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Careful measurements have been made of the power and frequency dependence of the ac
Josephson steps in a superconducting tunnel junction exposed to 20-26-GHz microwave ra-
diation. At values of 2e =2eV~f/hf &25, significant deviations from Bessel-function behavior
[J~(2e)] begin to occur. These deviations are caused by a sharp peak in the Josephson cur-
rent at a frequency fr=46/h, i.e. , the Riedel peak. The experimental data are used to
measure the shape of this peak. . Simultaneous measurements of the Josephson and quasi-
particle effects are also presented. These results demonstrate that the two effects have the
theoretically predicted correlation. Our experiments as a whole demonstrate the theory of
superconducting tunnel junctions to be very firm experimental ground.

I. INTRODUCTION

I= I& sing

2eV
dt

(2)

If the junction is placed in a microwave field at
a frequency f, the voltage across it has an rf com-
ponent and is written

V= V~, + V~ cos2mft

Equations (1)-(S) can be combined to show that in
the presence of an rf field, the junction current
has a dc component which is given by

I..(V..) =I.(0)~.
l
J.(2~)

I
'(V"+N@f/2e) (4)

where n=eV~/hf, 6(x)=0 for x40, &(x)=1 for
x=0, and J„is the Nth-order Bessel function.
Equation (4) predicts a series of constant-voltage
steps in the I-V curve at the discrete voltages
given by Nhf/2e. The amplitude of the Nth step
is predicted to vary as the Nth-order Bessel func-

In a previous communication we showed that
careful measurements of the amplitudes of the ac
Josephson steps can be used to demonstrate the
existence of a sharp peak in the Josephson current
at a frequency of 44/h, i.e. , the Riedel peak. 3

In this paper we expand on this work and present
new and more complete information on (i) the fre-
quency dependence of the Josephson step amplitudes,
(ii) the relationship between step-amplitude data
and the frequency dependence of the Josephson cur-
rent Iz(fz), (iii) inherent limitations on the ob-
servability of Iz(f~), (iv) the experimental details,
and (v) the correlation between the Josephson ef-
fects and the rf-induced quasiparticle effects.

The conventional analysis of the ac Josephson
effect begins with Josephson's first two equations
for the current in a superconducting tunnel junc-
tion:

tion. The existence of these steps and the Bessel-
function oscillation of their amplitudes have been
reported in a number of papers. 4'

Implicit in the derivation of Eq. (4) is the
assumption that the Josephson current amplitude
is independent of frequency. Riedel, 3 however,
has shown that the Josephson current [Iz(f~)] has
a frequency dependence which peaks very sharply
at a Josephson frequency fz = 2e V/h, corresponding
to the superconducting energy gap, i.e. , at a bias
voltage V~, = 26/e. The result for the case of two
identical superconductors at T = 0 K is given by

I,(f,) = (~/ea)Z(If, /e ), af, /4~ & 1

= (&/eR)(44/hf~)K(46/hf g),

hf~/4A ~ 1 (5)

where E is a complete elliptic integral of the first
kind and R is the normal tunneling resistance.
Equation (5) assumes an isotropic gap and does not
include the effects of quasiparticle damping. Fig-
ure 1 is a graph of I~(f~).

Werthamer has shown that the frequency depen-
dence of I~ modifies the behavior of the Josephson
step amplitudes. An outline of the details of this
analysis is given in the Appendix. The final re-
sult is

x ~(V~, +Nhf/28) . (6)

If the value of n is small, the n summation in Eq.
(6) converges before the value of Iz changes signif-
icantly from Iz(0). Using this fact together with
the identity7

~.J.(o') J~.(o') = J~(2~)

we see that Eqs. (4) and (6) are nearly identical.
Thus, for small values of V~, the step amplitudes
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FIG. 1. Josephson current Iz as a function of Joseph-
son frequency fz.

steps at the voltages 2&/e + nhf/e. These are the
"photon-assisted tunneling steps" first observed
by Dayem and Martin. After som. e controversy io, ii
the J„(n)rf voltage dependence of these steps has
recently been verified. i ' Since both these quasi-
particle steps and the ac Josephson steps are di-
rectly related in the theory to the same value of
V„,a comparison of the two effects in the same
junction is of interest. We have made such simul-
taneous measurements and found that both effects
can be fit to the theory using a common V~ scale.

In Sec. II we describe our experimental pro-
cedures and the problems associated with junction
fabrication and data recording. In Sec. III data
are presented to demonstrate the correlation be-
tween the Josephson effects and the quasiparticle
effects. The frequency dependence of the Josephson
step amplitudes and the resulting determination
of Iz(f~) is the subject of Sec. IV. Our results are
summarized and compared to other related work
in Sec. V.

I~,(V~,) =Q„J„(n)Io(V~, + nhf/e), (8)

where Io(V~,) is the quasiparticle current with no

applied rf. Since Io has a sharp step in current
at Vd, = 2n, /e, Eq. (8) predicts that, in the presence
of an rf field, the I-V curve will have a series of

show the normal Bessel-function behavior. For
large values of V„,harmonics of the applied ra-
diation interact with the enhanced Josephson cur-
rent near the peak and significant deviations from
Bessel-function behavior occur. An experimental
investigation of these deviations provides a method
for demonstrating the existence of the Riedel peak.
Further, by making such measurements over a
range of frequency, the height and shape of the

peak can be determined.
Our experiment, although involving a number of

practical problems, used a basically straight-
forward approach to obtain these data. A very-
small-area tin-oxide-tin tunnel junction was mount-
ed in a waveguide. A large number of I-V curves
were then recorded as a function of the applied
microwave power. The amplitudes of the ac
Josephson steps as recorded in these I-V curves
were then compared with the predictions of the
theory. Our data agree well with both the rf
voltage and frequency dependence of Eq. (6). We
also show how these results are used to obtain
data on the shape of I~i'f~). This analysis indicates
that the technique employed in our experiments
can be used to determine Iz(fz) only in a small
region near the peak.

The Werthamer analysis outlined in the Appen-
dix also derives an expression for the quasiparticle
current in the presence of an rf field. This com-
ponent of the junction current is given by

II. EXPERIMENTAL PROCEDURES

The assumption of a spatially uniform rf field
[Eq. (3)] is basic to the theoretical analysis. Thus,
in order to observe the theoretically predicted
step-amplitude variation, it is essential to make
junctions in which the rf field is reasonably con-
stant. Since the wave velocity in the junction is
considerably less than the free-space velocity, i

the junction dimensions must be very much smaller
than the free-space wavelength.

Our experiments were performed at a frequency
of 20-26 GHz and employed up to four tin-oxide-
tin thin-film junctions on a 0. 25&& 0. 50~ 0.01 in.
sapphire substrate. The very small junctions
required were fabricated using the in-line point-
overlap configuration. 3' In this configuration,
the tip of a sharply pointed strip of tin just barely
overlapped the edge of the second thin film. Junc-
tions made in this way had an approximately tri-
angular shape with areas on the order of 10 6 cm~.
The details of the vacuum-evaporation procedure
are given in Ref. 12.

After removing the junctions from the vacuum
system, leads were attached and the substrate
was mounted perpendicular to the E field in a
K-band (0.420x 0. l70 in. ) waveguide. The sub-
strate and its microwave mounting were immersed
directly in the liquid helium. At the top of the
cryostat, the waveguide was connected through a
frequency meter and a precision attenuator to a
reflex klystron. The junction I-V curves were
displayed on an x-y oscilloscope using the con-
ventional four-wire connection with a constant
current drive.

Extensive shielding was used to prevent any un-
desirable disturbance of the junction. The inner
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helium Dewar was surrounded with a copper shield
and the outer nitrogen Dewar was surrounded with
two layers of high-permeability molypermalloy
magnetic shielding. In addition, the entire ex-
periment was performed within a double-layer
shielded room.

In spite of all this shielding, electrical distur-
bances associated with the experiment itself fre-
quently caused the junctions to trap magnetic flux.
Since this trapped flux produced irreversible
changes in the I-V curve, it was very detrimental
to the experimental measurements. It was there-
fore necessary to record the large amount of data
required in a very short time and with a minimum
of electrical disturbance. This was accomplished
by taking a motion picture of the I-V curve (as dis-
played on the oscilloscope) as the rf power was
continuously varied. Thus, in 20 sec, I-V curves
could be recorded for each of more than 300 values
of the applied rf power. The precision attenuator
reading was projected into the right-hand side of
the picture and was thus recorded on each frame
of the movie film.

The data were reduced by examining the film
frame by frame. The Josephson steps appeared
as vertical lines with well-defined ends. The
lengths of these lines were thus a good measure of
the step amplitudes. The quasiparticle step ampli-
tudes were measured by taking the vertical dis-
tance at the step voltage between tangent lines to
the I-V curve just above and below the step. The
attenuator reading A (in dB) was converted to the
value for the rf voltage across the junction (V„)
using the relation
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The constant C was chosen for a best fit to the
theory.

Figure 2 shows a typical junction I-V curve with
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FIG. 2. Oscilloscope trace of the I-V curve for a
typical 5.4-Q superconduc ting tin-oxide-tin junction.

FiG. 3. I-V curves with applied radiation at 25 GHz
and (a) Vrf =0.3 (2~e), (b) Vrf = 2~/e, and (c) Vrf =1.5
{2&/e).

V~ = 0. The junction resistance (R = 5. 4 0) is
measured from the slope of the curve at voltages
well above the gap voltage 24/e. The lack of any
significant current at lower voltages is an indication
of the absence of microshorts or other nontunneling
processes. The dc Josephson current (spike at
zero voltage) is about 80% of the maximum theo-
retical value of wh/2eR. The effect of the con-
stant current drive is also clear from the switching
points at V= 0 and at the limit of the dc Josephson
current.

In the frequency range of our experiment (20-26
GHz), and for small values of V„,the Josephson
steps were strongly overlapped. That is, at a
given current, the voltage could be at any one of
a number of the values Nhf/2e. Thus the voltage
was not a single-valued function of the current and
with our constant current bias, the Josephson steps
could not all appear in the I-V curve. At higher
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FIG. 4. Experiment and theory compared for the N =3 Josephson and quasiparticle steps.

values of V„,the amplitudes of the Josephson
steps decreased and the background quasiparticle
current increased so that the voltage eventually
became a single-valued function of the current.

Figure 3 shows how the I-V curve behaved as
the applied rf power increased. In Fig. 3(a),
V~ = 0. 3(2&/e). No Josephson steps are observed
because they cannot be traced out by the constant
current drive. Several quasiparticle steps, which
comprise the background current, are visible in
the region around V~, = 24/e. In Fig. 3(b), V„
= 24/e and many Josephson steps are observable.
There are still, however, switching regions in-
dicating some overlap of the Josephson steps. In
Fig. 3(c), V„=1.5(2&/e) and the I- V curve has
a staircaselike form. For the lower steps this
curve is single valued everywhere and the full
oscillations of the Josephson steps are measurable.

This behavior of the I-V curve in our experi-
ment put limits on the observability of both the
Josephson steps and the quasiparticle steps. The
quasiparticle steps could be measured for values
of V~ from zero up to about 2b, /e. For signifi-
cantly larger values of V~, the quasiparticle steps
were obscured by the Josephson steps and their
amplitudes became too small to measure. For
the case of the Josephson steps, the situation was
just the opposite. Their amplitudes could be
measured only for values of V„&2b, /e. In the

region near 2b/e, overlapping of the steps may
have resulted in incorrect measurements although
we believe that the maxima were generally ob-
served properly.

III. CORRELATION OF THE JOSEPHSON AND QUASI-
PARTICLE EFFECTS IN SMALL JUNCTIONS

In our measurements of the Josephson step am-
plitudes we determined only the relative value of
V~. Thus the comparison of experimental and

theoretical values of V~ involves an arbitrary
constant. Simultaneous measurements of the
quasiparticle steps provide another measure of
this constant and thus a further test of the theory.

A typical result of many such measurements is
shown in Fig. 4. The solid curve in Fig. 4(a) is
the theoretical amplitude variation for the N= 3
Josephson step as computed from Eq. (6). As
a result of the Riedel peak, this theoretical curve
has a small deviation from the usual phenomeno-
logic result [ J„(2o')[. This effect is discussed
in detail in Sec. IV. The solid curve in Fig. 3(b)
is the theoretical amplitude variation for the n = 3
quasiparticle step. [From Eq. (8) this is just
&s(o') ]

Our measured step-amplitude data points are
shown for both effects. These data were divided
by a normalization constant which was chosen to
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obtain a best fit to the theoretical curves. In each
case this constant was approximately (+ 10%) the
amplitude of the zero-order step with V„=0. The
V„scalefor these data is the same for both the
Josephson steps and the quasiparticle steps, i.e. ,

just one value of C in Eq. (9). The fact that the

periodicity of the data closely matches the theory
in both cases demonstrates that the magnitude of

V„may be treated the same way for both effects.
Thus, the predicted factor-of-2 difference in the

arguments of ) J&) for the Josephson step ampli-
tudes and of J„for the quasiparticle step ampli-
tudes is correct within our experimental error of
about 5%.

A similar result has been observed at V3 6Hz
by Longacre and Shapiro in experiments with
point-contact junctions.

In contrast to these results, Sweet and Rochlin
have made a comparison of the Josephson and
quasiparticle effects at 3.9 6Hz and have reported
poor agreement with the theory. However, their
comparison was based only on the first zero of

the zero voltage J-osephson current. Our data
suggest that this may not be a reliable test of the
theory.

IV. FREQUENCY DEPENDENCE OF JOSEPHSON CURRENT

A. Theoretical Predictions

In Sec. I, we pointed out that deviations from
Bessel-function behavior in the Josephson step
amplitudes are observed only when V~ is large.
To put this on a more quantitative basis we note
that the frequency dependence of I~ has an impor-
tant effect in Eq. (6) only when there are signifi-
cant terms in the n summation for which the ar-
gument of I~ approaches the peak, i.e. , (2n —N)f
~ 4b/h. These terms correspond to the integer
values n ~ 2&/hf+ ,'N. Using the prop—erty of Bessel
functions that J„(n) 0 for all j'n)& n—, it follows
that the significant terms in the n summation of
Eq. (6) are those for which ~n~ ~o.. The effect
of the peak in I~ will thus be observed first when
o. ~ In I

= 2r/hf+ ,'N. If the Mth J—osephson step
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FIG. 6. Three-dimensional plot showing the theoretical frequency dependence of the N =1 Josephson step amplitude.

falls near the gap (Mhf/2e = 2&/e), this becomes

2n = 2eV~/&f ~N+M

This is an approximate rule for the value of V~
at which the first deviation from I &~(2o. ) I behavior
occurs.

From Fig. 1 and Eq. (6) it is seen that these
deviations will be most pronounced when (2n N)f-
=4b,/h, i.e. , when one of the Josephson steps
falls very near the gap voltage. If an even-num-
bered step falls near the gap (M even), this con-
dition can be satisfied only for N even and thus the
even-numbered steps show the strongest deviations.
A frequency shift sufficient to bring an adjacent
odd-numbered step in line with the gap shifts the
strongest deviations to the odd steps. The ex-
istence of these unusually large and highly fre-
quency-dependent deviations is a direct consequence
of the sharp peak in Iz(fz).

Figure 5 is a plot of the theoretical variation
for the N= 0-2 step amplitudes with applied ra-
diation at 25. 7 GHz (2b/e is taken as 1.175 meV).
At this frequency, the 22nd Josephson step falls
near the gap (M = 22). The dashed lines are the
values of [ J„(2o.) I. The solid lines are computed
from Eq. (6). The accuracy of the "sum rule"
[Eq. (10)] is apparent in these curves. For in-
stance, the solid and dashed curves should first
diverge for the N=O step at a value of 2n=N+M
= 22. It is also apparent that the largest deviations

occur in the even-numbered steps. This is ex-
pected because M is even.

The pattern of deviations shown in Fig. 5 is
highly frequency dependent. This frequency de-
pendence for the N=1 step is depicted in the three-
dimensional graph of Fig. 6. The frequency scale
of 22. 4-24. 4 GHz corresponds to a variation in
the number of steps to the gap from 25 to 23. Thus,
at either end of the frequency axis there are an
odd number of steps to the gap and since N is odd,
large deviations occur. The center region around
23. 4 GHz corresponds to 24 steps to the gap and
there are no large deviations. As expected from
the sum rule, the first large deviation moves down
the 2eV„/hf axis as the frequency increases.

B. Experimental Data

In Fig. 7 we have expanded the curves of Fig. 5
in the region 2n = 20-45 and compared these theo-
retical curves with a corresponding set of our ex-
perimental data. In assessing these data it is im-
portant to observe the relative change in amplitude
from one maximum to the next. On this basis the
data a,re in good agreement with Eq. (6) (solid line)
and clearly show the influence of the peak in Iz(f~).
Figure 7 also shows that the decline in successive
maxima is more rapid in the experiment than in
the theory. The severity of this effect was found
to increase with junction size and is probably the
result of a slight spatial variation of the rf field.



AMII ToA. H

I
(I

tO
lLLI

.2

tep amplitudeso ephsPn stePFIG
bed lznes),(4) (das e

nta, ], data
frpm Eg

d experimen(sp 1
. les)

].1nes~
The fr eg&eppints (ppen ~&r

25. 7 GHE

O
LLI

N

~~ O

O
R

0
0

N=2.2

y540p5
2e V«&"'

nte an aCCur ate me asure men
we

cessar y to make
h frequenc y,

not ne
~ Rathe~, a

per lmental
t eacrf vo W

ge of n' n
lue of the

0
roper rang

lmum va
locate the p

he neares™~
mplltudes

t e
the step ™data and c

As before
hosen to ob-

tep amp
ingle co

].itude . con.stant
onstr ates

are multp
llfit. Flgu

, lied by a
' re Bdemo

dependen ce

~ best over-a
n frequency

aln a
o have a strong

s in falrl
at the data do

dependence
tha

frequencyand that
th theory ~

this
go od agreemeent Wl

25
0

20

f Riedel PeakC. Shape 0

. 8 canbeuse d to de-hown in Fig.
ofth R' d

those s
the shape oter mine

h o q.
'ons on such a e

of these res iiscussion o
functionIn Eq. 6), the i

u htofas a '
n t

'n the n summaterms in
understand how e '

n o

1urleal «q areThe data p
teps meas . the data ls

oints in
ured.

thod of d
of the s

la ingAn alte ' ernative me
a articular malue of
casa un

to fix the va
p

o d t sliFig. 6 this correspo
front. ipend rather

b th...,.
' ularly strong

.4 are chosen
ith a partic nl C~~v~s w...d...,.lt in theoretica

' hout the absoz. (6)( to
shed lines areand the das e

c e ' t result of the singue a direc recurves are ' re

re obtained from' ts (open ci re o mr les)po
s of curva ser

ction of n,
Since ev

correspond stoam



FREQUENCY DEPENDENCE OF THE JOSEPHSON CURRENT 919

4-

V)
UJ0

CL

O
4J

U-4

O

FIG. 8. Frequency dependence
of the Josephson step amplitude
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result it is very helpful to examine the convergence
of this n summation. Thus, in Fig. 9(a), we have
chosen the values N= 0 and n = 35 and plotted the
left side of Eq. (7) as a function of the number of
terms in the summation. The figure shows that
the principal contribution comes from the first few
terms. Although the terms for 6&n& 35 may have

large values, their net contribution over a range
of n tends to cancel out. As expected, there is
essentially zero contribution from terms for which
n& n. The behavior shown in Fig. 9(a) is typical
of the convergence of Eg. (7) for all values of n

and Q.
Figure 9(b) is a graph of the function Iz((2n —N)f)

using the same n scale and a value of f= 23. 5 which
is typical for our experiment. As described above,
this curve is the weighting function for each term
in the summation.

A comparison of Figs. 9(a) and 9(b) suggests an
important conclusion. Since the 1/f~ decay of
Iz(fz) for n& 15 is relatively smooth with respect
to the oscillations of Fig. 9(a), this falloff of I~
has very little effect on the final result in Eq. (6).
Thus, our experiment cannot yield data about the
shape of I~(f~) except near f~ = 4b, /h.

The fact that several researchers have observed
the ~ J„(2a.) ~ step-amplitude variation for values of
V„«2&/e ' is, in effect, a verification of the flat
region in Iz(fz), where fz «4&/h. Our conclusions
about the observability of I~(f~) are summarized
as follows: (a) For f~ «4h/h previous results have
shown that I~ = const; (b) for f~ = 4n, /h the shape
of I~ is observable in our experiment; and (c) for
fz & 46/h the shape of I~ is not observable in our
experiment.

In the region near the peak, the magnitude of
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J.(2a) = 0.095
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0 IO 20 30 40
FIG. 9. (a) Plot of the convergence

of Eq. (7) as a function of the number
of terms in the sum and (b) the Riedel
peak function which modulates the ampli-
tudes of these terms in Eq. (6).

I

I
I

l

) I

I

((2n-N) f )

f = 23.5 6Hz

0

I

I

I

I

I

I & I I

0 I I
I +~2

PREVIOUSLY NOT OBSERVA BLE
VERIFIED

OBSERVABLE IN OUR E XPERIMENT

50

Iz in Eq. (6) is changing very rapidly from one
term to the next and its effect does not cancel out.
At the frequency of our experiment, the two terms
for which (2n —N)f = t 4&/h produce the major de-
viations from the I J'„(2&)

~
behavior. Denote these

terms by n' and n" such that f~ = (2n' —N)f = —(2n"
—N)f = 4n/h Solving . Eq. (6) for Iz(f~), the re-
sult is

n4n"

[g,(o.)J„,(o() +J„„(o'.)g„„„(n)],(ll)

where I, (N, n, f) is the experimentally measured
step amplitude. In the numerator of Eq. (11),
I~ is taken as the theoretical value given in Eq.
(5). We are thus assuming the theoretical value
of I& everywhere except near the peak. This
assumption is reasonable because (i) the constant
region below the peak has been verified in pre-

vious experiments and (ii) as long as I~ is fairly
smooth in the region above the peak, it has very
little effect on the final result. By using experi-
mental data I,(N, o(,f) over a range of frequency
around f„Eq.(11) yields data on Iz{fz) for the
region 4&/h f, &f~ &4&/h+f-,.

If I, has some fixed experimental error, then the
resulting error in I~ is minimized by choosing N
and n to maximize the denominator of Eq. (11).
This is equivalent to choosing the data at values of
N and n for which there is a maximum deviation
from the Z„(2o.) curve.

A series of points computed from Eq. (11) is
plotted in Fig. 10. The step-amplitude data used
in this computation come from the same data set
plotted in Fig. (8) and use the same scaling factors.
The points shown as open circles are computed
using the experimental measurements for the N
= 0 step amplitude at a value of 2e =25. 9. The
points shown as squares are for N= 2 and 2a =25. 8.
These measurement points correspond to regions
of maximum deviation from the J„(2o()curve. In
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both cases the frequency range is 23-26 GHz and
the temperature is 1 K. The solid line is the
theoretical value of I~(f~) and is computed from
Eq. (5). The data show that the peak is slightly
broadened and that it attains a maximum value of
about 3.0.

The rounding of the singularity can be attributed
to gap anisotropy and quasiparticle damping. If
one assumes a simple triangular distribution of
the gap, a spread of only about 1% produces the
rounding which we observe. Scalapino and Wu"
assume that for the case of thin-film junctions gap
anisotropy is negligible. They analyze the effects
of damping in terms of an imaginary gap parameter

A comparison of our data with their result
suggests that the ratio d,/4 is about 1p '.

V. CONCLUSIONS

We have made detailed measurements of the
frequency and rf voltage dependence of the ac
Josephson step amplitudes. These measurements
which extend to values of V„)4&/e are in good
agreement with the theory and clearly show the
effects of a sharp peak in the Josephson current.
This peak occurs at a frequency corresponding to
the superconducting energy gap fz = 4&/h. An
analysis of the predictions of the theory shows how

our measurements can be used to determine the
shape of the peak. Our data on tin-oxide-tin junc-
tions at 1 K suggest a current peak height about
three times the value of the zero-voltage current.

A number of papers have presented experimental
results related to the frequency dependence of the
Josephson current. McDonald et al. have per-
formed experiments which demonstrate the ex-
istence of Josephson phenomena at frequencies
well above the gap. They have observed the 110th
harmonic of a 70-GHz applied signal, as well as
the direct effect of applied radiation at 2500 GHz.
These results do not provide quantitative data on
the frequency dependence of I~ but certainly support
the rather gradual fall off predicted in the theory.

Several researchers ' have reported the ex-
istence of structure at V= 2&/ne, n = 1, 2, . . . in the
I- V curves of Josephson junctions. Werthamer
has suggested that this structure is caused by the
sharp peak in Iz. The experimental results of
Giaever and Zeller support this conclusion. How-

ever, some controversy still remains in the ex-
planation of this effect.

Buckner and Finnegan have recently made a
series of measurements of the zero-voltage Joseph-
son current in tin-oxide-tin junctions which were
exposed to radiation at 140 GHz. In their experi-

FIG. 10. Riedel peak function
Iz(fz) (solid line) and data (points)
computed from experimental mea-
surements of the Josephson step
amplitudes. The dashed box in
the insert shows the region plot-
ted.
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ment, V„andf are fixed and the gap is adjusted
(via the temperature) in the region near hf = t).(T).
For certain values of V„,their N=0 step-ampli-
tude data are sharply peaked at hf = &(T). This
result is also a demonstration of the existence of
the Riedel peak.

Summing up, in our experiments, the sharp peak
in the Josephson current and its effect on the ac
Josephson step amplitudes have been demonstrated
and found to be in excellent agreement with theory.
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APPENDIX

We indicate here the principal steps in the
Werthamer analysis which lead to Eq. (6). The
calculation is for the special case of a junction
made of identical superconductors with no dc
magnetic field. We begin with Werthamer's Eq.
(7) for the total current flowing in a non-self-
coupled junction with a spatially homogeneous po-
tentia1. difference:

t 00

I(t) = —, ReZ dt e"'/" dE, dE, e "/""
1 2"' "[f(E,) -f(E2)]

Oq w IO

r 2 i, „ i i ((/2 I)((t) 1 (I)l T T B (E )B (E )
e((/2)(0 (1) 0 t ))]+ gq -Q, -q Q 2 q 1 (12)

7.'„,is the tunneling matrix element connecting
state k on one side of the junction with state q on
the other side. It is assumed to be constant. The
Fermi function f is

j1(E)= ~ dE1dE2 If(E() -f(E2)]
I Ta.q I'

kq

X A (E,)A, (E2)(E, —E2 E+ii)) '-

f(E) (e 2/2T+ 1)--1 (13)

The spectral weight functions A2(E) and B2(E) are
given by

~,(E)=-,'[(1+~,/E, )5(E- E,)+ (1 —e,/E, ) 5(E+E,)],
B,(E) = ——,'i/(~/E„)[6(E —E,) —5(E+E,)]],
B2(E)= (t)*/&) B2(E),
where E2= (E2+t) ), &2=Pi h /2m, and &=0'.
Equation (2) determines the time dependence of (t).

Thus, with a voltage across the junction given by
Eq. (3), the phase is

(t) (t) = (2e V«t/Ii) —(28 V„/hf)sin 2mft . (15)

Now perform the following steps on Eq. (12): (a)
Substitute Eq. (15) into terms involving Q. (b)
Use the identity

&-(x sin8 g d ( )
&-(n&

n n +

to remove sine terms in the exponentials. (c) Per-
form the trivial t integration. The result is

I(t) = ImZ„Z„.J„&„.(e """ "' 'j,(n'hf «d,)—
+ exp[ —i(n+n')2wft+i 2eV«t/Ii+i&r]

x j2( n'hf+eV«-)/, (16)

where o(= eV„/hf and the current amplitudes j,
and j3 are defined by

('. 'f 2(E) = ~ dE1 dE2 [f(E1)-f(E2)]T2,
Oq

x T,B„(E)B (E )[E —E E+i )]7—

The first term of Eq. (16) is the quasiparticle cur-
rent and has a dc component when n=n'. If we let
N=n+n', then the second term has a dc component

only at the discrete voltages given by Nhf= 2eV«.
These are the voltages of the Josephson steps.
We choose the phase v= e —,'& to maximize the cur-
rent on each step because it is this maximum cur-
rent which is observed in the dc I-V curve. The
dc component of current then is

I«(V«) =Z J„((2)Im&1[nhf - eV«]+ 5
~
Z d„(a,)

8 X&0

x d„„(Q)Rej2[(n —2N)hf]
~

5(V«& Nhf/28)

(16)

Imj~ is just the normal electron tunnel current
without applied radiation. Converting to our no-
tation Imji(E/e) =ID(V«). Using E = ««= 2hf& we
see that Reja is the frequency dependence of the
Josephson current. In our notation this is Iz(fq),
and its value is given in Eq. (5).
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Pair Propagator Approach to Fluctuation-Induced Diamagnetism in Superconductors-
Effects of Impurities
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We have obtained, within the ladder approximation, expressions for the electron pair
propagator of a dilute superconducting alloy (i. e. , subject to the condition coze»1) in the
presence of strong magnetic field and above the transition temperature. We then proceed to
calculate microscopically the free energy and the magnetization. The procedure used in an
earlier work on pure superconductors is justified, but important additional contributions are
found for alloys.

I. INTRODUCTION

Recently, Gollub, Beasley, and Tinkham' (GBT)
reported observation of universal behavior in the
fluctuation-induced diamagnetism of superconduc-
tors above the transition temperature. Owing to
the fact that fluctuations of very short wavelength
contribute to the diamagnetism, the data deviate
markedly from the calculation by Prange which
is exact within the framework of the Ginsburg-
Landau (GL) theory. Patton, Ambegaokar, and

Wilkins (PAW) have attempted to deal with the
problem by introducing an ad hoc cutoff energy E
into the fluctuation spectrum. However, it is
found that the parameter E required to fit the ex-
perimental data for clean materials is about ten
times smaller than expected from physical argu-
ments. ' In a recent work (hereafter referred to
as I) we pointed out that for pure samples in the
presence of a strong magnetic field the usua~ re-
placement j-q+ 2e A/& assumed by previous au-
thors is no longer valid. We calculated the mag-






