1)l"(8' +l, k/8', k) .

We also made use of recursion relations for L„ to
write (p=0)

8~ SB ~n k (n+ I)(gn+l, k gn, k)+ll(8n, k gn-l, k)'
(4 2)

Shifting the second term on the right-hand side of

Eq. (4. 2) by one in the sum over n, we obtain the
following formula for M (p= 0):

2l„g„,g, I, gn+s, a g, y&n+ 1&

2 g„,p gn, y g'n+s, n

The integrand in Eq. (4. 3) is of order p (n+ 1)
&& [(g, k -g„k)/g„k] andthis expression is now con-
vergent. Introducing the new variables k'= &ok and
b = opb

' we see that g„k(v„) depends only on b, T/Tdp,
and the dummy variables k' and n. Thus, MB '~ /VT
is a universal function of b and T/T, p.

Equation (4. 2) is no longer true for g„,k(v ) when

p &0. However, an identical equation is true for
k, (n, k) as defined by Eq. (2. 21). Guided by our
experience with the clean case we make the same
type of rearrangement and obtain the following ex-
pression:

3/2
MB "'/Vr=, — b-"' 7 d(o(pk) ("+

2& Sc' 2

(2) d„„,,(~„) & (d, n, m) n, (d...m)
)gn k(Vm) g'n, k(Vm) gn 1, k(V )

(4. 4)
where

D, (k, n, m)

s=0
(s+-,'+ -,'~m ~+p) [k, „(n +1, k)- k, (n, k)]

x[s+ k+ —,
'

~m
~

+ pk, (n+ k + k, k)]
(4. 5)

MB ~'/VT can be calculated numerically. For our
numerical work we have approximated the function
1 —(tan

'
v)/v by

4

1 —4 a„e """

where the parameters a„and y„were chosen so that
the percentage error is everywhere smaller than 5%
and in fact approaches zero for both small and large
v. This approximation enabled us to obtain an analyt-
ic expression for k, (n, k) and thereby made the
rest of the numerical work rather simple. As dis-
cussed in Sec. III, in order to perform the sum over
m without worrying about the e'"~' factor, one has
to remove the contribution that. is linear in ~. In
the clean case it can be shown that with the partic-
ular rearrangement we have chosen the linear
term exactly cancels for each m. Hence the m sum
can simply be done and in fact we find that the m&0
terms are entirely negligible. In the presence of
impurities, however, the linear term in ~ does
not vanish. It is then necessary to remove the
linear term by hand, using Eq. (2. 20) for AÃ(0).

In Fig. 1 we show the results of our numerical
calculation for p, =p(T= T,)= 0, 1.38, and V. 04
at T= T~. We used A= 5 for the p, = 1.38 case
and A = 20 for the p, = 7. 04 case. Roughly speak-
ing, these are the largest p, values for which
&T»1 for the cases of indium and a typical weak-
ly coupled superconductor, respectively. The p,
= 1.38 curve is not changed appreciably for
b/(2p+1)&0. 5 if & is changed to 20. We have also
snown the contribution from the m = 0 term for p,
= 'l. 04. For p, = 1.38 the m 40 contribution is only
15/p of the total at b/(2p+ 1)= 0. 2 and it becomes
smaller as b/(2p+ 1) is decreased. The linear term
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FIG. 1. Field dependence of
-M(T,)H /T plotted vs the param-
eter b/(1+ 2p) for superconductors of
different mean free path ) (p =0.44)0/$
at T= T,). In terms of the magnetic
field H,

b BH„g

1+2p =0.177 H T, " (1+2p,)x(p,),BT

where X(p,) is the Gorkov function.
The dashed line is the ~ = 0 contribu-
tion along for p=7. 04.
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in & has not been subtracted from the graphs in Fig.
1. We expect its contribution to become important
for large p, and large b/(1+ 2p, ). For p, = 1.38, the
linear term subtracts only 3%%uo at b/(1 + 2p, ) = 0. 08.
For p, = V. 04, the linear term subtracts 5, 20, 30/0
at b/(1+ 2p, )= 0. 066, 0. 5, and 2. 0, respectively,
from the m = 0 contribution. The m 40 terms are
affected more strongly as m increases, but it is
not a drastic reduction, being never more than
40/o.

As was pointed out earlier the m = 0 term is the
only one that gives rise to a pole at T = T,~(H ).
From Eq. (2. 20) we can see that go, o(v ) for m 40
does not vanish at T= T, (H) and hence can be inter-
preted in some sense as being equivalent to go o(0)
at an elevated temperature. In the clean case the
magnetization decreases rather rapidly with tem-
perature and the m &0 terms can be shown to be
entirely negligible. However, in the dirty limit
Prange's theory predicts a temperature scaling
roughly proportional to p. For p sufficiently large
the temperature dependence of the magnetization
is so slow that m &0 terms can become important.
These observations are borne out by our numeri-
cal calculations. In our approximation it is clear
that inclusion of the m &0 terms has the effect of
enhancing the magnetization. Ne have also per-
formed numerical calculations using Eq. (3. 11)
but using the nonlocalg„~(v„) given by Eq. (2. 21).
If we follow Maki and Takayama and drop the e "',
as discussed earliex', we indeed obtain a suppres-
sion of the m = 0 result as expected. However, when
we put back this term we obtain a net enhance-
ment to the m = 0 term which is consistent with the
results obtained by simply performing the sum over
m.

If the value of p, continues to increase, the con-
tribution of the m &0 term also increases, even

after subtraction of the linear term in the coupling
constant. However, we would like to point out that
the DY. »1 condition means that for very large p,
our theory is applicable only to materials with ex-
tremely large ~. Furthermore as p, increases,
terms with higher and higher values of m become
important and one is sampling the region of g„„(v )
for larger and larger n and k, i. e. , one is probing
fluctuations of shorter and shorter wavelengths.
An approximate rule is that the k integral in Eq.
(4. 4) is important out to k =nb and the sum over
n is important out to nb/(1+ 2p) = Im I+ 1. Another
consideration one has to bear in mind is that for
m &0 and for b/(1+ 2p) so large that B &H,2(0),
there is no singularity in the pair propagator
D(x, t', v ). It is then difficult to argue why the
ladder approximation to the pair propagator should
dominate the physical properties of the system. It
is perhaps possible that a large contribution from
the m 40 terms is an indication that a wider class
of diagrams other than the ladder diagrams needs
to be retained.

Finally we would like to discuss the Dv»1 con-
dition. Physically, when the mean free path is
short the energy of an electron is uncertain to or-
der 5/r If &uDr ~ 1.this means that the BCS cutoff
which requires that only electrons with momentum

within h&uD/v~ of the Fermi surface should partici-
pate in the interaction is no longer realistic. Ac-
tual calculations using an effective Hamiltonian

with a BCS cutoff in the presence of impurities in-

dicate that once k/v ~ h~D the calculated transition
temperature starts to vary sharply with the im-

purity concentration. This prediction contradicts

experimental measurements which indicate a very
weak dependence on h/r. ' Anderson' has pointed
out how the slow variation of the transition temper-
ature can be explained for 5/i » A~a. He shows
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that if one finds the electron energy eigenstates
in the presence of impurities and calculates the
phonon- mediated intereaction betw een electrons
in such states, then a new truncated effective Ham-
iltonian can be found that has the pairing occurring
between electrons in time-reversed states. The
new effective Hamiltonian again has a BCS cutoff
which restricts the interaction to particles with
energies within h&D of the Fermi surface. The
equation for the transition temperature obtained
from the new effective Hamiltonian is the same
as the one for pure superconductors except for the
presence of a new density of states which is weakly
dependent on h/r An.derson' has pointed out that
once 5/7' ~ k&~ the interaction between pairs with
nonzero net momentum is changed more drastically
because of the lack of momentum conservation in

the presence of impurities. In other words there
is no Anderson's theorem for properties of a su-
perconductor involving pairs of finite total momen-
tum. While it is true that the (dD7 condition is not
in evidence in Eq. (2. 21), we can find no reason to
believe that cutting off the sum over s as done in

Eq. (2. 21) simulates the energy cutoff if ~~ r ~ 1.
Recently Beasley, Tinkham, and co-workers

have obtained more data for indium alloys with p,
up to about 10. For indium, eD/2mkT, = 5. We
find that for p, = 1.38 our theory is in reasonable
agreement with the experiment. However, as p,
is increased the experiment shows that a graph
like Fig. 1 saturates for p, = 7 [i.e. , when T= T,o
and p, &7, all p, values give the same graph of
—MB '2/VT vs b/(1+ 2p, )]. Thus, the p, = 7. 04
curve does not agree with the experiment at all.
In the absence of a more complete theory we can-
not tell whether the violation of the D7»1 condi-
tion alone is responsible for the discrepancy. Fur-
ther experiments on the alloys of materials with

larger values of ~~/2' T would be helpful.
If we use Eq. (3. 11), but follow Maki and Taka-

yama and throw out the contribution of the e "'
term as compared with that from 2/(e "—1) fac-
tor, we obtain numerical results which have sat-
urated by the time p, is increased to 7. The sat-
urated curve is not far from what is found experi-
mentally. We know of no reason why the e " term
should be thrown out. However, one cannot help
but be impressed by the results obtained once it is
discarded. We hope that further experimental and

theoretical work will clarify the situation.
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APPENDIX: SOLUTION OF EQ. (2.13)

We make use of the semiclassical phase-integral

d k
(2m)'

Go(k, —&u, ) Go(k+ q, &d, + v ), (A2)

where

Go(k, + )= ~&8 Go(r + )=
( k /2~ ) )

(A3)

is the Fourier transform of the impurity-averaged
simple-particle Green's function. The integral in

Eq. (A2) is evaluated by replacing Jd k by X(0)fdic,
where the energy integral is cut off at &&+ D ac-
cording to the prescription of the BCS interaction.
If we extend this cutoff to ~, Q, „(q) can easily be
evaluated,

Q, (q) = —,'N(0)(o.'oq)
' tan '[o'o q/r(s+ 2+ —,

'
lm I+ p)], (A4)

where &0= hv~/4vkT and p= o.'0//. Equation (A4)
behaves like s ' for large s, and anticipating that
we need to calculate g, Q, (q), it is clearly im-
portant to put in the cutoff. By examining Eq.
(A2) for large q, it can be shown that the cutoff
in the energy integral is roughly simulated by keep-
ing Eq. (A4) for Q„(q) but with the understanding
that the sum over s should be cut off when s+ & (m j

is of order ~~/2vkT. However, it is clear that
this procedure makes sense only if &D7.»1. From
Eqs. (A2) and (AS) one easily sees that for r '&mD

the integral over & has not started to converge at
coD. Consequently the value of Q will be extremely
sensitive to the cutoff, indicating a break down of
the BCS effective Hamiltonian. This the reason
why our results are restricted by the condition
~v. »1. In Sec. IV we give a more physical dis-
cussion of this condition, particularly in the light
of Anderson's theorem.

We proceed to use an identity derived by Werth-
amer

exp[(2ie/hc) f; ds A(s)]g(r, )

= exp[-i (rq —rz) ~ Il]g(ra), (A5)

where II = —V/i —(2e/&) A(r) and II only operates
on the r dependence of g(r). Using Eqs. (Al),
(A5), and (2. 12), the eigenvalue problem (2. 13) is
transformed into a differential equation of in-

approximation for the single-electron Green's func-
tion in the presence of a field A(r),

Go (rq, r2,' &,)= Go(rl r2 i &„B= 0)

xexp[ie/hc) f,.'ds ~ A(s)], (Al)

where the line integral is performed along a straight
line between r, and r~. Equation (Al) is valid if

p~ B «2mkT+ 8/ y, which is the same as the condition
that the single-electron cyclotron orbit is large
compared with the range of Go. For B=0, g'(r&, ra)
depends only on I r& —r~ l and we introduce a Fourier
transform Q'„(q) which can be written as
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finite order,
D...4.(r)= ~.4.(r), (A6)

where the operator B„ is defined by

D„„=f d r, d q (2w) e"' i@ „(q)e '~'" . (A'7)

It is clear from Etl. (A4) that D„„(q)has an ex-
pansion in even powers of q. Indeed retaining only
the constant and the q' term yields the usual GL
approximation for the pair propagator. To keep
higher-order q

" one must keep the corresponding
order in (rq II) "/(2n)!. However, different com-
ponents of II& do not commute, and in fact, in the
case of constant field B,

[II„,II,]= —i(2e/If)eB . (Ae)

Hence higher-order terms will include not only
the combination II. II = [V/i+ (2e/Sc )A j, but will
contain terms dependent on (2eB/Rc) as well. It
is thus inconsistent to treat nonlocality in the or-
der parameter (higher orders in q2) without taking
into account nonlocal electrodynamics, the expan-
sion parameter being )ssB (2e/!Ic) in both cases.
This is why the PAW form for the free energy is
not a good approximation. A direct calculation of
the )s2(2eB/hc) dependence is a hard counting prob-
lem. However, it is clear that the eigenstates of
D„„are the Landau states (r In, k, k'), where

[V/i+ (2e/hc)A] (r )n, k, k')

= [ks+ (4eB/N)(en+ s)](r ~n, k, k') . (A9)
The eigenvalues can be calculated using a coherent
state representation as follows. Ne introduce the
operator a = (II,—iII, )/(4eB/hc)" . Then a, at are

boson operators obeying [a, a j = 1. Furthermore,
we can write

e-fr1 ~ II -fg1rrg-u a+I at
(A10)

where!t =b""(y,+ix, ) and b'=eB/Sc T. he opera-
tor e " "" is the generator of a translation in
the coherent state,

)
n )= E„o."e ' " (~!)

"'
]n, k, k' ),

l. e. ,

~ ) e (v u ga-b'a

(A11)

(A12)

We note that fe' d&e (n+!t)"=2mo.'"L„(lp 1 ),
where L„ is the Laguerre polynomial. The Q and
r1 integrations can be performed and on project-
ing l &) onto ln, k, k') we obtain the remarkably
simple result

(r~/ k k')-P .
(pg k)(r~/ k k') (AI4)

where

p„„(n,k )= —.'(- 1)"f"e "' Ln(x) 08,m [(k'+ b 'x)"']d&

This is the result given by Etls. (2. 14) and (2. 15).

Going into cylindrical coordinates and using Eqs.
(A10) and (A12), we obtain

[X(0)V) 'D, „~o. )

=1n —
~

a ) +fr~ dr~ dHqdqdg (2w)
C

e krtq coal!I q. (( 2 k2)tl 2) e+
f 1/2

xe ' """"&"
~~, k, k') . (AIS)
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