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The boson method in superconductivity, developed in previous articles, is extended in order
to take into account time-dependent phenomena. Starting from the equations of motion for the
Heisenberg electron field we have constructed a formulation of superconductivity in which
gauge invariance and current conservation are implicitly satisfied. Previously we showed how,
by means of invariant transformations called boson transformations, we can generate a space-
dependent order parameter; in this way the space-dependent properties of a superconductor
are described and the problem of solving the Gor'kov equations is bypassed. In the present
article we generalize the concept of boson transformations letting them generate a space- and
time-dependent order parameter; in this way we propose a formulation of the theory of super-
conductivity in which space- and time-dependent effects are taken into account. As an illustra-
tion of the method, in the last part of this work we study a system consisting of two weakly
coupled superfluid liquids, and we give a theoretical explanation of the experimental fact that
the system will present dynamical stability at the harmonics and subharmonics of a fundamental
frequency.

I. INTRODUCTION

In the last few years considerable attention has
been paid to time-dependent phenomena in super-
conductivity. These problems are essentially as-
sociated with spatial and temporal variations of the
order parameter 6; known examples are the mo-
tion of flux lines in type-II superconductors, ac
Josephson effects, etc. The theoretical description
of these nonstationary phenomena has presented a
much harder problem than the static case did. Onc
basic tool in the theory of superconductivity is the
Gor'kov equations, which are supposed to be able
to describe both stationary and nonstationary phe-
nomena. Unfortunately, owing to their nonlocal
nature, these equations are not easy to solve. In
stationary situations the form of the Gor'kov equa-
tions is such that it is possible to expand the ker-
nels of the integral equations in powers of n/T„
following this procedure Gor'kov showed' how in
the range of temperatures close to the critical
temperature his equations reduce to the coupled
Ginzburg-Landau (GL) equations for the vector po-
tential A and the order parameter. Subsequently,
this method was extended to lower temperatures,
and some generalized GL equations were derived. '

In the case of nonstationary problems the first
attempt was to generalize the GL equations to the
case in which the order parameter is time depen-
dent and to derive an "extra" GL equation for the
charge density and the electric field. Unfortunate-
ly such an extension is not straightforward and
many different time-dependent GL equations have
been proposed, all being based on the assumption
that the space and time variations are sufficiently
slow so that the order parameter ~ is close to its
equilibrium value 60. Many of these time-depen-

dent GL equations were derived from a micro-
scopic theory by following a procedure similar to
the one in the static case.

More recently this problem has been reexamined
by Gor'kov and Eliashberg. ' These authors pointed
out that all the time-dependent GL equations de-
rived so far have a range of applicability not im-
mediately related to the physical range of interest.
This is due to the fact that in nonstationary cases
it is impossible to make an expansion of the ker-
nels of the Gor'kov equations in powers of 6 in the
whole range of temperature. Owing to this reason
it is very difficult to reduce the Gor'kov equations
to local differential equations. The possibility of
obtaining generalized GL equations with a range
of applicability valid for all the important frequen-
cies exists only in the case that the superconduc-
tivity effects are relatively small. This is the
case, for example, of a superconductor with a
large concentration of paramagnetic impurities. '
So far, theoretical study of superconductors in
presence of time-varying fields has not reached any
def initive conclusion.

In this paper we extend the boson method in
superconductivity, developed in previous papers, '
by taking into account the time-dependent effects.
The approach follows the general lines of Ref. V.
Starting from the BCS model we have expressed
most of the important observables in terms of the
quasifermion field P and the quasiboson field B.
These results have been obtained by solving the
equations of motion for the electron field P (here
P is a Heisenberg operator) for a space-indepen-
dent superconductor: The ground state is assumed
position independent so that the order parameter
b =(g, g, ) is space independent. To move from the
space-independent solutions to the space-dependent
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ones we introduced an invariant transformation, the
"boson transformation, " under which the field equa-
tions stay invariant while the ground-state expecta-
tion values' of various observables are allowed to
change. Through this transformation the space-
dependent order parameter and the corresponding
solutions of the Gor'kov equations are obtained
simultaneously. An application of the boson method
in a space-dependent problem has been made' to
study the structure of vortex lines in type-II super-
conductors. There we compute the distribution of
current and magnetic field in the whole domain, up
to the center of the flux line, and our results are
valid for a wide range nf the Ginzburg parameter
z= A./$.

The advantage presented by the boson method
is particularly clear in this example. As we have
already mentioned, all the different GL equations '
proposed in the static case are valid under the re-
quirement that all the quantities vary very slowly
in the range of the coherence length and that the
electrodynamics be local. Naturally these limita-
tions restrict the analysis to London superconduc-
tors (v» l) and to distances far from the center of
the flux line. If one wants to remove these limita-
tions then one must resort to the Gor'kov equa-
tions, or equivalently to the Bogoliubov equations,
and try to solve them in a self-consistent manner.
Recent attempts have been made in this direction,
but the principal difficulty of solving the equations
in a self-consistent way has not been avoided, and
practically only particular models can be solved by
means of numerical calculations.

Our approach to time-dependent situations is the
generalization of the method described above; we
look for a transformation which leaves invariant the
field equations of the electron field, but modifies
the energy of the ground state; previously we have
restricted ourselves to the case in which this
transformation keeps the order parameter time
independent, while in this paper we let the boson
transformation generate a time-dependent order
parameter. As a result the space- and time-de-
pendent properties of a superconductor can be de-
rived simply by operating invariant transforma-
tions on the operator form of the corresponding
quantities expressed in terms of quasielectron and
boson fields. The generator of these invariant
transformations is expressed in terms of a function
f (x, f) which satisfies the equations given in Sec.
II. Once these equations are solved according to
the boundary conditions appropriate to the problem
under study, most of the properties of the system
are known; in particular an expression for the
space- and time-dependent order parameter is
given.

The problem of solving the Gor'kov equations is
not present in the boson method since ave do not

need these equations; the space and time depen-
dences is introduced through the boson transforma-
tions. This situation turns out to be extremely
advantageous in the cases, illustrated previously,
where it is not possible to reduce the Gor'kov
equations to a system of nonlinear differential
equations of the GL type. Furthermore it is also
tvel1 known' ' that a theory of superconductivity
based on the Hartree-Fock approximation is not
gauge invariant and the current is not conserved,
while in the boson method the gauge invariance and
current conservation are guaranteed by the pres-
ence of the boson field.

In order to illustrate our formulation we have
applied the boson method to the study of two super-
fluid systems which are weakly coupled together.
In the present paper we study the case of two super-
fluid liquids joined by a weak link, in a subsequent
paper ' we extend our investigation to the study of
alternating supercurrents in weakly coupled super-
conductors. " In these applications, starting from
the microscopic equations, we give a simple deri-
vation of the experimental fact that the system will
present dynamical stability only at frequencies
which are harmonic and subharmonic to a funda-
mental frequency. In other approaches one must
resort to more complicated arguments in order to
give a theoretical explanation of this experimental
situation.

In the case of superconductivity the Josephson
formulation does not give a full description of the
experimental facts. It has been argued" that this
formulation, based on a perturbative treatment of
the tunneling Hamiltonian, may be adequate to de-
scribe only junctions thick enough that the tuneling
process can be treated by lowest-order perturba-
tion theory, so that its application to point-contact
junctions might not be appropriate. This is cer-
tainly the case; however, there exists a class of
experimental phenomena that are common to sys-
tems of two superconductors joined by a weak link,
independently of how the link is realized. There-
fore, it is our opinion that all the phenomena oc-
curring in weakly coupled superconductors should
be described by a unified theory; the formulation
based on the phenomenological argument of the
tunneling Hamiltonian seems not to give a general
description.

In the framework of the boson method a study of
the static Josephson effect has been already made 6;

our approach gives a general description of this
effect and shows how the Josephson formulation
corresponds only to a particular solution of our
equations; in other words the results of the usual
theory are valid only for certain specific geomet-
rical configurations. One of the experiment '1

consequences of this generalization is the fact that
the Fraunhofer diffraction pattern for the net cur-
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rent crossing the junction does not follow neces-
sarily the form (sinx)/x, predicted by Josephson.
The advantages presented from the boson method
become more transparent in the study of time-de-
pendent situations. According to the Joseyhson
formulation when two superconductors coupled to-
gether by a junction are maintained at a relative
yotential Vo, an alternating supercurrent with a
frequency v~ = (2e Vo)/2m will flow between the two
superconductors. If the junction is placed in a
microwave field with frequency v, the Josephson
formulation predicts that a dc current in the form
of a sharp step will appear in the dc I-V character-
istic at dc voltages Vo which satisfy the relation v

=nv&, where n is an integer; furthermore, ac-
cording to this formulation, the amplitude of this
dc current should be a Bessel function of V, where
V is the amplitude of the external field. The pres-
ence of these steps in the I-V characteristic has
been experimentally observed in many type of junc-
tions, ' however, in the case of thin-film bridges
and in point-contact junctions steps appear also
at dc voltages given by mv= nv&, where rn and n
are both integers. The variation of I with respect
to V has been also experimentally measured~~; the
behavior as a Bessel function is verified only in
approximate way, more generally from the data
of Ref. 19 we can deduce only a periodic nature.
All these experimental facts show with enough
clarity that the Josephson formulation does not
cover all the experimental situation and one needs
a more general theory. ' By applying the methods
described in this paper we give in Ref. 13 a general
description of the electromagnetic proyerties of a
system of two weakly coupled superconductors.
Our formulation confirms most of the experimental
facts: dc currents are shown to appear at voltages
Vo which correspond to harmonic or subharmonic
of the fundamental frequency v~; the amplitude of
this dc current is a periodic function of V. We have
not studied in detail the form of our solutions; by
applying additional boundary conditions which take
into account the geometry of the system and the
properties of the materials we should be able to fix
the shaye of some undetermined parameters that
enter in the expression of the alternating current;
in particular we might verify the experimental fact
that n/m is usually an integer number in the case
of tunnel junctions and is a rational number in the
case of point-contact junctions and thin-film
bridges. Our expression of the net current cross-
ing the junction contains a "Fraunhofer factor"
which shows that some lines in the I-V character-
istic should be missing; this circumstance can be
verified experimentally and once that this is con-
firmed we can obtain, as it is shown in Ref. 13, de-
tailed informations about the shape and the velocity
of the flux lines present in the junction.

For the sake of clarity, let us first recall briefly
the results obtained in previous papers. We have
derived the operator form of some of the observ-
ables in terms of quasiyarticles. In particular the
Hamiltonian, the density, and the current operators
take the form

—~a «(o'a~ a~+ a +a )+~i (2. l)

In the case of superfluidity experiments have
been performed on a system of two baths of suyer-
Quid helium which are weakly coupled through a
small orifice. When the system is coupled to an
external field oscillating in time the experiments
show that the system will present dynamical sta-
bility only for certain values of the difference in
the helium head. These effects are analogous to
the ac Josephson effects in superconductivity. The-
oretically, however, the situation is not so simi-
lar; in the case of superfluidity one does not have
an equivalent of the Josephson equation (this equa-
tion is derived using phenomenological arguments
together with the Maxwell equations) and the usual
theoretical explanation is based on an intuitiv pic-
ture. In the present paper we apply the time-de-
pendent boson formulation to the study of these phe-
nomena that have place in superfluid liquids. In
Sec. V we show how the condition of stability comes
naturally from the microscopic theory by requiring
that the system be in resonance with the external
perturbation. We do not study in detail the solu-
tions, deferring this problem to a future paper,
however, we show how in principle we can generate
solutions that correspond to the usual physical pic-
ture that is used to explain the experimental re-
sults.

Summarizing, in this paper we have extended the
boson method in superconductivity to the case in
which time-dependent effects are considered; in
this way we propose a formulation of the theory of
superconductivity in which nonstationary phenomena
can be described. At the present stage of our
formulation we have not taken into account the pres-
ence of impurities and the interaction of the Heisen-
berg electron field with the lattice phonons; in some
problems these effects can affect in a sensible way
the dynamics of the system, so that the present
shape of the boson method may be incomplete in
describing situations at temperature close to the
critical temperature. Extension of the method is
under study. In order to verify and to illustrate
the method we have applied the formulation to the
study of the phenomena that occur when two super-
fluids are weakly coupled together. In Sec. V of
the present paper we consider the case of two
superfluid liquids, while a subsequent paper is
devoted to the case of two superconductors.

II. BOSON TRANSFORMATION
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p(x, t) = p"'(x, t)+ p"'(x, t),

j (x t) = j '(x t) + j "'(x, t) .

(2 2)

(2 3)

in charged superconductors . (2. 11)

»om Eqs. (2. V)-(2. 11) the following important
relation

Here p(i) and j (1) denote the quaslfermlon part md
p' ' and j ' ' denote the boson part; n„z~ and 3»
B~ are annihilation and creation operators of the
quasifermion (t) and of the boson B, respectively.
The expression of &, , the energy spectrum of the
boson field, has been given in Ref. 6. If we con-
centrate our attention only on the boson part, since
the fermion part does not play an important role
in the boson method, the explicit expression of the
observables in Eqs. (2. 1)-(2.3) is given by

H(B)=
V fd x[v (x, t)vvvVB(x, t) ~ VB(x, t)]

e Yp G G V(xv t)7((yt t)+2dXdg

—v(x, t) = v() V B(x, t) (2. 12)

el 4/t)(v)3B y(y PB ) (2. 13)

where F is a certain function.
Now let us consider the transformation induced

by the following generator:

N/= f d'x [f(x, t) q(&) b(x, t)

is valid for neutral and charged superconductors.
Another important result is that the electron fields
can be expressed in terms of the quasiparticle
fields as

p' '(x, t) = -q(i) v(x, t),

j(B)(x, t) = v'Gq(i) &B(x, t) .

(2. 4)

(2. 5)

(2. 6)

where f -=sf/st, and let us study the conditions
under which this transformation leaves invariant the
equations of motion. This condition is that the gen-
erator will be time independent; i.e., N&=0.

Here vG, the boson velocity, is given by vG= vz/W;
the temperature-dependent coefficient q((v') is de-
fined in Ref. 6; q means q(0). The last term in the
Eq. (2. 4) is present only in the case of charged
superconductors. z is the canonical conjugate of
B and can be put in the form

A. Neutral Supercoiductors

Using Eqs. (2. /), (2. 8), and (2. 12) we find

N/= f d x [f(x, t) q(V) B(x, t)

—v()f(x, t) 7i( V ) V'B(x, t)] .

sb(x, t)
v x, t =

et

where

(2 't) Next we consider the commutator

[N&, ~(y, t)]=i f d'x[f(x, t)

(2. 15)

b(x, t) = B(x, t) in neutral superconductors,

(2. 8)

—~'G f (x, t) V'] q(Y) d (x —y),

where

id(x-y) = [B(x, t), v(y, t)] . (2. 17)
'in charged superconductors .

(2. 8)

The quantity i(, is given by p, =(47() / eg. The boson
field satisfies the field equation

Since d(x —y) is a short-range function we can in-
tegrate by parts and write Eq. (2. 16) in the form

[N„v(y, t)]=i f d'x[f'(x, t)

goV B z t =0
et

in neutral superconductors, (2. 10)

—V() V'f (x, t)]7i(V}d(x -y) .
(2. i8)

On the other hand it is obvious that N& commutes
with (t) and B, therefore it follows from Eq. (2. 18)
that N& acts as a null operator in the algebra of op-
erators in D(L), if f (x, t) is a solution of the
equation
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(
82

2
—voV +(()~ V f(x, t)=0.

Bt

Here w~ is the plasma frequency

2= 22e&= p vo ~

(2. 21)

(2. 22)

The general form of solutions of Eq. (2. 21) can be
written as

B. Charged Superconductors

Proceeding as in the neutral case, making use of
Eqs. (2. 7), (2. 9), and (2. 12), it is easy to show
that N& will be a null operator in the algebra of op-
erators in D(L) if f (x, t) satisfies the following
equation:

8- mix- yl

v pOf(x, t)+—f d y v, f(y, t)=0

(2. 20)

Since e """/) x —y) is a function of finite range,
the integration by parts is permitted, so that Eq.
(2. 20) can be put in the differential form

fields transform in the following way:

+ fd yf (y, t) rl(V„) d(x —y),
(3. 1)

v(x, t)- vt(x, t) = v(x, t)

+ f d'yf(y, t)g(V)d(x-y) .

(3.2)

It is easy to see that the transformations (3. 1) and

(3. 2) leave Eqs. (2. 10) and (2. 7) invariant, as is
expected from the fact that the boson transforma-
tions are invariant transformations. Recalling
Eqs. (2. 2), (2. 3), (2. 5), and (2. 6) we find that the
boson transformation induces the following ground-
state density:

p(x, t) = (p&) = —g f d'y c(x —y) f (y, t) (3. 3)

f=f~+fa

where f~ satisfies the plasma equation

—voV + (()p fg( x~ t) = 0 )

while fz satisfies the Laplace equation

~Vf,(x, t) = 0 .

(2. 23)

(2. 24)

(2. 25}

(- -) rI( V„) )7 (V,) (-
n'

This function has a range of g, the coherence
length, and it is normalized to unity:

(3. 5)

and the following ground-state current density:

j(x, t)=-(j~)=g'v', f d'yc(x —y) Vf(y, t) . (3.4)

Here the correlation function c(x —y) is defined by

It should be noted that the time-dependent behavior
of fz is arbitrary. This reflects the feature of the
energy spectrum of the boson field (cf. Ref. 6); the
behavior of w, in the domian of extremely small
momentum (l ~ I/L, where L is the linear size of
the system) depends on the shape of the surface of
the system. Intuitively speaking, the time depen-
dence of f2 depends almost entirely on the boundary
conditions. Indeed the Laplace equation corre-
sponds to the Klein-Gordon equation with maximum
signal velocity being infinite: The infinite nature
of the maximum signal velocity is a manifestation
of the Coulomb effect. Note that, when the Cou-
lomb potential does not exist, f satisfies Eq. (2.19)
which is the Klein-Gordon equation with maximum
signal velocity vo.

Summarizing, we define the boson transforma-
tion as the transformation induced by the generator
N& in Eq. (2. 14), where the function f(x, t) stands
for a solution of Eq. (2. 19) in the neutral case, and

Eqs. (2. 23)-(2. 25) in the charged case.

III. GROUND-STATE EXPECTATION VALUES OF
THE OBSERVABLES

A. Neutral Superconductors

Under the boson transformation the quasiparticle

f d'xc(x-y) = 1. (3.6)

From Eq. (2. 19), tbe conservation law is immedi-
ately verified:

B. Charged Superconductors

Taking into account Eqs. (2. 7), (2. 9), and (2.12)
we can easily see that under the transformation in-
duced by N&, the fields transform as

V ~ j+—=p d yc x-y voV' — 2 y, t =Q.

(3.7)

From Eqs. (2. 4), (3. 1), and (3.2) we find that the
boson transformation modifies the c-number part
of the Hamiltonian; the ground-state energy after
the transformation being given by

w=(HI)=2, d'x)l p'(x, t)+m j(x, t) j(x, t)) .
2n vo

(3.6)

It should be noted that this effect does not contra-
dict the previous result that the operator N& is
time independent. This was discussed in Appendix
A of Ref. 7.
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ty4 tv4

(s. 9)

B(x, t)-a,(x, t) =a(x, t)+f d'yf(y, t)Z(v ) d(„-

at4 ))ag)
7f(x. t) - vt(x, t) = )T(x, t) ——I d'y d'z

4m )y -z[

J(x, t) = eq vo [f d y c(x —y) Vf (y, t)

—e f d'yc(x-y) Ar(y, t)] . (3. 16)

charge current follows from Eqs. (2. 3), (2. 6),
(S. 9), and (S. 12):

x q(V,)d(x —y) V, f(z, t), (3. 10) Let us note that, as A~ is a transverse vector,
i.e., V' ~ A~=0, the conservation law is easily veri-
fied, since f (x, t) satisfies Eq. (2. 20):

—te(x, t)-J dd„tty(y, t)0(V„)d(x-yl, (3. 13)

where (t),„,is the external scalar potential. How-
ever, since (t)„, does not penetrate into the metal,
in the following we shall not consider its effect.

Then Eqs. (2. 2), (2. 5), and (3. 10) lead to the
following ground-state charge density:

P(x, t) = &Pf)

8-p I y- al

4m
d'y c(x -y) d'z V'f (z, t).

ly -zl

We can show that these transformations leave Eqs.
(2. 11) and (2. t) invariant, as is expected from the
fact that the boson transformations are invariant
transformations.

The effect of the electromagnetic field is easily
taken into account' observing that gauge-invariance
considerations require that VB is replaced every-
where by

VB(», t)- VB(x, t) —e f d yAr(y, t)q(V, ) d(x-y),
(3. 12)

where Xr is the transverse part of the vector po-
tential of the electromagnetic field. Here the elec-
tromagnetic field is the total field, which contains
the external fields and the fields due to persistent
currents. The scalar part of the vector potential,
due to self-consistent effects, is taken into account
by the Coulomb potential introduced in the Ham-
iltonian. The scalar part of the vector potential,
due to external fields, can be introduced by the
same argument of gauge invariance, requiring that
S always appears in the combination

V ~ J+—=e)7 d yc(x-y)
l

voV f(y, t)8t

n (x, t) =
&)I)t & qt, ) -= e"'~"

l
&(x, t) l,

where

e(x, t) = 2 f d'y d(x -y)f (y, t),

(s. is)

(3. 19)

In(x t) I
=

& 0l ~'&y, va,
-e f d'y Ar(y& t)n(v, )d(x-y)& vf) lo) .

(s. 2o)

Finally the boson transformation induces the fol-
lowing ground-state energy:

)&=0, z d'x 0'(x, t)+m J(x, t). J(x, t)).2e Vp

(s. 2i)

IV. EQUATIONS FOR THE VECTOR POTENTIAL A

We shall now combine the results obtained in
Sec. IIIB with the Maxwell equations in order to
derive equations for the vector potential A. The
Maxwell equations can be written as

- tt ly- sl
+ — d'z — V'f (z, t)) = 0 .4' I f —K I

(3. 17)
Another important result is that through the

boson transformation we can obtain the expression
for the order parameter, which is now space and
time dependent. In fact making use of Eqs. (3.9)-
(3. 11) we obtain

This expression can be also put in the form

p(x, t)= 0'ef d' ye(x -y)f(yt)-,
2 -tt, I y - El

+
4 dgc x —y d

(3. 14)

(3. 15)

V ~ E=4mp,

8AE=
8 t

8E
V&&H=4~ J+

St

Now let us write

A= A~+AL, ,

(4. 1)

(4. 2)

(4. 3)

(4. 4)
where the last term represents the modification
due to the Coulomb potential. The ground-state where Az, is the longitudinal component of A, and
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3 =31+32 ~

»(x, t)=afar fd yc(x —y)Vf, (y, t),

& (, t)=.'"of d'ye( y-) ~f.(y t)

(4. 6)

(4. 7)

a transverse vector, though A~ is longitudinal;
therefore n = 0. The other unknown function P(x)
can be put equal to zero by choosing a special
gauge.

Let us now consider Eq. (4. 9). The general
solution of this equation is given by

Recalling that fq and fz are solutions of Eqs. (2. 24)
and (2. 25), respectively, and using (4. 2), we can
rewrite Eq. (4. 8) separating the longitudinal and the
transverse part, as

(1) (2)A~= Az +A ~', (4. 15)

where A~ ' is the general solution of the associated
homogen'eous equation and Xrg' is a particular solu-
tion:

8
2 AI(xy f)=4M] l(xy t) 4 (4. 8)

2+VxVx Ag x, t
8t

82
, vvtxvx A„(x, t) 4 +v evetftd tey (xt-c)r)

8t

x Ar(y, t)=4))ejp(x, t) . (4. 9)

At first let us study Eq. (4. 8). This reads as

+~ ~'yc x-y A,"'
y, t =O,

A,L

82
2+VXVX Ag X, t

8t

(4. 16)

2

, Av(x, t) deev'v'f d='yc(x-y)Vyt(y, t) .

(4. 10)

On the other hand, since f, is a solution of Eq.
(2. 24), the following relation is true:

e- P, lx- yl

vvvft(x, t) ~ —f 4 y vft(y, t)=0.
(4. 11)

Substituting (4. 11) in (4. 10) we find

82

8t , A~(x, t)

~0e- Ply- sl
= —eg dye x-y d3z V

& z, t .ly-zl
(4. 12)

Now the solution of this last equation is obtained
by adding a particular solution to the general solu-
tion of the associated homogeneous equation

+~ d'y c x-y A~" y, t =4mej2 x, t .

Here A. L is the London penetration depth:

1 2 2 2 4gn e2

~ =47Te g vp-
Xl, m

(4. 17)

(4. 18)

f d'y c(» -y) Arn)(y, f)

=[1 GVxVx]Arn&(x, t)+0(]'/Zi),

Equation (4. 16) shows that Ar( ' is induced only by
external fields, and is nothing else than a gener-
alized London equation in which the displacement
current s E/st, and the nonlocal relation between
the persistent current and the vector potential are
taken into account. To solve Eq. (4. 17) we proceed
in an analogous way as in Ref. '7 by using the follow-
1ng expallslon:

~ ty

AL=O.

Therefore we find that

(4. iS)
(4. 19)

where G is a constant length of the order of $~, de-
fined by

- u ly- sl

A~(x, t) —ex'f d'y c( y)f=4'e-
)y-z/

G=-', vf, ~4c(~)d~. (4. 20)

x Vf,(z, t)+ n(x) t+ p(x), (4. 14)
Substituting the expansion (4. 19) into the Eq. (4.17)
we find that

where n and P are unknown functions of x only.
The solution (4. 14) gives

Arn'(x, t) = 4)Te f d y D(x —y) j~(y), (4. 21)

8A
V ~ E= V ~ — =4gp+ V ~ n,8t

where use was made of Eqs. (4. 2) and (3. 14). By
comparing this result with the Maxwell equation
(4. 1) we find that yyy ~ n = 0. This means that n is

8 XG 2 12 2
—,—~ V +~ D(x-y)=6 (x-y)(4)

8t
(4. 22)

where D(x —y) is the Green's function, solution of
the equation
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x e "'"' Vzf&(z, t) (4. 24)

and the following charge current:

J(x, t) = e jq(x, t)+ Jr(x, t), (4. 25)

where J~, the transversal component of the cur-
rent, is given by

Jr(x, t)=«e J d'y&(z'-y)iz(y), (4. 26)

E(x-y)=5' '(x-y)-~(Gv +1)D(x-y) .
A,L

The vector potential is given by A= A~+ A~, where
Ar is given by Eq. (4. 21) and

Az(x, t)= —eq'f d'yc(x y%)'-s
ly -zl

X 8-u I y-Rl pf ( z t) (4. 28)

The electric and magnetic fields can be obtained
by the usual relations E = —8A/st, H= Vx A. It
should be noted that in Eq. (4. 25) we have not taken
into account the Meissner current, since it does
not penetrate into the metal. Also, Egs. (4. 21)
and (4. 26) are valid in the approximation in which
we neglect effects of order ($/Xl, ) .

V. ANALOG OF THE ac JOSEPHSON EFFECT IN
SUPERFLUID LIQUIDS

Owing to the remarkable similarity between the
properties of the superconducting state of a metal
and the superQuid phase of liquid helium, it is gen-
erally believed that an analog of the Josephson ef-
fect should be observable in superfluid helium.
Unfortunately at the present time it is not known
experimentally how to realize a Josephson junction
for superfluid helium, so that many effects (for
example, the diffraction pattern of the net current
crossing the junction) which are observed in super-
conductivity cannot be seen in superfluid helium.
However, to observe quantum interference effects
one does not need a Josephson junction but only a
weak link between the two superconductors: The
connection can be also realized by a point contact.
Obviously such a weak link also can be obtained
for superfluid helium and one expects to observe
effects analogous to the ac Josephson effect in

Xg-XI, —6.2 2

At this point it will be useful to summarize the
results we have obtained. In the case of a charged
superconductor the boson transformation induces
the following charge density:

2

p(x, t)=~ d'yc(x-y) d'z
4n ly -zl

A. Oscillator Turned Off

Let us suppose that the transducer is turned off
and a head difference d is created between the two
baths. In these conditions the system can be
schematized as two superfluids connected together
by a horizontal junction of negligible thickness, at
whose edges there is a potential difference given
by the the pressure difference

(5. 1)

Here p is the density and g is the acceleration due
to gravity; this pressure difference creates a dif-
ference between the chemical potential of the two
systems, given by

4p =mgd, (5.2)

where m is the mass of the helium atom. The ex-
periments show that once the head difference is
created there is a constant Qow through the orifice
which tends to equalize the levels.

For a superfluid system our results of Sec. III
show that the boson transformation induces a
ground-state density

superconductors. Anderson and Dayem performed
an experiment in which the tunnel junction is re-
placed by a thin-film superconducting bridge which
separates the two superconductors. They observed
steps in the I-V characteristic at dc voltages given
by rn2eVo=n&gq. The exact analog of the Anderson-
Dayem experiment for a superconductor was made
by Richards and Anderson ' in superQuid helium;
more recently similar experiments with several
refinements and clearer results have been re-
peated by Khorana and Chandrasekhar 6 and by
Richards. ~~

Two baths of superfluid helium at the same tem-
perature are weakly coupled through a small orifice
(diameter =10 ~ cm); near the orifice in the bath is
placed a quartz crystal oscillator. A difference d
in the helium head will produce a difference 4p,

in the chemical potential: This is the equivalent
of the difference in the chemical potential induced
by the dc voltage Vo in superconductivity. The
equivalent of the alternating voltage is played by
the quartz crystal, which acts as an ultrasonic
transducer producing sound waves.

In this section we shall apply the formulation
developed for the case of a neutral superconductor
to the study of the system described above. By
neutral superconductor we mean a hypothetical
system (of the BCS type) of uncharged Fermi. parti-
cles with short-range interaction. The properties
of such a system are closely related to those of
superfluid helium, 8 and we expect that the boson
formulation of a neutral superconductor will give
a good description of the properties of superfluid
helium.
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p(x, t)= -q' f d'y c(x-y)f(y, t)

and a ground-state current

j (x, t) = q' v() f d'y c(x - y) Vf (y, t) .

(5. 8)

(5. 4)

jz(z, t)=h('v'oz [II")J c(h)dh+8") f "c(h)dhj,

(5. 14)

where i is the unit vector in the z direction and
where c is defined by

Here f, the phase of the condensate wave function,
satisfies the equation

+ OO

c(z —z') = g„dx' J dy' c(r —r') (5. iS)

82
, —v() V' f ( x, t) = 0 .

et (5. 5)

y(t) =f (o', t) -f(o, t) (5 8)

we shall further require that (iii) Q(t) is periodic in
time with modulus 2m; i. e. ,

Q (t+ T) = Q(t) + 2() l (l = integer);

(iv) g(t) is controlled by the difference in the
chemical potential

(5.V)

(5.8)

The general solution of Eq. (5. 5) satisfying the
boundary conditions (i)-(iv) is given by

f (z, t) =A"' t+8")z+D

+5 s', '„' sis '" s+s„")sis(ts, „i), (S.S)
ln

'

VO

where i = 1 for z & 0 and i = 2 for z & 0 and

(u,„=(n/l) mgd, (5. 10)

~«&-~&2&=m d (5. 11)

In writing the solution (5. 9) we have required also
that (t)(0) = 0 and that the current be an odd function
of t. The constants B(~), D, EI„", and y„'~' (i =1, 2)
should be fixed by requiring more restrictive
boundary conditions. Substituting the solution (5. 9)
in Eq. (5. 4) we find the following expression for the
current:

j (z, t) = ii(z, t)+ jz(z, t),

jg(z, t)=z Q j,„(z) ins(g, „t,

(5. i2)

(5. iS)

In order to determine the observable quantities of
the system, we must solve Eq. (5. 5) with the bound-

ary conditions appropriate to the problem under
consideration. Choosing the origin of the system
of Cartesian coordinates at the center of the bar-
rier and the z axis in the direction of the gravita-
tional field, we shall look for a solution of Eq.
(5. 5) satisfying the following boundary conditions:
(i) f is a function only of z and t a,nd is denoted
by f(z, t). (ii) The density and the current are
finite at any point z, t. Defining

0 VO

n meed
$5

L 2
(5. 1V)

The net flow crossing the junction is given by

T a"'+a"'
(j ) = — j (0, t) dt = j,(0) = z q' v()

0

(5. 18)

The expression (5. 18) agrees with the experimental
result of a constant flow through the orifice which
tends to equalize the levels. Let us note that in
deriving this result we have neglected the depen-
dence of the head difference on time. This depen-
dence is negligible; it is appreciable only for very
small d (d& 1 mm); if such dependence is taken into
account we find that for very small d the flow is
no longer constant, but linear in time; this result
agrees with the experimental result (see Fig. 3 re-
ported by Khorana 6).

The density can be computed in an analogous way

by substituting the solution (5. 9) in the expression
(5. 8).

B. Oscillator Turned On

When the transducer is turned on the quartz crys-
tal vibrates with a frequency vq, this effect creates
at the junction a difference in the chemical potential
given by &t(=(V,/2()v, ) cos(2((v, +8,). The experi-
ments show that under these conditions the system
will present dynamical stability at values of d which
satisfy the relation

mgd = (n, /n, ) 2mv, , (5. 19)

where n& and n2 are integers. In the presence of
this external field Eq. (5. 5) should be modified and

f (x, t) will satisfy an inhomogeneous equation,
where the external effect acts as a source. Vie
then solve Eq. (5. 5) under the boundary conditions
given in Sec. VA, where now the boundary condi-

+F',„' s(s —s') sss '" s'+y' ') Ss'
~ ((O VO

(5. i8)
The expression (5. 13) represents an oscillating
flow with a spectrum of frequencies given by



BOSON ME THOD IN SUPERCONDUCTIVITY. . .

tion (iv) is modified by requiring that results obtained in liquid helium.

+8 Vg=mgd+ cos(2wv, l+ 8,) .
2wp&

(5. 20) VI. CONCLUSIONS

The general solution of Eq. (5. 5) satisfying the
boundary conditions (i)-(iii) is given by

f( si)=A"'S 2 ~ "S'si s ssy'')
n

n
V T n

0

x sin f+ p"' (5. 21)
n

for a given integer l, with

A -A = 2rl/T . (5. 22)

In Eq. (5. 21) we have disregarded a constant term,
which does not have any physical relevance. Also
we have not considered terms linear in z; as we
have seen in Sec. VA these terms produce a con-
stant flow of current in the g direction. Since we
are principally interested in stationary states we
do not take these terms into account; however,
these linear terms will be responsible for the tran-
sition between one resonance state to the next one.

The boundary condition (5. 20) requires that

A. -A = meed,

v~ = p/Z' (p = integer),

F 'siny' '-F' 'siny' '= V 5n n n n & nP

(5. 23)

(5. 24)

(5. 25)

By comparing Eqs. (5.22)-(5. 24) we see that the
values of d are controlled by the frequency of the
oscillator through the relation

mgd = (l/p) 2mvi . (5. 26)

Summarizing, we thus find that the system will
present stationary states in resonance with the ex-
ternal field when and only when Eq. (5.26) is satis-
fied.

Let us close this section by remarking that we
have taken a very simple solution of Eq. (5. 5). One
could be more sophisticated by considering more
complicated solutions. In particular one solution
that corresponds to an interesting physical picture
is the following. As we have already mentioned
we can generate from the Laplace equation V f= 0
a solution that describes a static array of vortices;
from this we can easily obtain a solution of Eq.
(5. 5) which corresponds to the case in which an
array of quantized vortices is crossing the junction
with a constant velocity. When the vortex crossing
is synchronized with the external effect we have a
stable situation; this synchronization will be pres-
ent at harmonic and subharmonic frequencies. The
physical picture that corresponds to this solution
has been previously presented by other au-
thors ' ' in order to explain the experimental

The formulation developed in this paper shows
the powerful method of investigation that is con-
tained in the boson transformations. The motiva-
tion of this approach is based on the fact that a sys-
tem is described by certain equations of motion,
and all the possible phenomena correspond to solu-
tions of the same equations of motion, solved under
different boundary conditions. From this it follows
that all the possible states of a system must be
connected among themselves by transformations
which leave invariant the equations of motion but
may modify the expectation value of some of the
observables. In other words each of these invari-
ant transformations corresponds to a different
realization of the original equations of motion.

When we apply the boson method to superconduc-
tivity, first we solve the equations of motion in the
case in which the order parameter is constant;
once that the problem is solved for this situation
we look for invariant transformations (boson trans-
formations) which permit us to consider different
situations in which the order parameter can vary.
In this way, starting from the original microscopic
equations, we have constructed a formulation of the
theory of superconductivity in which the persistent
currents are space and time dependent.

The convenience of this approach resides essen-
tially in two points. The first point is that the
boson method gives a unified formulation of super-
conductivity which describes many different phe-
nomena; the second point is that the study of these
phenomena is made in principle very simple since
each of them corresponds to a particular invariant
transformation. In other words we do not apply the
boundary conditions to the original equations of
motion, but to the choice of the invariant transfor-
mation.

The practical advantages of this formulation are
presented in the last part of the present paper and
in Ref. 13. Starting from the original microscopic
field equations and without introducing any phenom-
enological assumption we succeeded in constructing
a general theory which describes most of the ex-
perimental phenomena that are observed when two
superfluid systems are weakly coupled together.
Our results show that the Josephson formulation
may be valid only in some limiting cases, but in
a rigorous sense it does not seem to give a general
and consistent description of the physical pro-
cesses.

In conclusion we would like to remark that, as
we have already mentioned, there exist in the lit-
erature many attempts to generalize the GL equa-
tions in order to describe situations in which the
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order parameter is varying in the time. If these
approaches correspond to a basic theory of time-
dependent phenomena in superconductivity they

should be able to describe the ac Josephson effect
without making use of any phenomenological as-
sumption.
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