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A theory which describes small-amplitude fluctuations of arbitrary spatial extent in a super-
conductor has been used to calculate the magnetization in a magnetic field above the transition
temperature. The calculations agree quite well with the experimental data. Analytical and
numerical work indicates that corrections to the electromagnetic properties because of the
large size of the fluctuating pairs play an essential role. The effect of impurity scattering has
also been included. For moderately small impurity concentrations, agreement is obtained
with a semiempirical suggestion due to Gollub, Beasley, and Tinkham, that a universal be-
havior should occur in terms of an appropriately scaled magnetic field. Deviations from this
behavior are predicted at higher impurity concentrations.

I. INTRODUCTION

There has been considerable recent interest in
the question of the magnetic properties of super-
conductors as the temperature is lowered to the
transition temperature. The first calculations of
this effect by Schmidt' and Schmid concentrated
on the diamagnetic susceptibility. They obtained
the formula

where $(T) is the coherence length, diverging like
(T —T,) ' . In the first experimental investigation
of this prediction, it was pointed out that since
the experiments are done iii a finite magnetic field
(B) which lowers the nucleation temperature of the
transition, a generalization of (1.1) is required
which would involve [T — , (T)s]B', where T, s is
the nucleation temperature. Such a generalization
was then provided by Prange as well as in a paper

by Patton, Ambegaokar, and Wilkins (PAW). ' The
theories of Refs. 1, 2, and 4 were based on the
quadratic part of the usual Ginsburg-Landau func-
tional for the free energy. In PAW attention was
focused on the fact that the previously used func-
tional was only valid for long-wavelength fluctua-
tions, whereas fluctuations of all wavelengths con-
tribute to the magnetization at all but very small
values of (T —T,) and B. On the basis of a cursory
examination of the microscopic theory, a modified
functional was proposed. This modification was
based on two hypotheses, one of them correct and
the other not. The correct observation was that
in the absence of a magnetic field, in which case
the free-energy functional can be diagonalized by
expanding the order parameter in terms of plane
waves, the eigenvalue of the Gorkov kernel, E(P ),
with P the wave number, changes over from a be-
havior of the form Z(p )~ p for pro& 1 ($0 is the
temperature-independent coherence length) to
E(p )-1 for vs�&~o, where vr is the Fermi
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velocity and &uo the Debye frequency. A simple
function that was both mathematically tractable
and able to simulate this crossover was proposed.
This part of PAW seems to us to have been good
physics. The physical error in Ref. 5 came from
the assumption that since in the slow variation
limit the inclusion of a field corresponds to the
replacementP -0 +(eB/Rc)(4n+2), where 0 is
now the wave number in the direction of the field
and n the Landau quantum number, a similar re-
placement is valid in the general form E(P ). This
is in fact not the nature of microscopic generaliza-
tions of the Ginsburg-Landau theory to include
rapid variations of the order parameter in all but
extremely dirty superconductors. More recent
experiments have revealed deviations from the

Prange calculations in qualitative accord with the
predictions of PAW„' but they have at the same
time demonstrated the quantitative inadequacies
of the latter theory.

In this paper we report on analyses and calcula-
tions based on the correct microscopic generalized
Ginsburg-Landau functional including also the ef-
fect of pairs whose total energy is not twice the
chemical potential. We find that we can reproduce
the main physical effect, which is a fall in the
fluctuation enhanced diamagnetism at a field con-
siderably smaller than the scale set by analyses
of the PAW type, namely, (eBjhc) $o = 1. We have
done several calculations for the pure system to
explore the origins of this effect. Our conclusion
is that it is to be understood in terms of the failure
of the naive replacement described above. We
point out that terms omitted by this replacement
play a large role in the fluctuation magnetization
because of a cancellation between other super-
ficially larger terms. Using the insight obtained
by this work on the pure system, we have also
performed approximate calculations of the effect
of impurity scattering on the phenomenon. For
smallish values of impurity concentration, )gvz7
& 3 (where v~v is the mean free path), our calcu-
lations agree with a semiempirical suggestion
about a universal dependence of the magnetization
when considered as a function of an appropriately
scaled magnetic field. For higher concentrations
we predict deviations which should of course be
experimentally tested.

From our work one can conclude that although
the detailed shape of the universal curve depends
on the explicit form of the field-free generalized
Ginsburg-Landau kernel, E(P ), the only crucial
characteristic of this kernel required to explain
the experimental data presently available is that
its scale be determined by P)o= 1.

Since the completion of the analysis contained
in this paper, and after the first convincing nu-
merical results were obtained but before the cal-

Our starting point is the Hamiltonian for the
Gorkov model in the presence of a constant mag-
netic field. In standard notation we have

2

H = d'x (,(x) —. f——A(x) g,(x)2m g

H —f d' x 0-(x) 0(x) (2. 1)

where we have defined 0(x) =—WVg, (x)g, (x). As
usual, the attractive interaction will be allowed
to act only on particles in a shell of width @co&

about the Fermi surface to simulate the dynamical
overscreening of the electronic charge due to the

sympathetic vibrations of the ionic lattice. The
thermodynamic properties of (2. 1) follow from
the partition function

(2. 2)

Making the well-known transformation to the
interaction representation, one obtains

Z, = Tr(T,exp[- p(H —W&)]

&& exp[f ds f d xO (x, s') 0(x, s)g, (2. 3)

where 0(x, s) = e'"oO(x)e '"o, T, orders the op-
erators from left to right in order of increasing
s, and s' means a number infinitesimally larger
than s. Under the operator T, one may freely
commute the 0's. It is convenient to introduce
the Fourier transforms with respect to s (0 & s & p)

culations were entirely finished, we have received
preprints of work by Lee and Payne. ' This work
is very similar in spirit and technique to ours,
and we find ourselves in rather complete agree-
ment with it. There remain, however, several
differences between the two investigations, for
instance in the treatment of impurity effects and
in the method of obtaining a convergent expression
for the magnetization, which are instructive.

In outline, the program of this paper is as fol-
lows. In the next section we describe the analysis
leading to the generalized Ginsburg-Landau theory
and to an expression for the fluctuation-enhanced
magnetization. The numerical results are de-
scribed in Sec. III. Section IV is devoted to a
discussion of the effect of impurities. Three ap-
pendices contain mathematical details. In partic-
ular, Appendix B contains a fairly detailed dis-
cussion of the properties of the eigenvalues of the
generalized Ginsburg- Landau operator.

II. ANALYSIS

A. Functional Integral for Free Energy
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of these operators:

O(x, s) = — Z O„(x)e "'"'i' (2.4)

Then we have

lol f (d2 g~) -Ix I ex 0 ex 0 (2. 6)

for each m and each point x one obtains the usual
functional integral representation:

Z /Z' =rr„f &'y.(x)exp[- (I/p)Z„f d'xl X.(x)l']

&«(( X (x)}), (2. &)

where

g(f X (x)})=-(T,expO1/P)Z fd'x[X„(x)O„'(x)

+ X*„(x)0 (x)]}) . (2. 8)

Z = Z' (T,exp[(1/P)Z. f d'xO„'(x) O„(x)])

(2. 6)

where the angular brackets denote an average with
respect to the density matrix for the Hamiltonian
Ho, in which interactions are neglected but the
magnetic field is included, and Z& is the grand
partition function for this Hamiltonian. Now by
using the representation (valid under the T, sign)

model, to introduce the cutoff referred to below
Eq. (2. 1).

Equation (2. 10) is of course the microscopic
version of a generalized Ginsburg-Landau theory
for small fluctuations, i. e. , up to quadratic terms
in the order parameter. However, it includes
the full effect of a constant magnetic field and of
fluctuations of arbitrarily small spatial extent.
These fine general remarks notwithstanding, some
further work is required before physical results
can be calculated from (2. 10). We notice, how-
ever, that the functional integral (2. 10) is of the
Gaussian form beloved by physicists and can be
evaluated once the eigenvalues of the kernel (2. 11)
are known. Thus if one could solve the equation

f K' '(x, x')IjI",(x') d2x' =&™Ijl,"(x) (2. 12)

where a labels the eigenvalues, one could in prin-
ciple make the expansion y„(x)=g C", Ijl" (x) and by
a change of integration variables obtain

rr (E(m& )-1 (2. ia)

The change in free energy due to small fluctuations
is thus given in principle by

The functional integral is, as usual, to be thought
of as the limit of a multiple integral:

50(p, , p) = — Z lnE'"'
P m, e

(2. 14)

~v d~
62~ ( ) rr

+"~ d xm. ~

P 2'
(2. 9)

We now turn to the problem of evaluating the eigen-
values.

B. Evaluation of Eigenvalues
where i labels discrete volume elements &v;.
Outside the critical region above the transition
temperature we argue that the fluctuations of each

are small. Thus one needs to evaluate the
functional 2 to terms quadratic in &„(x). In the
diagrammatic expansion for Z, this corresponds
to keeping the Feynman graph with two vertices,
c.orresponding to gO and X*O. In this approxi-
mation, one obtains

Z /Z =g„f & X (x)exp[- (1/P)Z„ f d xd x'

x y" (x)Jx'"'(x, x') g (x')], (2. 10)

where the Hermitian kernel K "'(x,x') is given in
terms of the single-particle Green's function cor-
responding to the Hamiltonian IIO as

To avoid notational complications we shall de-
scribe the calculation of the E . These terms,
as we shall see, make the most important con-
tribution to the fluctuation magnetization obtained
from (2. 13) for not too dirty superconductors.
I et us therefore consider Eq. (2. 11) with m=0.
To remove the magnetic field dependence we use
the semiclassical approximation, as well as a
trick due to Werthamer, ' and obtain

f d2xK"I(x, x')g (x')

=r.( )-( I/)P~, f d'~' @ (lx-x'l)

& exp[-f(x-x')ll(x, )]y„(x,)l2 2, (2 16)

&& G, i(x, x') . (2. 11)

Above, the prime indicates that one is to sum over
the quasienergy indices v, = (2l+ 1)m/P subject to
the restriction I~I & +D, I ~ ~I & +~- Thi»s
the natural way, within the spirit of the Gorkov

Q, ( p) =- G, ( p; I3 = 0) G, ,( p; I3 = 0,'

and

(2. 16)
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1 2e-
II(x)-=—.V„-——A(x)

Z Sc (2. IV)
n n!Ls(u): Z ( 1)

( ))2( )! u (2. 23)

The c!uasienergy ~, was defined below (2. 11) and
vt, is the Fermi velocity. The vector potential
A describing a constant magnetic field, which we
take to be in the z direction, may be chosen to
have the form X(x) =-,'B&x. It is then natural to
express the operators II in terms of creation and
annihilation operators for Landau levels:

a =——', )).[lI„—i II,],

[a, a~]=1,

a'-=—,'&[ll„+i II,],
(2. 18)

x exp [- i( p/&) sin 8 (e "a+e "at)] )!) (x) . (2. 19)

We now disentangle the noncommuting variables
a and a~ by using the relation

exp( —i(p/X) sin8 [e '"a+e"at]}
= exp( —i( p/X) sin 8e"a }exp]-i( p/)). ) sin8 e ' a}

xexp(- (p /2X )sin 8} . (2. 20)

Expanding the exponentials involving a and a~ we
notice that, because of the integration over the
azimuthal angle 9), only terms of the form (a~a)"
survive. It is thus clear that the Landau levej. s,
which diagonalize the operators a~a and II„are
the required eigenfunctions. The eigenvalues
defined in (2. 12) are then seen to be given for m = 0

by

f
E„'22) = 1 — Z d(cos8)~ dp

2~ / )
-)p o 8bs-(sp /2 )si1n 8x p ~)(pe

where &= (hc/eI3)'/ . The operator II, of course
commutes with II„,II, and can be replaced by the
wave number in the z direction k. Using spherical
coordinates centered at x and introducing p=—)x-x' j

one then finds for the second term on the right-
hand side of (2. 15) the expression

I
—(V/P)Z) f dQ) p dpQ, (p)exp[ —ipkcos8]

Thus, in terms of dimensionless variables defined
below, we have

E12) = 1 —N(0) V f1 —,
' d(cos8) f dx (sinhx)

X [(1 -Ax) -iqx nps8 -x b s)n 8/2

&& L„(x b sin 8)] (2. 24)

f, —,'d(cos8) f, dxx'F(x) e """"e" ""' '

x L„(x b sin28) = 2( 1) f
x L„(u)a(ub +q'), (2. 25)

where

If(P )= I dxx E(x)

ln writing (2. 24) w", have scaled lengths with respect
to the coherence length 4=IIvt, p/2)), and introduced
the dimensionless quantities q-=/24 and b =- f))/~
= (eZ/@c)]82 Fur. thermore, N(0) —= m v8 /2)) II, and
A—= @&uvp/v is the cutoff parameter of the BCS the-
ory.

To obtain a law of corresponding states of the

type familiar in superconductivity theory it is nec-
essary that physical results should depend only on
lnA; and, indeed, if the dependence on A is stronger
than this, the Gorkov model Hamiltonian is not justi-
fied, since this model does not properly account for
the changeover from sympathetic to antisympathetic
vibrations of the phonons which occurs when the
electron excitation energies are of the order of hera.
We shall see that the physical quantity of interest,
namely, the magnetization, can indeed be expressed
by a law of corresponding states for weak-coupling
superconductors in the usual way.

E)Iuation (2. 24) may be further simplified by
using an integral transformation described in Ap-
pendix A:

psin8 ) 2)
8 n!—1) (t)) ( —f)! ' (2. 21) () )8 ~ x

7T

(2. 26)

where we have replaced & by the quantum numbers
for the Landau levels, i.e. , &-n, k.

From (2. 16) we have for the l sum [restricted
as described below (2. 11)]:

Combining E)Is. (2. 24) —(2. 26) we obtain

E„",'=1+( —1)"f due " L„(u)h(ub+q ), (2. 27)

where

Q)(p) —
2 ( s11111

~
(1 — "D /""&)

2vfi2p ( hvpp )
(2. 22)

The polynomial entering (2. 21) is a Laguerre poly-
nomial,

b(P ) = —2N(0)V dx(sinhx) '(1 -e ")
px

(2. 28)
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We notice that in the absence of a magnetic field
the operators D„, II„D,would all commute and the
eigenvalue would be obtained from (2. 15) by Fourier
transformation of the kernel (2. 22) as

E-,(o& =1+2I (p') . (a. as)

+ dx ln tanh —,x (1 —e ")—1 d sin Px
dX PX

(a. 30)

In the first term we introduce a new variable y =Ax
and perform the integral in the limit A» 1, A» p.
In the second integral, under the same conditions,
we may simply replace A by ~. Thus we obtain

2[N(0) V] 'h(P') Inyh(dz&P

+ f dx (sinhx) [1 —sinpx/px],

(2. 31)

where y= ae'/v =1.13 (C is Euler's constant). The
first term in (2. 31) may be combined with the 1 in
(2. 27) using the standard BCS relation 1 = N(0) V

xinytI&u»&pc for the transition temperature to ob-
tain" for (nb+ q')'"«A,

E„','=N(0) V[ln T/T, +( —1)"J due"

xf,„(u)f (uf&+ q')], (2. 32)

E(luatjon (a. 27) thus expresses the way in which
the finite-field eigenvalue is obtained from the zero-
field one. We notice that the transformation is not
simply the naive replacement of p2 by q +b(4n + 2)
assumed by PAW. On the other hand it is true that
the major contribution to the integral in (2. 27) oc-
curs for u &4n+a where a is a number of the order
of 10. Thus, if one considers quantum numbers
n, q which are small in the sense (4bn+qa)~~2«A,
one only needs the function h(p') for p «A. In this
limit (2. 28) may be further simplified by partial
integration in a standard way:

OO

I»(p ) = dx ln tanh( —,x) A e

—,
'

( —1)" du e "i' L„(u)g (u)
0

8 4 8-g(u)+2, g(u)+ —u, g(u)+ ~ ~ ~

8Q 3 BQ u= 4n+2 '

(2. 34)
For large argument f (p ) behaves like —,'lnp (Appen-
dix B). Thus we have

&„'-~ &TN(0) VA[q'+ (4n+ 2)f&] (2. 35)

If this behavior continued for arbitrarily large val-
ues of the quantum numbers it would follow that the
sum of terms with m=0 in (2. 14) would diverge like
f p dpln(lnp ). On the other hand, whereas the ex-
pression (2. 27) reduces to (2. 35) in the region 1
«(4f&n+q~)~~2«A, for quantum numbers large in
the sense (4bn+ q') ~'» A, one finds from the
asymptotic behavior of (2. 28) [h(p ) ~p '

] and the
first term of (2. 34) the behavior

E„',' 1 ——,'7(N(0) V [q + (4n+ 2)b]
' (2. 38)

This expression still does not quite lead to a finite
value for the free energy, but the divergence is
now weaker, i.e. , f pdp It i.s likely that this
divergence would be removed by a more careful
treatment of electron energies far from the Fermi
surface and by the detailed form of the electron-
phonon interaction. But we have to realize that
within the model being treated here (2. 14) is an in-
finite quantity if the n sums are allowed to run to
arbitrarily large values.

The generalization of the above calculation to the
eigenvalues for nz+0 is straightforward and only
requires appropriate changes of the range of the
sum in (2. 11). The result for m «A is

sinpx
(2 38)

PX

E„',"'= 1+ ( —1)" J~ du e "~ I „(u) I»'"' (ub + q ),
(2. 37)

where

2' '(2')= —N(0) Vf o)s(sinhs) ' o '"'*

f (p ) = — dx (sinhx) 1—p 1 . g slnpx
2 0 PX

1 1 g P
)(2)o) -0 ™n 2)+1) (2. 33)

For moderate values of the quantum numbers,
namely, in the sense of the inequality given above
(2. 32), formulas of the form (2. 32), (2. 33) hold:

E„',"»=N(0) V[lnT/T, +( —1)"f due" 1„(u)
In E(I. (2. 32) all the A dependence is contained

in T, as is usual in the theory of weak-coupling
superconductors. Let us, however, examine the
asymptotic behavior of E(ls. (2. 27) and (2. 28) and
E(ls. (2. 32) and (2. 33) for large quantum numbers.
This behavior is most easily displayed by using a
formula derived in Appendix B [E(I. (B7)]:

where

xf '"' (ub+ q')], (2. 39)

f '"'(p ) = — dx(sinhx) 1 —e '"'"
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=2 Q ——tan
1 1 -1 P

, p 21+1 P 23+1+ Iml
(2. 40)

N

x lnE„',"' (80+ nB) -ZBolnE„'™(Bo)~ . (2. 44)

In further calculations we shall not make use of
the explicitly cutoff-dependent eigenvalues E~ ',
i. e., Eqs. (2. 2V) and (2. 3V), but will express phys-
ical quantities as convergent sums over the E„', 's,
i.e., Eqs. (2. 32) and (2. 39), and take care that only
moderate values of (4nb+ qa) ~~ enter. What is
meant by moderate in this context of course de-
pends on the value of A, which must be chosen on
physical grounds. Taking typical values of coL) and
T„we estimate A- 30 for weak-coupling super-
conductors. We shall not consider deviations from
a law of corresponding states for strong-coupling
superconductors, but methods for studying this
question are available.

C. Evaluation of Magnetization

With the knowledge of the eigenvalues E„,we
return to the expression for the change in free en-
ergy due to fluctuations, Eq. (2. 14). Taking into
account the degeneracy of the Landau levels, we
have

6 n =—(vol) Z Z ' lnE„'",' .
p mac ~ „„p 2r

The magnetization per unit volume is given by the
derivative

1M= —
( )

(M). (2. 42)

(Bo+ nB)N= C, Bo(N+1) = C. (2. 43)

For B=Bp we sum from n= 0 to n = N, i. e. , we
count (N+1) modes; for B=80+ nB we sum from
n = 0 to n = N —1, i.e. , over N modes. Since the
degree of degeneracy is proportional to Bp in the
first case and Bp= AB in the second, the number
of states included in both cases is the same (pro-
portional to C). Thus

M= Z lim Z (Bo+ nB)
m=-~ g 2' ~ ~ AB n=p

As was pointed out in Sec. IIB, the contribution to
(2. 41) from large quantum numbers diverges. To
avoid this difficulty we consider the contribution to
50 of a fixed number of modes, assuming and nu-

merically verifying that the modes with lowest quan-
tum numbers contribute most to the magnetization
(2. 42). We must now be careful about taking the
derivative with respect to B because when this
quantity is varied the changing degeneracy of the
modes requires that we change the (finite) upper
limit of the n sum. Thus we must take the deriva-
tive in the following way. Let

From (2. 43) we have

(Bo+ nB)/nB = N+ 1, nB/Bo ——1/N .
Using these expressions in (2. 44) and making a
Taylor series expansion of E„,(BO+ nB) in b,B one
finds

M= — Z lim (n+1) ln-e "
]adq E„

7TP c fft co 2z N~ (g) ff Q

8 BE„1 B &E„Bs B BE„ t

E„&B 2N E„~B 88 E„8B

where terms of order N ~ have been neglected with-
in the square bracket, and the indices m, q omitted.
For numerical calculations based on the eigen-
values given in Eqs. (2. 32) and (2. 39) it is conve-
nient to use difference formulas for the derivatives
in (2. 46). This can be done by converting the B
derivatives into derivatives with respect to the in-
tegration variable u and transferring these to act
on the function e " L„(u). Then using a recursion
relation [Appendix B, Eq. (B3d)], one obtains for
arbitrary fixed m and q the relation

aE„2B —" = (n+ 1)E„„—E„—(n —1)E„, .

Considerable insight into the nature of (2. 46) and
into the role of the "nonlocal" terms can be obtained
by approximating the eigenvalues in the manner sug-
gested by Eq. (2. 34). Using this formula in (2. 32)
or (2. 39) we obtain

E„=N(0) V[ln T/ T, + 2f(ub+ q ) + 4b f"(ub + q2)

++b (ub)f"'(ub+q )+ ], (2. 48)

where the primes mean derivatives with respect
to the argument and u=4n+2 as before. For suf-
ficiently small b's one might be tempted to argue
that the nonlocal terms, being explicitly propor-
tional to b, are of little consequence. It is im-
portant, however, to note that large cancellations
occur between the first two terms of (2. 46). Thus,
if one substitutes (2.48) into the first two terms
in the curly brackets of (2.46), writes n+1 = —,u
+ —,', and makes a Taylor series expansion of E„,z
about u, one finds that large terms of the form
ubf' cancel and that the relevant comparison is
then between bf' and b(ub)f". Even for quite
small b, these numbers are not of different orders
of magnitude because the sum and integral in
(2. 46) sample values of ub+q~~ 1.

Another useful observation is to note if one sub-
stitutes the first two terms of (2. 48), i.e. , the
local approximation, on the right-hand side of
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(2. 47) and makes Taylor series expansions, one
already finds the contribution of the third term in
(2. 48), i.e. , the first nonlocal correction, to the
left-hand side. Since, as is readily verified by
explicit substitution, the first nonlocal term makes
no contribution to the logarithm in (2. 46), we see
that the difference formula (2. 47) simulates in a
nice way the first nonlocal effects. We were led
to this observation as a result of numerical work
described in Sec. III, and we have then used it to
simplify our discussion of impurity effects.

Before turning to these topics, we made con-
tact with known analytical results for very small
fields and temperatures near T,. In this region
even the values of the argument (ub+q )' con-
tributing to (2. 46) are small and one may use the
small argument expansion of E„'0' (Appendix B)

Z„'O' =N(0) V(lnT/T, + —2X(3) [q + (4n+2)b]+ ~ ~ ].

=&~N(0)VX(3)[n+(K +n+ —,)+ ~ ~ ], (2. 49)

where

3ln(T/T, )
6&(s) b

and

X(n) = E (2l+1)"
1=0

The m+ 0 terms are ineffective in this limit be-
cause they have the same form as (2.49) except
for a finite constant in the square bracket. Thus
their effect is simulated by (2. 49) at a tempera-
ture T» T, which is not the limit of interest. Sub-
stituting (2. 49) into (2. 46) we obtain

tion. At T= T, (n = 0) this then reduces to the small-
y limit ':

X(b, l)= (1—
) 2( —)=1.822. (2. 22)

III. NUMERICAL RESULTS: PURE LIMIT

Several varieties of numerical calculations have
been performed to test the ideas of Sec. II and to
make comparison with experiment.

Our first calculation was a full numerical cal-
culation based on the eigenvalues given in Eqs.
(2. 32) and (2. 33) and Eqs. (2. 39) a.nd (2. 41) with
the formula (2. 46), with (2. 47) used to evaluate
the derivatives. The eigenvalues were calculated
numerically for intermediate values of the quantum
numbers. Asymptotic expansions (Appendix B).
were used for small and large q + (4n + 2)b. At
the chosen crossover points between the integrated
values and the expansions the agreement was
better than 2x10 ~. The values of X [defined in

Eq. (2. 50)] so obtained are shown in Fig. 1. The
contributions of the terms with m=1 and m=2
were also calculated. They were found to be com-
pletely negligible. Calculations of the magnetiza-
tion at finite temperatures are shown in Fig. 2.

The experimental results of Gollub, Beasley,
and Tinkhamv are also shown in Fig. 1. The
falloff for values of b considerably less than 1 is
reproduced by our calculation.

We have compared our calculation with the re-
sult published by Lee and Payne, and at first
seemed to have an apparent inconsistency. For
small values of b, Lee and Payne do an approxi-
mate calculations in which, in our notation, the
function f(P ) in (2. 33) is approximated by

X(b, b)1—:—
(
—

) f (P') =1— (s. 1)

N-1(" de' I. g + —'
~f' 1

m „„0 ++K +n+~ ( 2N

2 3

( 1)
(X+K +n+ 2

@+K +n+ —' (2. 50)

x(b, t) = sc(- —,', n+ —.') —~ r(-,', ~+ —.'), (2. 51)

where f(n, q) is the generalized Riemann K func-

The sum corresponding to the second term in the
square bracket of (2.46) makes no contribution
for large N in this limit, but it can be seen from
this expression that the 1/2N term is needed to
ensure the convergence of the K integral: If the
sum is carried out first and the limit N- ~ taken
the result then behaves like E for large E. The
further evaluation of (2. 50) involves some fairly
delicate questions of convergence. One can how-
ever reduce it to the form

The parameter y is chosen so that the coefficients
of p in fQ) and f (p) agree. It is easy to verify
that this implies that the coefficient of p in f (p)
is 0. 6 times the corresponding coefficient of f(p).
Thus the approximation underestimates the quartic
and first nonlocal term and would be expected to
deviate from the small-b limit more slowly than
the exact calculation. As read from the printed
graph, however, the result of Lee and Payne was
found to lie helot our curve for small b. We
therefore redid the approximate Lee-Payne cal-
culation taking some care not to subtract large
terms and found a slightly different curve which
does in fact lie above ours, except at the lowest
value of b, for which we expect that because of
poor convergence our calculation is too high.

We also recalculated PAW, which corresponds
to an exponential approximation like (3.1) but
neglecting nonlocal terms, and verified that the
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II

X

where Q, obeys the integral equation

(4. 1)

0
.00005 .0005 .005 .05 5 b

deviations from the small-b limit set in at a 5

approximately a factor of 10 higher. The falloff
is also more precipitous than in our numerical
calculations based on the correct kernel.

To examine the effect of the nonlocal terms
we did another calculation, the result of which at
first somewhat surprised us. We used the first
two terms of Eq. (2.48) in our computer program
for evaluating the magnetization and found a curve
agreeing quite well with the full numerical cal-
culation shown in Fig. 1. We understood this
result as explained in Sec. IIC as due to the
simulation of the nonlocal terms by the difference
formula (2. 47).

To further verify these ideas we did two more
calculations. First we put the exponential ap-
proximation into our computer program using the
difference formula. We obtained a result agree-
ing rather well with Lee and Payne's approximate
calculation. Then we redid the local approxi-
mation with the eigenvalues given by the first
two terms of Eq. (2. 48), this time however eval-
uating the derivatives explicitly. This complete
suppression of nonlocal terms led to a result that
fell off slowly with b. All these calculations are
represented in Fig. 3.

FIG. 1. Magnetization as a function of the magnetic
field (solid line) and comparison with the approximate
kernel results of Lee and Payne (crosses). The dashed
line is the experimental curve of Gollub, Beasley, and
Tinkham. The neighborhood of the point $ =0.005 is
shown enlarged ten tir6.es with the results of the numeri-
cal calculation given for different numbers of terms in
the sum over the Landau quantum number.

x Q'P'(ix, -x' ) . (4. 2)

Here Q,
'"' is determined by (2. 11) with, however,

the |"'s appropriate to the impure system, and v

is the scattering life-time. To include a constant
magnetic field one must add phase factors as in
(2. 15). Then using standard methods and those
described in Sec. II one obtains for m « —,A

A/2
R =N(0)V Iln

—+2K
C a

(4. 8)
[I(l, n, q, m)] —p

where

I(l, n, q, m)=~(-1)" due "~ L„(u)(ub+q )
'~

0

.1826

15

.10-

.05-

IV. EFFECTS OF IMPURITIES

The modification of the analysis of Sec. D to
include the effects of scattering from impurities
is a fairly straightforward excercise in standard
techniques. We consider only s-wave scattering.
Then for the kernel that enters (2. 10) one finds,
in the absence of magnetic fields,

I

10 dHc2 (T-Tc
dT H

FIG. 2. Magnetization as a function of the temperature
for different .magnetic fields.
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II

X
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stan' (ub+ q')'~'
2l+1+ jm ( + p

(4.4)

Here the only symbol not previously defined is
p KP/2=-7IT= &o/'v~v, the natural parameter for
measuring the impurity concentration. A forrnula
equivalent to Eq. (4. 3) is also contained in the
most recent preprint we have received from Lee
and Payne where it is used for a full numerical
calculation. The work described in the last two
sections has, however, suggested to us an approx-
imate way of exploring the role of impurity scat-
tering. We neglect nonlocal effects everywhere
except that in evaluating derivatives with respect
to Bwe use the difference formula for I:

FIG. 3. Illustration of the equivalence of the difference
formula for the derivative with respect to the magnetic
field and the Laguerre-polynomial integration in produc-
ing the early falloff of the magnetization. The exponen-
tial and the Gorkov kernel in the local approximation,
using the difference formula, are displayed together with
the full calculation based on the Gorkov kernel.

b eB 2

(1+p)' he

where g is the Pippard coherence length

1 1 1
+

vv

(4. 7)

(4. 6)

is precisely that proposed by Gollub et al. on the
basis of their experiments. The published data
of these authors show an alloy for which they es-
timate a p value of 3. 12. This is about the largest
value at which we would expect the simple scaling

sum. The integral over q can then be done by
the method of residues and the finite n sum re-
duced after considerable fairly tedious algebra
to a form involving terms of the type (A+n)
From this sum one has to subtract a term coming
from the upper limit of the finite sum. One can
verify that the subtraction removes the dependence
of the finite sum on its upper limit when this is
allowed to become large. The finite-sum form
can be readily evaluated by numerical computation.
We have done such computations both omitting the
m4 0 terms and summing the first 100 such terms.
We notice from (4. 6) that the natural measure of
the field in the presence of impurity scattering,
as far as the eigenvalues are concerned, is b/
(1+p) . The results, which are shown in Fig. 4,
indicate that if the field is scaled in this way a
universal behavior is found for p& 3. The inset
to Fig. 4 indicates the breakdown of universality
as p is increased. It is interesting that the de-
viation is in the opposite sense with and without
the inclusion of excited pair fluctuations (m v 0).

It should be apparent that the scaling field we
have been led to, namely,

2b = (n+ 1)I(n+ 1) —I(n) —ni(n —1) . (4. 5)
eI(n)
Bb

To further simplify the evaluation of the magnetiza-
tion we make two additional approximatiogs. First,
we approximate the local part of I as follows
(u=4n+ 2):

(~b + 2$ 1/2
I„,= (ub + q ) tan 2l+1+ (m ( +p

l~ .1826

X
P4

I

II

X .1

er m
ver m

1
2l+1+ ]m I+p

1+ ub+q
3(2I+ 1+ Im I + p)

(4. 6)

0
.00005 .0005 .005 .05

Secondly, we take only the l = 0 term from (4. 3).
Neither of these approximations qualitatively
changes the local part of the kernel. When (4. 3)
with these approximations is substituted into (2. 46),
one finds that for large N the terms explicitly
proportional to (2IVI

' make no contribution to the

FIG. 4. Effect of impurities. Magnetization as a func-
tion of the scaled magnetic field b' = b/(1+ p) for various
concentrations of impurities with and without inclusion of
the m & 0 terms. In the lower left-hand corner the loga-
rithm of the scaling factor y is plotted against log&0(1+ p).
Here y is the scaling factor, with respect to the singly
scaled field b/(1+ p), which would. make the almost con-
gruent. magnetization curves fall on each other.
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to work.

ACKNOWLEDGMENT

dv e-1 u/2(2k+1) H( ) (A7)

We wish to thank the Deutsche Forschungsge-
meinschaft for sponsoring this cooperation be-
tween our institutes in Helsinki and Koln by a grant
to one of us (G. E.).

Now the required contour integral in z can be done:

n
e-k o/2(28+1)(2 + 1)-1

27riz z

APPENDIX A =e 1 '/2( —1)"L„(u)). ) (A8}

f d(cos &)

-1 2 p

dpE( p)exp [- ipkcos &j

In this Appendix we wish to prove the integral
transformation used in Sec. IIB, namely, By using (A7) and (A8) in (A4) one obtains the

right-hand side of (Al), which proves the required
identity.

APPENDIX B

& exp —
2 sin 8 L„

=!~'(-t)"f dv
0

x e "k L„(vt()H(v+k ), (Al)

I(gf, n) —= f du R„(u)g (u),

where

(Bl)

In order to develop asymptotic expansions for the
eigenvalues E„',' encountered in the text it is neces-
sary to learn to deal with integrals of the form

where R„(u) =(—1)"e "/ L„(u) . (B2)

H(P') = d p&( p) (A2)
Some properties of these functions are listed below:

dz 1 1L(x) = . — 1+—
27ri z z (As)

Then one can obviously write for the left-hand
side of (Al) (call it I)

To prove this we use the following representation
for the Laguerre polynomial on the left-hand side
of (Al):

f2 R„(u)R„(u)du=5 „,
f"R„(u)du = 2,

uR„= (n+ l)R„„+(2n+ 1)R„+nR„1

dR„ 1 1
u " = —2(n+ 1)R 1

—2R„+ 2nR„1,
du

(
u

u ———R„(u)= (n+ 2)R„(u) .
du du 4

(BSa)

(B3b)

(BM)

(BSe)

Q2 (A4)

where B(k2, )(, 2) is an integral over p and 8 which

may be read off from (Al). Now by using

We remark that Eq. (2. 47) follows in an obvious way
from Eq. (B3d).

Before treating the general case (Bl}we consider
g(u)=uI' where P is an arbitrary integer:

x Sin() e iokcoo8 = (2ip-k)-1 e iokcoo8-
2 gg

(A6) Ik(n)=Jt du R„(u)u = (- 1)"'8
J e "'L„x dx

0

and integrating by parts one finds that the integral
B considered as a function of k obeys the following
diff erential equation:

(8 8
y —1

= (- 1)""'i&y (B4)

B(k2, )(, 2) =H(k2)+ 2 2 B(k2, )(, 2)
2(22 + 1) 9

(A6)

where H(k2) is given by (A2) and is not a function
of X or z. Furthermore, from the integral repre-
sentation of B one finds that B(k2)-0 as k -~.
The solution of (A6) having this property is

Thus we have for example

I()(n) = 2, I, (n) = 2(4n+ 2), I2(n)= 2[(4n+ 2) + 4j,

I2(n) = 2[(4n+ 2) + 20(4n+ 2)j, . . . (B5)

From the last form of (B4) one can derive the more
general expression

B(k2 )( 2) ek k /2(2k+1)22
2(22+1)

2pf 4 pI
2ik(n)=(4n+ 2) + (4n+2), +—
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p l 68 P1 8 P!
(p 4—)l 15 (p —5)l 9 (p —6)l

For large values of P, we used"

f(p )= (I/p)lmlnl'(2+ 2ip~ —2g(2),

+ ~ ~ ~ (B6) which yields the asymptotic formula

88 & 8
+ 6 4+ u 6 + u 6 g(u) + (B7)

where u= 4n+ 2.
For n —20, we used the first three terms of (BV)

for the evaluation of the integrals in (2. 37) thus get-

ting asymptotic expansions for E'„,' from those of
f'™&(P'). The accuracy has been checked by direct
numerical integration and was found to be better
than 1 part in 10 for all relevant b. For n —20 and
small k (BV) is not accurate enough and the integra-
tion was done numerically.

Next we consider the function f(P ) of (2. 33).
From the power series of the arctan we obtain

f(p2) g ( I )n-1 ( + ) 2n

n=1

(B8a)
X(2n+ 1)=Z (2m+ 1)

m=o

converging for P &1. For numerical computations
it is convenient to keep the first few arctan unex-
panded. We use

' ( 1 1 1 Pf(g )=~, l(g(, ( -g~'" g(„()

g( 1)„., C, (n) p,„
n=1 2n+ 1

(B8b)

This expansion has the radius of convergence P
= (2 L + 1)2, and the coefficients

L-1

C2(n) = &(2n+ 1)—E (2l+ 1) 2" '
l=o

are very rapidly decreasing with n. In particular'

C2(1)= 1.4V627532x10 2,

C2(2) = 4. 085 364 58 x 10

C,(3)= 1.43012816x10-',

C2(4)= 5. 39920425x10 7,

C, (5)= 2. 10218214x 10 ',
C,(6)= 8. 29947502x10 '0

were used for numerical integration.

Thus, by formally decomposing g (u) in (Bl) into
powers of u, using (B6), and reassembling the ser-
ies, one obtains

—
J R„(M)g(ii)=g(g)+ 2 ~i +gii&, )g(g)

f(P')= lnP'+ Z
n=o P

A (0)= 2 (C+ ln2 —1)= 0. 135 18142,
A (1) 12 yi (2) S65 i 3 1280 )1 4 1680

(B8d)

For numerical integration we used (B8b) for p2 & 8
and (B8d) for P —8.

For m &0 similar formulas can be derived, start-
ing from

(m) 2
' ( 1 1 -1 p

~R(+ ( n+ im)i+( ) '

Combining the first three terms of (B7) and (B8b)
or (B8d) we got asymptotic expressions for E„,;
for instance, for

p =q + b(4n+ 2) —15(1+2. 5b)

we used

En'„'= 0. 27036284+ ~lnp +
1

7 2 1 4b2 b(4n+ 2)
180 P 3 P

31 2b )) 1 4b b(4n+ 2)
630 ~ 3i p~- 3 p

(B9)

x 1+ + 2ln En —2NlnE„
1

we took into account a finite number of fluctuation
modes only, thereby postponing all convergence
problems which are connected with the ultraviolet
divergence of the fluctuation free energy within our
approximations. We conjecture that this divergence
would in fact be removed by a more detailed treat-
ment of the electron-phonon interaction and other
limiting effects, and that it is not a genuine failure
of statistics.

We should like to emphasize, however, that the
large N limit of (Cl) exists with the Ginsburg-Lan-
dau eigenvalues E„„ in which case the 1)('2N term
is not negligible as well as with the Gorkov eigen-
values or with those of (2. 2V). In all these cases
the keeping of the NlnE„ term is essential in as-
suring the existence of the limit.

APPENDIX C

When we derived our expression for the magne-
tization

(n+ 1)E„„E„nE„,— —X- dq
~Q n~o En

max
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To take this limit with the Gorkov eigenvalues is
physically justified only if almost all contributions
come from a q-. N region for which v&q & D. We
checked this numerically and found that for N = 30
and corresponding q &q ~= 8bN, accuracy within
a few percent of the final limit was obtained.

While it is of no consequence for the convergence
in the mathematical sense, it is important for this
physically required (and computationally convenient)
fast convergence to keep all 1/2N terms in the ex-
pression for X.

Finally, we can use (Cl) to justify the rearrange-
ment by which Lee and Payne make their diver-
gent sum convergent. The N lnE„ term from the

N-$

(g 1) n+1 n ln n

0 En En+1 En+1
(C2a)

E„—E„
i

1 ~ ( + 1)E„, —E„—E„

(C2b)

where (C2a) is the convergent expression used by
Lee and Payne, (C2b) vanishes for N ~ if E—„ in-
creases no more strongly than linearly with n.

"b derivative" of the upper limit of the sum is again
essential. We rearrange the finite sum into
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The critical field &~2 was measured for a Pb-40 at. %-Bi alloy in porous-glass samples with
pore diameters in the range 20-60 A. Werthamer st aL have calculated H~2, including the ef-
fect of electron paramagnetism and spin-orbit scattering. This theory fits the data for the

0
32- and 60-A samples, giving the spin-flip scattering length of the order of the grain diameter.
For the 20-A samples the theory does not fit the results. It is suggested that the behavior of
this sample is largely "one dimensional. "

INTRODUCTION

This paper describes the results of measure-
ments of II,~ performed on samples of porous glass
containing Pb-40 at. % Bi. Electron-microscope
pictures show that the metal in the glass has a
grainy appearance. ' Earlier measurements on
pure elements indicate that the grains are weakly

coupled. Transmission probabilities v for trans-
mission of electrons through the intergranular
weak link are in the range 0. 1—0.03. The actual
value of v is characteristic of the metal, for lead
7'- 0. 1. The electron mean free path l in such a
system is E=dv' where d is the grain diameter.
Typical values of l are less than the interatomic
spacing. Each glass has a characteristic value


