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This paper describes a practical self-consistent-field (SCF) method of calculating electronic
energy levels and eigenfunctions, adapted for polyatomic molecules and solids. The one-
electron Schrédinger equation is set up for a so-called “muffin-tin” approximation to the
true potential, spherically symmetrical within spheres surrounding the various nuclei, con-
stant in the region between the spheres, spherically symmetrical outside a sphere surround-
ing the molecule. The method of solving this equation is a multiple-scattering method,
equivalent to the Korringa-Kohn-Rostoker (KKR) method often used for crystals. Once the
eigenfunctions and eigenvalues of this problem are determined, one assumes that the orbitals
of lowest eigenvalue are occupied, up to a Fermi level. From the resulting charge densities,
one can compute a total energy, using a statistical approximation for the exchange correla-
tion. This approximation has an undetermined factor o (whence the name Xo method). The
spin orbitals and occupation numbers are varied to minimize this total energy, resulting in
one-electron equations. The value of « for an isolated atom is determined by requiring that
the total energy, using the statistical approximation, should equal the precise Hartree-Fock
energy. This leads to very accurate spin orbitals. In a molecule or crystal, one uses the
o’s characteristic of the various atoms within the atomic spheres, and a suitable average in
the region between. The computer programs for making these self-consistent calculations,
for such radicals and polyatomic molecules as SO[Z, ClO4", MnO,, and SFg have been worked
out and calculations made. They are more than 100 times as fast as comparable programs
using the LCAO (linear-combination-of-atomic-orbitals) method, and the results appear to be
in better agreement with experiment than such LCAO results. For calculating the frequencies
of optical transitions, one must make a self-consistent calculation, not for the initial or final
state, but for what we call the transition state, in which occupation numbers are halfway be-
tween the initial and final states. Then it can be proved that the differences of eigenvalues of
the Xa method are more accurate than Hartree-Fock energy values, in that they take account
of the modification or relaxation of the orbitals in going from the initial to the final states.
These transition states, for a crystal, involve a localized perturbation at the site of the
excited atom. The multiple-scattering method is adapted to the use of such perturbed crys-
tals, as well as to isolated molecules, and to perfect crystals. It results, in such problems
as x-ray absorption, in the use of localized orbitals rather than bandlike functions. The
method is adapted to the calculation of magnetic problems, by use of a spin-polarized version
of the method. The method can also be used for calculations of cohesive energy of crystals,
and has been used successfully for several types of metals. Unlike most other SCF methods,
long-range correlation is automatically included, so that the energy of a system as a function
of internuclear positions automatically reduces to the proper values at infinite internuclear

distances.
I. INTRODUCTION a number of articles by the authors and others
bearing on the subject.

The method which we are presenting in this paper The method is a self-consistent-field (SCF) one,
goes back to papers by the two authors, in 1965 ! making use of the so-called Xa statistical exchange,
and 1966, respectively. The method has devel- In the one-electron equations determining the spin
oped so far since that time, and gives indication orbitals, we approximate the one-electron potential
of being so useful in the treatment of both poly- by the so-called muffin-tin approximation., That is,
atomic molecules and solids, that it seems worth- we surround each atom by a sphere, such that ordi-
while describing its main points in a unified way, narily these spheres touch but do not overlap, and
tying together the many papers which have treated inside each of these spheres we replace the exact
isolated aspects of it, which have been published potential by a spherical average. This region of
in a number of journals.®~!® Two review articles atomic spheres we denote as region I, In the region
by the authors2°:?! are in preparation, as well as between the spheres we replace the potential by a

5 844



5 SELF-CONSISTENT-FIELD Xa CLUSTER METHOD.., 845

constant, the average of the exact potential over the
interatomic region, which we denote by II. For an
isolated molecule, we surround the entire molecule
by a sphere, the extramolecular region outside this
sphere being denoted by region III, and in this re-
gion we replace the exact potential by a spherical
average. In a crystal, we replace region III by
the assumption that the wave functions must satisfy
a Bloch condition in going from one unit cell to
another,

The necessary computational procedures for
implementing the method have now been worked
out in enough detail so that applications to fairly
complicated molecules can be easily made, Ex-
amples are the SO, and C10," ions, the MnO,"
ion, and the SF¢ molecule. *#-%5 Calculations
of spin orbitals and excitation energies for these
molecules and radicals have given values in quite
good agreement with experiment, better than pro-
vided by linear-combination-of-atomic-orbitals
(LCAO) methods, and in qizth or less of the com-
puting time required for the LCAO method. Thus
the self-consistent calculations for the cases men-
tioned above take only a few minutes on the IBM
360/65 computer for such a molecule. Applications
have also been made to crystals, such as the ele-
ments Cs and V, and the compound TiC. %% Not
only do the resulting energy levels agree well with
energy-band experiments, but calculations of the
cohesive energy of Cs and V have been made,
which show good agreement with experiment, 26 %
Further applications are visualized to much more
complicated molecules, including molecules of
biological interest,?® and to various problems of
great importance in the theory of solids. These
include the chemical shift of x-ray levels, the na-
ture of excitons, and the calculation of ferromag-
netic and antiferromagnetic exchange integrals of
the Heisenberg type. We shall mention the methods
to be used in these applications in later sections.
First, however, we take up the main features of
the calculational methods.

II. MULTIPLE-SCATTERING METHOD

In carrying through a self-consistent calculation,
we may imagine that we start with an assumed po-
tential, solve the one-electron equation for that
potential, finding certain spin-orbitals »; with eigen-
values €;, then decide by use of suitable criteria
which spin orbitals will be occupied. We then take
the charge density arising from these occupied spin
orbitals, as well as the nuclei, determine the po-
tential arising in this way, carry out the averaging
required by the muffin-tin method, and use the re-
sulting potential as the starting point of the next
iteration. In the present section we describe very
briefly the computational method used for solving
the one-electron Schriddinger equation. This is the

multiple-scattering method, described in Refs, 2-11,

Inside each of the atomic spheres in region I we
have a spherically symmetrical potential. Conse-
quently we can expand the solution of Schrédinger’s
equation as a linear combination of products of
spherical harmonics of the angles, and radial func-
tions depending on the azimuthal quantum number
! and the energy €, which are numerically determined
solutions of the radial Schrodinger equation within
the sphere. In region II, outside the spheres, we
have a constant potential (ordinarily taken for con-
venience to be zero). Thus we have the wave equa-
tion, whose solutions can be taken to be products
of spherical harmonics of the angle, and radial
functions which are spherical Bessel or Neumann
functions of the argument ve7, where € again is the
energy, negative for the bound states which are oc-
cupied inthe ground state. Thus we deal with spher-
ical Bessel or Neumann functions of an imaginary
argument, We must use the combination of these
called the spherical Hankel function of the first
kind, which falls off exponentially like e in
order to get a solution falling off properly as we go
away from an atom.

Surrounding each atom of the crystal, we have a
number of these spherical Hankel functions of the
first kind, representing in a way the exponentially
decreasing tails of the atomic orbitals associated
with this atom, as we go away from the atomic
sphere. The equations which have to be satisfied,
to get a solution of Schrddinger’s equation, are
those which demand that the superposition of all
these exponentially decreasing tails from all the
atoms should join continuously and with continuous
derivative onto the solution inside each of the atomic
spheres. This leads to a secular equation in which
the unknowns are the amplitudes of the various
spherical Hankel functions of the first kind, sur-
rounding each of the atoms. The equations have
nonvanishing solutions only for certain values of €,
the eigenvalues,

These equations have been programmed very ef-
ficiently for the digital computer, and can be solved
very rapidly. The expansion of the wave function
converges very rapidly: Not many of the spherical
Hankel functions are required for each atom. It is
this rapid convergence which is one of the features
leading to the rapid program for the computer. Yet
we see that the final wave function has the physical
features of a LCAO, but analytic properties of the
spherical Hankel functions lead to efficient methods
of dealing with them. It should be stated that re-
gion ITI, outside the molecule, is treated without
difficulty by expanding the wave function in that re-
gion as a linear combination of spherical harmonic
functions of the angle and radial solutions of the
spherically symmetrical problem in that region,
which are regular at infinity.
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There is nothing which has to be done in the way
of artificially introducing hybridization of orbitals,
or of deciding whether to introduce certain I values
into the wave functions. The programs carry the
sum over [ far enough to get a required degree of
convergence in the result. For a crystal rather
than a molecule, the application of the Bloch condi-
tions instead of the boundary conditions over the
sphere bounding region III leads directly to the KKR
(Korringa-Kohn-Rostoker) formalism. The method
can be adapted to the determination of excited spin
orbitals, either in the molecule or the solid, as
well as to the occupied spin orbitals found in the
ground state. These excited spin orbitals have
positive energy, so that the spherical Hankel func-
tions in region II have a sinusoidal rather than a
decreasing exponential from, andinthe case of a crys-
tal, the Ewald method must be used in carrying out
the required summations.

III. Xo POTENTIAL METHOD

The one-electron Schrddinger equation used for
determining the spin orbitals «; is derived by the
variation principle from an approximate expression
for total energy, much as suggested by Gaspar,
Kohn, and Sham,?3% As a first step in setting up
the energy, 1%'2° we require occupation numbers #;
for the various spin orbitals., These numbers are
zero for empty spin orbitals, unity for occupied
spin orbitals, though we require in some cases the
use of fractional values of #; between zero and unity.
From these occupation numbers and the spin or-
bitals we can set up a charge density

p(1)= Z:g n;u,* (l)u,(l) . (1)

Each spin orbital is assumed to be associated with
either the spin-up or spin-down Pauli function, so
that the charge density of Eq. (1) can be separated
into p,(1) associated with spin up and p,(1) as-
sociated with spin down.

The Hamiltonian is assumed to consist of a sum
of one-electron operators f;, consisting of the ki-
netic and potential energies in the field of the nuclei,
a sum of two-electron operators g;;, Coulomb inter-
actions between pairs of electrons; and the inter-
nuclear repulsions, which can be treated as a con-
stant in our case where the nuclei are assumed to
be fixed, and which we shall henceforth not write
down, but must assume to be added to the total en-
ergy at the end of the calculation. We shall then
express the expectation value of the total energy in
the form

(BY=22m; [uf (1) fru; (1) dv,
+3 [ () [ [ p(2) g1z dvp+ UL (1) ] doy

+2 [ o) [p@)gredvp+ U (D] v, . (2)
The first term, the average of the one-electron
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operators, does not require further comment. The
remaining terms are the interactions of the elec-
trons with the electron clouds. These interactions
are different for spin-up and spin-down electrons,
because of the exchange effects, so that we write
these terms separately for the two spins.

Each term is one-half the integral of the charge
density, multiplied by an effective potential energy
acting on the electron of the appropriate spin. This
potential energy for spin up is made up of the Cou-
lomb interaction [p(2)g;, dv,, which includes the
self-interaction of an electron with itself, and of the
term U,(1), a negative term which removes the self-
interaction and also takes account of all exchange
terms. Up to this point the formulation is exact,
since the exact potential energy of interaction can
be expressed, in terms of the first-order and
second-order density matrices, in the form of Eq.
(2) with a suitably chosen U,(1).

At this point we introduce the statistical approx-
imation for the term U,(1), which we shall call the
exchange-correlation potential. If we use units in
which the energy is measured in rydbergs (rather
than Hartree atomic units), the assumption which
we make!®20 ig that

Uxar(1)==90[(3/4m) p.]'/*, ®3)

where « is a constant to be determined, as we shall
describe later. The functional dependence of U on
the density, being determined as a constant times
the 3 power of the density, is a consequence of the
simple concept of the Fermi hole. Thus, if one de-
termines the potential energy acting on an electron
of spin up as the total Coulomb interaction

[p(2)gy5 dv;, minus the potential energy of a spher-
ical distribution of uniform charge density, holding
one electron, centered on the point symbolized by
(1), and having a charge density equal to p,(1), it is
easily proved that we should have instead of Eq.

(3) an exchange-correlation potential

U,(1)=-3 ('é TP+ )1/3 ’ 4)

which would correspond to a@=0.87. We shall see
that instead of this value we require a somewhat
smaller value of @, which corresponds to a Fermi
hole somewhat more spread out than the uniform-
charge-density case just considered.

When we write the total energy in the form of
Eq. (2), supplemented by Eq. (3), we see that it is
a function of the occupation numbers #;, and a func-
tional of the spin orbitals «;. We vary the «;’s in
the familiar way, to minimize the total energy at
fixed occupation numbers, and find that the one-
electron Schrédinger equations are

[= Y3+ Vo) + Vo)) uy (1) = €,0,(1) . (5)

Here — V2 is the kinetic energy in the units we are
using, and V(1) is the electrostatic potential en-
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ergy at position 1 of the complete charge, electronic
and nuclear, computed classically. The quantity
V(1) is different for spin-up and spin-down spin
orbitals, and it is given by

VXaf(l):%UXm'(1)=—66\![(3/477)p,]1/3 , (6)

with a similar value for spin down. This value is
equal to that suggested by the author® in 1951, pro-
vided @=1, and is equal to that suggested by
Gaspar® and Kohn and Sham®® provided a=%. As
we shall see in Sec. IV, a value between these two
extremes is better than either limiting value.

IV. CHOICE OF PARAMETER «

The criterion which we use in a choice of the
parameter « is that it should give as good a de-
scription as possible of the separated atoms. This
has been discussed by Slater and Wood.® One notes
firstthat, owingto the linear dependence of Uy, (1)
on @, given in Eq. (3), the total energy (Ey,) of
Eq. (2) in which Eq. (3) is used has a linear de-
pendence on « (if we disregard the effect of @ on
the spin orbitals), and consequently by choice of &
one can make the energy (Ex,) vary over very wide
ranges. There is no minimum principle associated
with the dependence of (Ex,) on @. One can, how-
ever, choose @ so that the energy (Ey,) agrees
exactly with the Hartree-Fock energy of the same
atom (if the atom is a closed-shell case in which a
single determinant is appropriate), or with the
average energy of all multiplet levels determined
from the ground-state configuration (if it is an open-
shell atom). These energies have been determined
for all atoms by Mann, 32 so that this is a convenient
criterion to use. One can see, furthermore, by the
following argument, that it results in very close
agreement between the spin orbitals and the Hartree-
Fock spin orbitals [or what we call the hyper-.
Hartree-Fock!” (HHF) spin orbitals for the open-
shell atom].

The argument for the accuracy of the spin or-
bitals arising from this choice of @ is the following.
It can be proved®:3 that the virial theorem is ex-
actly satisfied by the energy (Ey,) of Egs. (2) and
(3), for any value of @, The virial theorem is also
exactly satisfied for the Hartree-Fock (or HHF)
method. Since for isolated atoms the virial theorem
states that the kinetic energy is the negative of the
total energy, this then means that if the criterion
which we have outlined in the preceding paragraph
is used, the kinetic energy as computed from Eq.
(2) will be precisely equal to that found from the
Hartree-Fock or HHF method from the Hartree-
Fock orbitals. The kinetic energy is a very sen-
sitive test of the accuracy of the orbitals. A change
of the orbitals will result in a first-order change
in the kinetic energy, though only a second-order
change in the total energy, if we are making small
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variations in the orbitals with respect to those found
by a variation method. Thus we should expect very
accurate spin orbitnls from use of this criterion.
Numerical examination of calculations made in
special cases verifies this expectation. Essentially
this same method of determining « has been sug-
gested by Berrondo and Goscinski®® and by Sham,3*

Calculations of @ made by this method for most
of the lighter elements have been given by Schwarz 3¢
They vary rather smoothly with atomic number,
showing slight discontinuities as one goes from one
outer shell of electrons to another. For two-elec-
tron atoms the values are about 0. 77, decreasing
rapidly as the atomic number increases to about
0.'70 for 3d transition elements. A few individual
calculations which have been made for heavier
elements indicate a gradual decrease, perhaps to
about two-thirds (the value of Gaspar, Kohn, and
Sham).

The reasons for the variation of a with atomic
number have been investigated by Lindgren and
Schwarz.3” They have shown that a single choice
of a for an atom does not give equally good fits for
each spin orbital, and does not handle the self-
interaction and exchange parts of the exchange-cor-
relation term equally well. The values of @ de-
termined by Schwarz represent a sort of compro-
mise between these varying values of @, The high
value of 0.77 for two-electron atoms results from
the 1s spin orbitals, which require a considerably
larger « than some of the outer spin orbitals. In
spite of this range of @’s which would be required
to handle all spin orbitals equally well, the single
a recommended by Schwarz leads to quite good spin
orbitals even for those cases for which it is not an
ideal value, and the convenience of having a single
value of @ for each atom far outweighs the slight
improve.ment which could be secured by using dif-
ferent a’s for different spin orbitals.

There is quite a different method of determining
@ which might be used. This method, originally
suggested by Lindgren, 3 takes the spin orbitals
found by the Xa method, using Eq. (5), and then
inserts these into the Hartree-Fock expression for
total energy, which amounts to finding the exact
energy of the single determinantal function formed
from the spin orbitals (if we are dealing with a
closed-shell atom for which the single determinant
is appropriate). This energy shows a minimum
principle as the value of a is varied, and we might
use this value. Unfortunately the resulting mini-
mum is a very shallow one as a function of @, and
it is very hard to find the best @ in this way.
Kmetko®® has calculated @’s by this method for all
the atoms, but his calculated values show a rather
random type of variation as we go through a shell
of electrons, in contrast to the smooth variation
found by Schwarz.3® If we use the spin orbitals



848 J. C.
determined by Schwarz, and compute from them the
Hartree-Fock expression for total energy,the re-
sulting energies are very good, indicating that the
spin orbitals are very close approximations to the
Hartree-Fock or HHF spin orbitals. This has been
examined by Schwarz and Connolly, *° who conclude
that the Xa spin orbitals are approximately as good
as the so-called double-¢{ spin orbitals of Clementi,*!
which have proved to be good enough for quite ac-
curate calculations on molecules.

For a molecule or crystal, we find that a satis-
factory method of choosing « is to use inside each
atomic sphere the value of @ found by Schwarz for
the corresponding atom, and to use in interatomic
region II a suitably chosen average of the values
for the various atoms. No computational difficulties
arise from the discontinuities of @ on the various
spheres. As the internuclear distances change
when the atoms are separated to infinity, we use
spheres which change their radii in the same pro-
portion as the internuclear distances. As the atoms
go to infinite distance from each other, the atomic
spheres thus become infinite, and the problem in-
side a single atomic sphere reduces precisely to
that of an isolated atom. As we shall point out later
in Sec. VIII, this is an important feature favoring
the use of the energy expression of Eqs. (2) and
(3). It means that if the X@ method is accurate
for the equilibrium distance, then, since it is ad-
justed to be correct for the isolated atoms, we may
expect that this energy expression will give an ade-
quate approximation to the whole form of the curve
giving energy as afunction of internuclear distances,
leading to the cohesive energy, compressibility,
and so on.

This supposition has been tested by Averill?®® in
calculations on the cesium crystal as a function of
internuclear distance. The resulting cohesive en-
ergy and curve for pressure as a function of volume
agree well with experiment. Similar calculations
of Hattox?” on vanadium are satisfactory, though
not quite as good as for cesium. Further tests of
the applicability of Eqs. (2) and (3) to calculations
of the total energy of molecules and crystals are
in progress. So far the calculations are using the
muffin-tin approximation. It is likely that, partic-
ularly in cases of small coordination numbers, it
will be found necessary to make corrections to the
muffin-tin approximation in the computation of
total energy. This can be done without undue dif-
ficulty.

Various writers®?'*® have suggested more compli-
cated forms of the statistical exchange than the
simple proportionality to the § power of the charge
density which we are employing. Some of these
involve the theory of the free-electron gas with
small perturbations superposed on constant density
or a constant potential. Slater and Wood!® have

SLATER AND K. H.

JOHNSON 5
pointed out that the forms involving derivatives of
the density, as well as the density itself, do not
seem to improve the accuracy of the agreement

of the quantity Uy,.(1) of Eq. (3) with the Hartree-
Fock value. It is the view of the authors that the
charge density within an atom, which is what we
are dealing with, is so far from a small perturba-
tion of a constant density that these supposed im-
provements in the theory are really not of any
practical value. We feel that the use of the simple
Xa method is as accurate as would be found by these
more elaborate methods, and do not recommend
their employment,

V. EIGENVALUES IN Xa METHOD AND TRANSITION
STATE

So far we have been considering the eigenfunctions
or spin orbitals u; of the Xa method and the result-
ing charge density. We now consider the eigenvalues
€,xo met in Eq. (5). These are found to be appre-
ciably different from the eigenvalues of the Hartree-
Fock or HHF method, the differences increasing as
we go to the inner orbitals of the atom. The explana-
tion of this fact was given by Slater and Wood, ** who
also quoted other writers who had noticed the ex-
planation. The point is that the relation between
the eigenvalue and the total energy of Eq. (2) is dif-
ferent in the X@ and Hartree-Fock methods. In
the Hartree-Fock method, the eigenvalue is given
by

€inr = (Eyr(;=1)) = (Egp(n; = 0)) (7)

or the difference between the energy computed by
the Hartree-Fock method when the sth spin orbital
is occupied and when it is empty. The calculations
are supposed to be made keeping the spin orbitals
fixed, not modifying those of the ion (1; = 0) with
respect to those of the atom (#;=1). On the other
hand, in the Xa method, the eigenvalue is

XExqy)
€ixa= g2 ®)

or a first derivative. If the energy is not a linear
function of the occupation number #;, the finite
difference of Eq. (7) will not equal the derivative

of Eq. (8), and this discrepancy explains why we
would get different eigenvalues by the two methods,
even in cases where the eigenfunctions given by the
Xa method were identical with those of the Hartree-
Fock method.

This formula for eigenvalue, Eq. (8), has several
important consequences, respects in which the use
of the Xa method is different in a qualitative as well
asaquantitative way from the more familiar Hartree-
Fock method. The first point is that one can arrive
uniquely at the ground state of a system by moving
electrons from states with higher eigenvalues €y,
to states with lower eigenvalues, since each such
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transfer reduces the energy according to Eq. (8).
This can be accomplished in the course of the itera-
tions used in getting self-consistency. At each
stage of iteration, one not only varies the spin or-
bitals to minimize the energy, by solving Eq. (5),
but after this one adjusts the #;’s for the next stage
of iteration so that all lower spin orbitals are oc-
cupied and higher ones are empty. When self-
consistency is achieved, we shall have lower states
occupied up to a Fermi energy €5, and higher states
empty. As a matter of fact, it is easy to show that
the condition of Eq. (8) is just what is required for
the Fermi statistics to be rigorously applicable to
the system. This is discussed in Ref. 20. In Ref.
17 there was a treatment of a number of cases in
which the order of energy levels is different in the
Xo and Hartree-Fock methods, and in which the
Xa method leads to the proper assignment of oc-
cupation numbers, while the Hartree-Fock method
does not.

A second consequence of Eq. (8) is found when
one wishes to find the frequency of an optical transi-
tion in an atom, molecule, or crystal. The use of
the Hartree-Fock eigenvalue, as in Eq. (7), is not
a very accurate way to get at this frequency. The
reason is that if the same spin orbitals are used for
the excited or ionized states as for the ground state,
the excited state will not be handled as accurately
as the ground state, since the spin orbitals are de-
termined by variation procedures of the ground
state. To get a more accurate calculation, one
should make a separate self-consistent calculation
of the energy of the excited or ionized state, al-
lowing the spin orbitals to be modified in the excited
state with respect to the ground state, or as one
sometimes states it, using spin orbitals which have
relaxed. This will reduce the energy (Ey(;=0)),
and therefore will make the energy difference be-
tween ground and excited states slightly smaller in
absolute value. With calculations of the accuracy
which are now being attained, this correction is
appreciable,

There is a device which can be used to get the
ionization or excitation energy directly from the
Xa method, without the necessity of computing en-
ergy differences of total energy, as in Eq. (7).

This is by the use of a concept introduced in Refs.
19 and 20, called the transition state. It was shown
in those references that if one solves an X self-
consistent problem, not for the ground state of a
system but for a transition state, in which the oc-
cupation numbers of each spin orbital are halfway
between those of the ground state and of the excited
state, then the excitation energy is given very ac-
curately by the difference of €;, eigenvalues be-
tween the initial and final states, computed from
the SCF appropriate to this transition state, It
was shown that if it is legitimate to express the en-

ergy (Eyx,) as a power series in the occupation num-
bers, which proves to be sufficiently accurate if
terms up to third power are used, then the contribu-
tion of the leading nonlinear term, the quadratic
term, is eliminated by use of the transition state,
Use of this method takes account of the effect of
relaxation of orbitals, except for small third-power
deviations, which are estimated in Ref. 20 in actual
cases, and shown to be very small.

One can understand how the transition-state
method works by considering a simple example,
an ionization of an atom, Here, if we regard the oc-
cupation number of the spin orbital which is to be
removed as an abscissa and the total energy (Ey,)
as ordinate, the ionization energy will be the dif-
ference between the values of the curve at occupa-
tion numbers 1 and 0. This is the slope of the
chord connecting these two points on the curve,

The transition state will correspond to having this
occupation number equal to 3, and the eigenvalue
of Eq. (8) at this point will be the slope of the tan-
gent to the curve at this point with occupation num-
ber 3. But it is a simple mathematical theorem
that for a parabola the slope of the chord of a curve
equals the slope of the curve itself at the midpoint.
Thus in this case, except for the third-power cor-
rections to the parabola, the value of €;5, measures
the negative of the ionization energy of the ith elec-
tron from the atom. The resulting values, cal-
culated for atoms by the X method, are in good
agreement with the experimental x-ray energies.

In two of the calculations of molecular clusters
which have been made by the X& method, namely
the SF, molecule®® and the MnO," ion, ?* calculations
of energy differences have been made using the
transition-state method. The results are in re-
markably good agreement with experiment. The
results are much poorer if one uses differences of
eigenvalues obtained from an X« calculation for the
ground state., It appears, therefore, from the
evidence so far in hand, that this use of the transi-
tion state is well suited to getting accurate excita-
tion or ionization energies of molecules as well as
atoms, It should be pointed out that the programs
for computing eigenvalues of Eq. (5) are much less
difficult than those for finding total energy, using
Eq. (2). Thus in practice it is much more con-
venient to use the transition-state method, even
though one must carry through a separate self-
consistency calculation for the transition state
corresponding to each transition, than it is to make
calculations of total energy and subtract.

VI. TRANSITION STATE FOR CRYSTALS

The optical transitions of crystals corresponding
to large oscillator strength are ordinarily rather
localized transitions, in which orbitals concentrated
on one atom or a small cluster of atoms have a
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transition to another rather concentrated orbital.
The transition state in such a case corresponds to
a case in which there is then a localized perturba-
tion of the charge density and potential in the neigh-
borhood of this excited atom or cluster. The rea-
son is that it corresponds to a crystal in which half
an electron has been removed from one localized
orbital and has been inserted in another orbital in
the same general region of space. We must then
solve the self-consistent equation, Eq. (5), for
such a perturbed periodic potential, The multiple-
scattering method described in Sec. II can easily
be adapted to this problem, though this has not yet
been done in detail. It is more conveniently adapt-
able to such problems than are the earlier methods
of Wannier* and of Koster and Slater, * which have
been adapted to such problems in the past.

There is one characteristic which this type of
problem has, no matter which technique is used
for solving it. For a small perturbation on a given
atomic site, there is no modification of the energy-
band structure of the crystal. As the perturbation
increases, however, a critical point is reached
at which a discrete energy level breaks out of the
energy band and approximates the energy level
which an electron in an isolated perturbed atom
would have, As the perturbation grows greater,
so that the discrete level is further and further
from the band, the eigenfunction of the discrete
state shrinks in linear dimensions so that it is al-
most entirely concentrated on the perturbed atom.
At the same time, the eigenfunctions associated
with the energy band avoid the perturbed atom more
and more completely.

It is the discrete levels which are concerned in
the optical excitation, for it is transitions between
them which have large oscillator strength. To find
the frequencies and oscillator strengths of these
transitions, we need consider only the discrete
states and their eigenfunctions. The energy dif-
ferences will then be very closely the same as for
the transition state of the atom which is having the
transition, approximately disregarding the presence
of the rest of the crystal. Calculation of the eigen-
functions by the multiple-scattering cluster method,
however, will give the deviations from the behavior
of the isolated atom. It is clear to those familiar
with the theory of the exciton that we are here
sketching the type of exciton theory which the Xa
method leads to. For an x-ray ionization or ex-
citation, the process on this view will be almost
completely localized on the atom which is losing
its x-ray electron. However, as we consider tran-
sitions involving smaller and smaller energy dif-
ferences, the perturbation of potential met in the
transition state will decrease, and at the same time
the energy bands will become broader. Finally,
for low-energy optical excitation, the perturbation
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involved in the transition state will not result in

the formation of a discrete level, the excited or-
bitals will extend over a large volume or essentially
the whole crystal, and we shall be led to something
very close to the conventional energy-band theory

of optical absorption, in which an electron goes
from one energy-band orbital to another.

VII. TRANSITION STATE AND HEISENBERG EXCHANGE
INTEGRAL

Very interesting applications of the Xa method
arise when one considers magnetic problems. In
a magnetized molecule or crystal there are different
charge densities p, and p,, and hence different po-
tentials, eigenfunctions, and eigenvalues for spin
up and spin down. The spin-up eigenvalues will
be lower than the spin down (assuming that the mag-
netization corresponds to spin up), so that more
spin-up than spin-down spin orbitals will have en-
ergies below the Fermi energy. This allows a
self-consistent situation with a net magnetization.
Studies of the magnetization of iron, cobalt, and
nickel®%” show that one can get a general inter-
pretation of ferromagnetism in this way.

One asks next, however, how does one discuss
the Curie temperature and the Heisenberg exchange
integral which is closely connected with it? We
note, in the first place, that the energy difference
between spin-up and spin-down eigenvalues of the
magnetic atoms has no direct connection with this
problem. One can see this directly from the mag-
nitude of the energy differences involved. The
spin-up and spin-down eigenvalues differ by several
tenths of a rydberg in some cases, while the mag-
nitude of the Curie temperature, converted to energy
units, can well be of the order of magnitude of
10°% Ry, orders of magnitude smaller. The energy
separation between spin-up and spin-down eigen-
values can be shown to be connected with the energy
difference between the multiplets of highest mul-
tiplicity, and those of next-highest multiplicity, in
the spectrum of the magnetic ion. The contrast
between this quantity and the Curie temperature is
even more striking in such a ferromagnetic crystal
as EuS, in which the Curie temperature is only of
the order of 10™* Ry, while the energy separation
between spin-up and spin-down eigenvalues is of
the order of 0.4 Ry.

The complete study of the low-lying energy levels
of a magnetic crystal is very complicated. How-
ever, we can get an idea of the order of magnitude
of the Curie temperature by considering an excited
state in which one atom out of the crystal has its
magnetic moment reversed in orientation with re-
spect to the rest of the crystal. Since the com-
pletely magnetized state is the ground state, this
reversal of the magnetic moment of one atom will
increase the energy, and one can connect this en-
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ergy difference with the Heisenberg exchange in-
tegral. Let us then ask how we should use the tran-
sition-state method to find the energy of this ex-
cited state, and hence to compute the Heisenberg
exchange integral. The transition state would be
one whose occupation numbers are halfway between
those of the ground state and of the state with one
atom with reversed magnetic moment. But this
means that on the atomic site where we are pro-
ducing the reversed magnetization, the transition
state will have no magnetization whatever. We
must solve the spin-polarized self-consistent Xo
problem for this transition state and find the energy
difference between the €,;x,’s corresponding to ini-
tial and final states.

This is a problem not very different from the
exciton-state problems which we were considering
in Sec. VI. In the ordinary atoms of the crystal,
the spin-up orbitals correspond to a much lower
potential energy than the spin-down orbitals, since
the quantity Uy,,(1) is a much larger negative quan-
tity than Uy,,(1). In the excited atom, however, we
have Uy, (1) and Uy, (1) the same, approximately
the average of the spin-up and spin-down values
found on the other atoms. Consequently we shall
have a set of eigenfunctions localized on the atom,
and a continuum of energy-band eigenfunctions
avoiding this excited atom. We must find the energy
difference between spin-up and spin-down eigen-
values of the discrete set of orbitals localized on
the excited atom. This difference would vanish,
except that the exponentially decreasing tails of the
eigenfunctions on the excited atom overlap the
neighboring atoms, which have different potentials
for spin-up and spin-down. Consequently there
will be an energy difference between the spin-up
and spin-down eigenvalues for the transition state,
depending on the overlap between the orbitals on
neighboring atoms, and vanishing in the limit as the
atoms get far apart.

One can show that this energy difference between
the spin-up and spin-down eigenvalues of the tran-
sition state is of the same order of magnitude as
the Curie temperature, translated into energy
values. Consequently it is not surprising that it
is small compared to the energy difference between
the spin-up and spin-down bands of the crystal as
a whole. For the larger part of the latter effect
is an intra-atomic effect, an interaction between
the spin orbitals and the large difference between
spin-up and spin-down potential in the typical atoms
of the crystal. On the other hand, for the Heisen-
berg exchange integral and the Curie temperature,
we have only the interaction between neighboring
atoms, since the transition state has no difference
between spin-up and spin-down potentials.

Calculations of this type have not yet been carried
out. However, they are entirely practical using the
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multiple-scattering cluster method and the spin-
polarized Xa procedure. It is to be hoped that this
will at last make it possible to calculate these im-
portant magnetic quantities from microscopic first
principles, a type of calculation that has been al-
most impossibly difficult with existing methods of
treatment which were based on the LCAO method.

We have described the ferromagnetic case. How-
ever, a good deal of work*®~® has been done on the
theory of antiferromagnetic, helimagnetic, and other
types of crystals. It has been found possible to cor-
relate the features of their energy-band structure
with their antiferromagnetism in such a way as to
indicate that a proper treatment of the antiferromag-
netic ground state, by the Xao method, would indicate
that it had a lower total energy than a ferromagnetic
structure. We could then start from this antiferro-
magnetic or helimagnetic ground state and find the
increase of energy when the magnetic moment of a
single atom was reversed. This problem would be
very similar to that of the ferromagnetic case, and
it would lead in the same sort of way to a study of
the Heisenberg exchange integral and the Néel tem-
perature. It should be equally simple to incorporate
into the theory.

VIII. DISCUSSION

In the preceding sections we have indicated a few
of the many types of calculations which are made
possible by the SCF-Xa cluster method which we
have been discussing in this paper. The preceding
paper by Johnson and Smith sketches some of the
types of molecules and other substances to which
the method seems readily adaptable. Many of the
applications which we have taken up refer to cal-
culations which have not yet been made. We refer
to them, however, to indicate the possibilities in-
herent in the method. The calculations are practi-
cal, by computer programs which in most cases
are already worked out. In all cases where we
have been able to make calculations, or to ask
what would be expected to be the result of the method,
it seems to lead to reasonable results.

Before we close, we should mention problems
in which it will be necessary to go beyond the limita-
tions of any SCF method. This method is a one-
electron method, and as such it cannot give a com-
plete description of atomic multiplets. A certain
amount of information is given about multiplets by
the spin-polarized Xa method, but this does not go
far. Just as with atomic theory, we shall have to
start with spin orbitals determined from a self-
consistent method, and then set up determinantal
functions, and linear combinations of them, to de-
scribe the multiplets. This will be required when
one comes to describe crystal and ligand field prob-
lems using the present procedure. One can start
with the discrete spin orbitals found in the transi-
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tion state by the present method. These already
contain within themselves a good approximation to
the crystal field splitting, which is a self-consistent
one-electron phenomenon. But one must use them
as basis functions for further calculations of mul-
tiplet theory.

We should also mention one point which seems to
bother some readers: the question of correlation en-
ergy. There are two types of correlation effect
commonly met in molecular theory. First is the
short-range correlation, inside an individual atom,
required to get an exact value of the energy of the
individual atom. This is a quite small effect for
heavy atoms, as has been pointed out by Slater, ®
and would be expected to change only slightly as the
atom is bound into a molecule, Consequently it is
not very important in studying chemical binding.
Second, however, is the long-range correlation.
This is the type of error met in the well-known
molecular-orbital theory of the H, molecule, in
which a determinantal wave function made up from
two electrons, one of each spin, in the lowest 10,
molecular orbital, goes into a state which is half
composed of neutral atoms, half from positive and
negative ions, at large internuclear distance. This
results in a quite wrong behavior of the total energy
as computed by the Hartree-Fock method, as a
function of internuclear distance. Consequently
the Hartree-Fock method cannot be used directly to
compute cohesive energy and such problems. If
one wishes to modify a Hartree-Fock calculation to
take this into account, one has to make a very ex-

tensive linear combination of determinantal functions
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containing excited orbitals. As Matheiss® has
shown in the case of a ring of six hydrogen atoms,
this linear combination becomes very complicated
even for a six-atom molecule, and by the time we
have many more atoms it is entirely unmanageable.
The whole object of this linear combination is to
obtain a curve of total energy which not only be-
haves properly at the equilibrium distance, but
also goes properly to a collection of neutral atoms
as the atoms go far apart from each other. We
meet such difficulties in every case except those
of crystals composed of atoms or ions which are
closed-shell configurations, such as crystals of
inert gases. But we have seen in Sec. IV that the
expression for total energy in the Xa method au-
tomatically goes to the energy of the separated
atoms at infinite distance. Thus, with no further
complication, it takes care of this long-range cor-
relation, which has been such an impossible fea-
ture of the Hartree-Fock method using configuration
interaction. As we mentioned in Sec. IV, this fact
is one of the strong points of the Xo method. It
should help dispel the thought which many workers
have that the object of the statistical exchange-
correlation correction is merely to approach the
Hartree-Fock method as closely as possible. It
is only with the case where a single determinant
is appropriate that we should aim for this. In the
general case, which includes all molecules or
crystals composed of partially filled shells of
electrons, the Xa method is definitely superior to
the Hartree-Fock method, not merely an approxi-
mation to it.
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