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pling is independent of temperature. Also shown
is the normalized field at the Cl sites. Since the
field at the Cl ion is primarily due to type-A chains,
the Neel temperature is taken as 4. 84 'K. Nor-
malized to this temperature, the field and thus the
magnetization, as measured by the Cl NMR, have
the same temperature dependence as II',„, and II,„,
at the Cs site. These three magnetization curves
also agree with the reduced neutron diffraction
magnetization curve. The reduced magnetization
obtained from the Brillouin function for S = 1 is
represented by the solid line in Fig. 9. Figure 10
shows a graph of II",„, and H', „,vs (1 —T/T„), which
gives the critical exponent P as 0. 32+0.03 for both

m' and m'.
The Cl NMR in RbNiCl, gave essentially the same

results, except that the magnitude of H,„, was dif-
ferent. Work is underway on the Rb NMR investi-
gation in the Rb¹iC1,.
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A modification of the Orbach relaxation process arising from the phonon-induced intermediate
level width is developed. It is shown from a numerical integration, including all two-phonon
terms (resonant, interference, nonresonant), that the temperature dependence of the two-phonon
spin-lattice relaxation process at temperatures intermediate between the Orbach and Raman
regimes can be substantially altered. Thus, determination of excited-state splittings using the
temperature dependence of the Orbach relaxation rate can be misleading, should experimental
considerations limit the range over which T measurements are made. In general, the effect
of the intermediate level width is to diminish the slope of 1/T~ vs 1/T, yielding an apparent reduction
in the excited splitting as compared to optical determinations. An apparent concentration de-
pendence of the exponent in the Orbach relaxation process can also obtain from the same source,
by virtue of a change in the sound velocity changing the intermediate level width.

I. INTRODUCTION

A well-known spin-lattice relaxation process
in both iron-group and rare-earth paramagnetic
salts was first proposed by Finn, Qrbach, and
Wolf' in terms of a two-step direct process. Later,
Orbach, and independently Aminov, 3 recast the

process in terms of a two-phonon process analo-
gous to resonance fluorescence in gases. These
two approaches each have their appropriate re-
gime, having to do with the origin of the l.inewidth
of the intermediate level. In all treatments to
date, the two-phonon contribution to the relaxa-
tion rate has been divided into two parts: resonant
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and Raman. The linewidth of the intermediate
level has been regarded as infinitesimally narrow
for the resonant contribution.

The purposeof this paper is to first point out
that a finite intermediate level width, together
with other terms in the relaxation rate integrand,
can change the temperature dependence of the
relaxation rate appreciably. We shall estimate
the character (i. e. , effect on the temperature de-
pendence of the spin-lattice relaxation time) of
these effects and their magnitude. For example,
we shall show that the exponential temperature
slope of the relaxation rate is altered in the low-
temperature regime where Raman and Qrbach pro-
cesses are of comparable magnitude. Further, a
concentration dependence (because of sound-ve-

FIG. 1. Schematic energy levels: The labels 1, 2

(3, 4') indicate the ground (excited) states split by Zeeman
energy I'~&&(h43). The arrows show the transitions via
two-phonon process.

locity changes) can also obtain even for relatively
narrow excited-state widths. This last observa-
tion is relevant to the experiments of Young and
Staple ton, who exhibited a concentration-depen-
dent relaxation activation energy, and fitted their
results assuming a broad inhomogeneous inter-
mediate level width (using a Gaussian distribution).
The exponential temperature dependence would
favor the low-energy "wing" of the broadened ex-
cited state, so that an apparent decrease of slope
of 1/T, with 1/T is obtained in their model as the
broadening increases. Our approach also will
yield a decrease of slope, butit relies on the phonon
(homogeneous) broadening of the intermediate level.
This has some formal similarity to Young and
Stapleton, but utilizes a Lorentzian distribution
and has nothing to do with crystalline defects, etc.

In Sec. II we shall develop the theory, and in
Sec. III we shall apply our results to the La
(Cl, „Br„),: Er system investigated by Young and
Stapleton.

II. FORMULATION OF THEORY

We shall not rederive the entire two-phonon
spin-lattice relaxation expression. Partial pre-
sentations can be found in the original papers of
Qrbach and Aminov, with improved formalisms
in the work of Orbach and Tachiki, ' and finally
Qrbach and Stapleton. The results of these ap-
proaches can be summarized in the following (com-
plete) expression for the two-phonon relaxation
rate. [The expression (1) contains the peculiar
off-diagonal terms first found by Culvahouse and
Richards, ~ (CR) who used a density-matrix method.
The equivalence of these two approaches is proved
in the Appendix. Also, see Fig. 1 for a pictorial
view of the transitions leading to (1).] We get

1 4p I I=
@2 Z Z &(r;,I) I'(r;, I )(-1)"(-I)™

2 2,-„)i&2,k, p [~"„(r;„m)R„- „(r;„m')
10 k, s, k', s' i, l, m, i', l', m'

c(r;;I' m') l+'&(+'l c(r', & m) l+&

1/2 1/2 1/2
~

S/2 a

x ""' (" " ) + (- 1)'s " -', 5[~(k), s) —~(k', s')], (1)6 —joe(k, s) —j (I',, /2) &+ 5& (k, s )

where 6, w(k, s), nI „a, M, and I', , are, re-
spectively, the energy separation of the excited
level, the frequency appropriate to the phonon with
wave vector k and polarization s, the occupation
number of that mode, the lattice constant, ,the mass
of the whole crystal, and finally the phonon-in-
duced width of the excited level. Zeeman energies
A z1, A&43 are neglected in the energy denominators.
For Kramers (non-Kramers) transitions 2M, is

even (odd) C(r«f) a.nd A„-,(r;„m) are, respec-
tively, linear combinations of the Racah normalized
spherical harmonics, and certain functions of k for
a given polarization index s, transforming as the
mth subvector of the I'« irreducible representa-
tion describing the vibrations of the ligand com-
plexes surrounding the paramegnetic ion. They
are listed in detail in Ref. 6. Finally, V(r;„ l) are
interaction constants with units of energy, apqro-
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priate to the lth spherical harmonic component of
the ith representation.

In a long-wavelength limit R2,(r;, m) is propor-
tional to the wave number so that we can set R-„,
(1;„m)=-k R2,(r, , m), where R;,(I'„,m) depends

only on the direction k of k(k= 4/[ k() and the po-
larization index s. Using the Debye approximation
for the density of phonon states, the relaxation
rate (1) can be simplified to (p0 is the mass density
of the crystal)

T,0 (2p0a ) (211)', , v', v', . dA" do- ~ vr, l vr, / —1 —1,r, , ~R-
f, l, m, t', l', m'

(r ' m)+( )'"'" "( *. m)", ( '. m')]&- Ic(r*"m')I+')&+'I c(r,,f, m) I+&I'f d&v„-,

where 0„- is a solid angle in k space.
If we neglect the last two terms in the last cur ly

bracket, and approximate the first (Lorentzian-
like) term as (2v/r, , ) 5 [& —5& (k,s)], in the limit
that I',. -0, we obtain the full Culvahouse-Rich-
ards' expression for the Orbach relaxation rate at
low terr1peratures [this result is independent of the
Debye or long-wavelength approximation (see the
Appendix) ]:

tci' &—1
10 I + 2 1 2

where n(&) = (e~ ~ —1) ', and the matrix elements
B„B2, and C are defined explicitly inthe Appen-
dix.

The functional dependence of (3) on the excited-
energy splitting at low temperatures (i. e. , 1/T, 0- e ~2r) can be used to determine 6 from spin-
lattice-relaxation measurements. However, as
pointed out by Young and Stapleton, there appears
to be a systematic discrepancy between the value
of 4 so determined, and that found from direct
optical-absorption measurements': the former is
always smaller than the latter. In fact, the ap-
parent decrease of slope of (3) from thatexpected
from optical measurements has a natural explana-
tion, arising essentially from the resonant term
in (2) which was approximated as a. 5 function in
the limit of the excited-levelwidth I', . -0. Prac-
tically, I;. is not that small. One finds values of
r, , /2A =10 -10 ' characteristic of a number of
systems. These values are sufficient to decrease
the slope of 1/T, 0 vs 1/T curve appr-eci-ably even
in the "pure" exponential regime, for a few decades
in 1/T, 0.

Additional contributions arise from the remainder
of the terms in the last large parentheses which were
dropped in the process of obtaining (3). Numerical
calculations discussed below will demonstrate that

the contribution from these terms is of the same
order of magnitude as that from the first, or the
resonant term, when the temperature is such that
the Haman and the resonant (Orbach) rates are
comparable. This will further tend to decrease
the slope of the curve near the tail of the Orbach
regime. Thus, we are suggesting an additional
(perhaps complementary) explanation for the dis-
crepancy between the relaxation and optical values
for 6, to that of Young and Stapleton.

The relaxation rate (2) can be rewritten in a
more compact form within the long-wavelength
and Debye approximation (see the Appendix), by
extending the upper limit of the integral to in-
finity, appropriate to the low-temperature regime
(O /T»1):

6 -x& /AT 1

(1 e-x11 /2T)2 (1 ~)2 ~ y210 0

with

8= ' ' 1+ (-1) '"~ and y= 2' .2B1B25 2~ } C~ r.,

&m 1 2

The functionpreceding the large parentheses in the
integrand of (4) is sharply peaked at x=6kT/&.
Thus, for very low temperatures (kT«4/6), most
of the contribution of the integral comes from a
small region near x= 0. The function in the large
parentheses can then be expanded in a Taylor series
about x= 0, and one finds a leading term propor-
tional to T and Tv, respectively, for Kramers
and non-Kramers transitions, independent of y for
y«1. These are the usual Baman relaxation rates.
In this temperature region the contribution from the
Lorentzian peak at x= 1 is completely quenched by
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FIG. 2. Plot of the numerical integration of (4) for
Kramers ion for &=0. 0041, showing the magnitude of the
contribution from the terms Y; defined by 1/T&0

—= JBY
=—B(Y&+Y2 —Y3).

the sharply decaying tail of the exponential for
practical values of y (of the order of 10'). For
substantially larger temperatures (kT -6/6) the
Lorentzian peak will be dominant, and we will ob-
tain a pure Orbach relaxation expression [identical
to (2)j, with 1/T, o-e ", without regard to the
value of y, as long as y«1.

For temperatures intermediate to these two ex-
tremes (we shall show in Sec. III that most experi-
ments of 1/T, o include this region) numerical eval-
uation of (4) is necessary. Close to the "pure"
Qrbach regime of this temperature range the re-
sonant term is dominant. The expression for this
term can be interpreted as an average of the Qrbach
process with respect to the "variable energy sepa-
ration" of the excited level over a Lorentzian dis-
tribution function centered at 4 with a width I",.
= 2y4. Because of the slowly decreasing nature of
Lorentzian function, even a small y (-10 -10 ')
can appreciably decrease the slope of the curve
(by 10-20/o). In the middle of this intermediate
region, where the Qrbach and Raman rates are
comparable, all terms in the large parentheses con-
tribute significantly. Figure 2 exhibits the re-
sults of a number of numerical integrations of (4),
displaying the relative importance of the various
terms in the last large parentheses. It is seen that the
relaxation rate actually exhibits a T" (Kramers)

or T' (non-Kramer) dependence over more than a
decade before entering the Baman regime. At this
point, it should be mentioned that, limited for Ra-
man process, a similar effect, i. e. , a T', T' ',
T" dependence has been found by Kiel and Mins, '
respectively, for Yb, Nd, and Ce in CaWQ4. This
"anomalous" temperature dependence showing ade-
viation from "T9 law" is calculated by numerically
integrating the relaxation integral allowing for a
finite value of ~ and phonon dispersion, which can
lead to a more rapid rise of the Raman term with
increasing temperature. Thelatter fact can also
be seen from the derivation of (4). If we include
the phonon dispersion, the right-hand side of (4)
should be modified by a temperature-dependent
factor P' arising from the velocity factor I/v'0
in (2). It will vary from f= 1 in pure Orbach re-
gime smoothly to P= b, /Sv, k~ [&d(k~) —= &/k] in prre
Raman regime. However, the dispersion may not
be too important if the first excited level lies much
below the Debye temperature as in our case.

In conclusion, determinations of 4 by "fitting"
to a simple exponential plus Raman process can be
very misleading, and in fact alsvays yields a value
smaller than the actual value of ~, as determined
by optical-absorption or emission techniques.
Though the cases treated in Fig. 2 are far from
exhaustive, they do illustrate the importance of
dealing with all the two-phonon terms in the re-
laxation integrand. It is straightforward, when
analyzing a particular experiment, to evaluate
(4) using the appropriate parameters so that our
treatment is quite general.

In actual practice, evaluation of (4) requires
knowledge of y, the reduced intermediate-state
phonon-broadened linewidth. This quantity is not,
however, a free parameter, for it is related to
the coefficient of the exponential factor in (3). A
self-consistency in fitting will be required in any
analysis of experimental results. First, a fit to
(3) will establish an estimate of the coefficient of
the exponential. This number can then be used
for a, first approximation to y, and (4) can be eval-
uated. A few iterations should then suffice to de-
termine y uniquely. In Sec. III we follow such a
procedure for some of the materials investigated
by Young and Stapleton.

III. APPLICATION TO EXPERIMENT

In Fig. 3 we compare the theoretical value of
the spin-lattice relaxation rate 1/T, = 1/T, o+AT
for 1d% Er"0 in La(0. 9'7 Cl, 0. 03 Br)~ and La(0. 94
Cl, 0. 06 Br)s with the experimental data obtained
by Young and Stapleton. '"' We have used their
values of A for the direct process, and B and y
are so chosen as to best fit the data in Qrbach
regime using (4). The parameters are listed in
Table I. The agreement is quite good within the
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counted for.
Consideration of the effect we have discussed will

be important for the spin-lattice relaxation of var-
ious rare-earth paramagnetic salts ' ' where the
first excited level lies much below the Debye tem-
perature, in the intermediate- (usually liquid-
helium) temperature range where both Orbach and

Raman processes can be equally important.
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APPENDIX

In this Appendix we prove the equivalence of (1) to the result [see (AS)] of Culvahouse and Richards
(referred to as CR hereafter) for Orbach process. We start with a Zeeman-energy-dependent form' of (1):

1 4m

Iz M nk R(nz. R + 1)
10 k, s k's' $, i, m, V, &', m'

v(r;,l) v(r;, l')(-1) (-1) . /2 . i/2 &
—Ic(r; 1™)+')

2Ma k,

x(+'/C(r, ,(, m)/+) R„-,(r,.„m)R„-. ..(r, .„m')(, + .
/ )

1 (- 1)2M

E~ —ICOk —2 I 2 + +S(dk —2 F 2

( 1 )2MR
— 2

) ~' e (r/2) ~ e (r/2)
~'((dz R

—&uz. R +~zi), (A1)

where ~'= ~ —25(d21 + 25(043 and other notations are defined in the text. We have assumed E',.= I" ~ = I".
(A1) is a second-order transition rate due to the orbit-lattice interaction given by

1/2
H" = 4 .V(r;zl)( —1) C (r;zl, m) —

I

(ia ,2'"e' "—ia„,e " ")-Rz„(r';z, m),
i, l, m, k, s 2M

(A2)

where a„-,(a„-,), R are phonon creation (annihilation) operator and position vector of a lattice site, respec-
tively. For Orbach process we drop the nonresonant terms, obtaining

nz, (nz, ,+ 1)
4~

10 k, s,k', s'

S2

4M a ((t)k sk2 4 V(I"; l) V(I';.,l') V(1";"l")

x v(r, „,p"')*&-
I
c(r...l', m' I+'& &+'

I
c(r,,l, m) I+& (&-

I
c(r;".,I'" m'") I+'&

x(+'~ c(r;„J",m" ~+))" IRg„(r,.„m)R,.(r.. . m' )R,(r';"„m")

R„-. ..(I';„, , m"') (, ,2, /
)z+R„-. ..(I';, m)R„-,(1;. , m' )R„-. ..(I";.. .m") R„",(I';„,„m'")

Pl(dk s~ + (1" 2

m

,z, r/2)2 + (- 1) "' Rz,(r;„m) Rz, ;(r;. , m') Rz, „.(I';,„m") Rz,(r;" „m"')

., r/2) +Rz, ,(r;"„m") R„. ..(r;„~ m"') Rz, , (r;2, m) Rz,(r;,„m')

1 1
&'-K(dz, +2'(r/2) 6, -R&d;, g(r/2) "2 R ~z' "+"») .

The energy-dependent factors appearing in the square bracket can be rewritten as

-N&„~ir '
g+ g (r/2) g- g (r/ )

=
(g )2 2 & +

— - +)T~(S(+ @&2 R)+f)(+ @(dz, R)]

where I' indicates the principal part. Since Rk" nk, are;slowly varying functions of hcuk", near &, we can
put 6'= 6 = 4 and drop (dz, from the 5 function. Hence, setting I/(& —h(dz, ) + (I'/2) = (2w/r) 6(& —h(c„-,), we
obtain
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1 4(( 2m ~ // n)-, , (n„,„,+1)
Tio @ I"

k s k' s' 4M Rk s Mk', s' i, l, m, i', l', m', i'' l'' m'', i'",l'",m''' v(r, p) v(r. ..l') v(r,.„,l")*

x v(r, „,,l"')*(-1) (-1) (-1) (-1)" &- Ic(r...l', m')I+'&&+' Ic(r,,l, m)l+&

x{&-Ic(r;",l"', m ) +&(+'I c(r,.„l m )I+)) R&, (r' m)R ' '(r' m )

x R„-,(r,.„,m")* R„"...(I';", , m'")" +R„-. , (I";,m) R„-,(r, ,„m') R„-. ..(r,.„„m")'

xR„",(I';. . .m'")*+ (-1) (, ' R„",(I', , m) R„"...(1";,;, m')
S(d43) + I

2
x R), . ..(r;"„m ) R;,(I';",, m ) +, (, Rf,(r...„m )

f I )f( I jl j 1IC + + 254) 4g F Jf
C043 + P

xR„, , (I',.„, , m"')" R„. ..(I', , m) R;,(I';, m')) R ll(A —. Stxl, ,) S(A —Rtx;. ,..) . (AS)

Neglecting n(h) compared to unity and using the Hermitian property of the operator g;, , V(I';, /) R)-, ,(r«, m)
xc(r;s, l, m), (A3) can be further simplified as

8
Z- =@2 r ~n( ) ~, . 2 Z — E V(r,,l) V(r, „,,l'")(-1) (-1)""

10 k, s, k', s' R, s ~k', s' i, l, m, i "',l''', m'''

2

x &+'I c(r,,l, m)l+&&+'I c(r...,,l"' m'")I —&R„-,(r,.„m) R„-.,,(r,.„,„m'") 6(~ —a~„-„)6(a —a~„-....)
i( 1) s2 R ~ Fi2M

p2

(@+43) + r (S, s, i, l, m, i ",l'", 'm" '
v(r,„l) v(r, ...„/' )

x (-1) (-1)"'"&+'Ic(r,„l m) I+&&+'I c(r,„,„l'",m"')I-& R~,.(r«m)
k, s

2

xR„"„(r;",m"') 6(& —h&u„-, ,) (A4)

Thephonon-induced width (I') of the intermediate level is given by

2

r', = ', Z 2 „,V(r,.„l)R„-,(r. m) & I~C(r,„ m/)l+'& (n. .+1)"'
Ma ks~~ (A6)

We designate the spontaneous part of this as

spont=A B] p
spont=A B2 .

p+' +
(A6)

Substituting (A6) and (A6) into (A4) we can identify the first term (to be defined as I) as

[4 I/1I/2/(+1 + I/2) ] n (&) I

which is the first term of. To further identify the second term of (A4) with that of CH's E(l. (46), we change
our notation to theirs. Their interaction Hamiltonian is given by

/I'= 5 v„'"q„"',
)(.,r

with

q(X) ~ F()I)( k )( i)I R 'i (f( R)-
~s f
k, s

(For definitions of symbols see Ref. 7. ) Therefore we can replace g, , V(I';„ /)R(I';, m) C(I';„ l, m) by
g„,a(2M~i, //1) ~~v„( ) E( ' (where (dR, = 6/)I) in the second term (to be defined as II) of (A4). Thus,
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"=a~ —'""4M '-" ' n-
4m 2m h ~~ 1 2 2M&

4M + @(d43 + j." k, s, r, ),r', x'

&&( —
I

v„'"'I —')(+'I v„" 'I-) E„'"(k, s)E„" '(k', s')5(h —h(u„„), (A7)

where we have used (+ I V „'I+& = —( —
I V„' 'I —

& as proved in Eq. (B7) of CR.
CR define a quantity I-(A6) of CR]

.t (&) J dr iMt T-r( iF/gv/hq(x& -i HgT/2q(x'))

where p~, III are phonon density matrix and phonon Hamiltonian, respectively. The above equation can be
reduced to

j„', „.), ~ ((u) = &~ mn((u)E„"'(k s)E„" '(k, s)5((u2, —(u)5„„~,
k, s

where ~„„.is a Kronecker's delta. This quantity is defined in CR as

j„', „,1.((u) -=n((u)C, 1.((u)5„,„~ .

Therefore

e„„(/'/e) = 5 ~E„'"(k, s)E„' '(k, s)5((u„-„—~/n) .
k, s

Using this, we can rewrite (A7) as

11=(-1)'"16n(~)
@ )2, 1 2 12,41(«I) I'

where

& c- («&) &-
I
v!"I-'&&+'I v',"I-&

Defining T 12 41(«5) =(C/2)n(~) [(B7) of CR] and using (A5) and (A6) we find

11=(-1)"4 (6)
42+ (B1+B2)

Finally we obtain the desired result

ICI '
(d2 (~) 1 ( 1)2N~ 1 42

10 1+ 2 12 11+ (As)

which is identical to (48) of CR for the case of Kramers ions. We note that this result is derived without

using the Debye or long-wavelength approximation.
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