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have to be matched by more intense dc field pulses
with short rise and fall times for off-resonance ob-
servations. From this point of view the choice of
Teflon appears to be a rather poor one since the
nonsecular terms in this compound are surprisingly

large in the range of rf fields used. As compared
to sample rotation and multiple-pulse-sequence
techniques the continuous rotating field approach
has the disadvantage that the signal is not observable
in the presence of the rf field.
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A calculation of the total energy distribution of field-emitted electrons in the presence of
chemisorbed atoms shows that [j(c ) —jo(~)]/jo(~) =u(cu) ImG~~(v) if the adsorbate resonance
level lies within the conduction band of the metal. j(e) and jo(&) are the current densities per
unit energy in the presence and absence of the adsorbate, respectively; the energy cu is mea-
sured from the vacuum level; x, is the surface-adsorbate distance; and (1/7t) ImG~ is the local
density of states at the adsorbate. u(u) ~exp(2(-2m+/N )' x~+(3 (2m/g) (- u;) (eE) '

x(n(y) —1))), whereEis the electric field and g(y) is the image-potential correction factor. The
expression given above fear the tunneling current is general and independent of the explicit form
of G~~. If the adsorbate resonance lies below the bottom of the conductionband, then [j(cu) —jo((u)]/
jo(cu) &0, in agreement with the results of Duke and Alferieff.

I. INTRODUCTION

Measurements of total energy distribution (TED)
of field-emitted electrons from adsorbate-covered
surfaces can show the location and shapes of the
virtual impurity levels associated with the adsor-
bate, and thus constitute a powerful tool for the
study of chemisorption. Theoretical treatments of
tunneling through adsorbates have been given by
Duke and Alferieff' (DA) and by Gadzuk. Both DA
and Gadzuk formulated the problem in terms of
tunneling of metal electrons through an adsorbate
schematized in terms of a potential. DA considered
only one-dimensional cases, and their parametriza-

tion does not easily lend itself to interpretations of
specific systems nor does it take correlation ef-
fects into account. Gadzuk has attempted to attack
the problem specifically from the point of view of
obtaining information on virtual adsorbate levels.
However, it is hard to see the justification for his
initial state function I m)+ GV~ 1m) used in Eq. (8)
of his paper and centxal to his subsequent develop-
ment, since G is the Green's function appropriate
to the total field-free Hamiltonian, metal plus ad-
sorbate, while I m ) is an eigenfunction of the metal
Hamiltonian only, and V~, the external electric
field, is in this context a higher-order perturba-
tion. In the case of chemisorption, however, the
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complex and V& is the potential due to the constant
electric field:

X,
i",= V, e(x) = —eFxS(x),

where

(la)

(lb)

(lc)

Consider a "left system" for which the Hamilto-
nian is

FIG. 1. Schematic diagram of the potentials due to the
metal plus adsorbate and the external electric field.
denotes the work function, p, is the Fermi energy of the
metal, W~= p, + p, and x, is the metal-adsorbate distance.

H~ = EP +~q,yg, ,

he, = —eI"x,

(2a)

(2b)

adsorbate wave function is already mixed with the
metal wave function even in the absence of a field.
It is more natural therefore to treat the applied
field as a perturbation on the metal plus adsorbate
system and to consider tunneling from system
states.

The metal-adsorbate system is characterized by
its Green's function; we adopt the many-body form
of the Anderson Hamiltonian to describe the system
with the result that the metal-adsorbate Green's
function is directly related to G„(&u), the adsorbate
Green's function. All information relevant to the
adsorbate binding is contained in G„(ur). G„(&u) is
determined by the adsorbate level shift ZR and the
broadening of the virtual adsorbate level Z, . We
use the transfer Hamiltonian method to calculate
the tunneling current per unit energy j(&u), and
find that it is directly related to G„(~). More
specifically, the ratio of the excess tunneling cur-
rent to that in the absence of the adsorbate is di-
rectly proportional to the real and imaginary parts
of G„(&u); aj%0= n, G,",+ p, G'„. An estimate of o.,
and p, reveals that p, » n, ; thus TED experiments
can provide a direct measurement of G,', . In the
case of adsorbate resonances well below the Fermi
energy of the metal, we find a current decrease in
accord with the results of DA.

The present approach is general and independent
of the explicit form of G„. A short account of this
work has previously appeared. 3

II. FORMULATION

is the energy shift of the adsorbate caused by V&.
Here n, is the number of electrons on the adsorbate
and x, is the position of the adsorbate. The one-
electron part of H~ is shown in Fig. 2(a). H~ gov-
erns the motion of an electron in the "left system"
throughout all space; similarly the Hamiltonian of
the "right system, "

H~, consists of the kinetic
energy plus the external field extended over all
space. The external potential Vz = —er x is shown
in Fig. 2(b).

At the energies of interest eigenfunctions of Hl.
are largely confined to x& 0 and those of H~ to x
& 0. Thus tunneling may be treated as transitions
induced by V& from "left-system" eigenstates to
"right-system" eigenstates. In particular, we can
make use of the method of Appelbaum and Brink-
man to write the tunneling current per unit energy
at energy co as

j(~) = [2f(~)/v@j ~ &fl 7'I j & &
j'

I
~

I

~'
&

X,

' -+m

We wish to calculate the current per unit energy
due to the tunneling of electrons from the metal-
adsorbate complex to the vacuum in the presence
of an external electric field. The appropriate po-
tentials are shown in Fig. 1. For simplicity the
metal potential is drawn as a square well. The
transfer Hamiltonian method ' is used to compute
the tunneling current. The Hamiltonian for the
system has the form P. = 0 '+ V&, where H ' is the
many-electron Hamiltonian for the metal-adsorbate

FIG. 2. (a) Potentials of the "left system" consisting
of the metal and adsorbate; (b) the potential of the "right
system, " v~= —efx.
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where

&&ImG, , (u& —i6) Im0,"~. (~ —i6), (3a)

7 =H —HI, = Vf —P Aq, P, (3b)

and P is the projection operator for the adsorbate
states. f(~) is the Fermi function; the states Ii&

form a complete set of one-electron wave functions
for the "left system"; Ij) form a complete set for
the "right system"; G and G are the Green's func-
tions for the left and right systems, respectively.
(Here and later in the paper it is assumed that 6
-0'. ) Expression (3) holds for the general many-
body system. The derivation of an analogous ex-
pression for j(u&) in the noninteracting electron case
illustrates the method without introducing the com-
plications associated with a many-body formalism
and is given in Appendix A.

The right Green's function G is diagonalized by
Airy functions. Letting the set ( I j )}be the set of

Airy functions ( If)}yields

j (&)= [2f(~)/&] '
&

~'
I
~ lf & &rl ~

I
f &

~ ImG(( ((d N) 6((d —ty) (4)

+~
I &fl I

&I'G,', ( -f6)]6(~ —~y)
fa

where &f is the energy associated with the state
lj &.

In order to test the transfer Hamiltonian method
as formulated above, we apply it to a particular one-
dimensional model considered by DA, their model
1. They carried out an exact calculation of the
tunneling current by a direct solution of the
Schrodinger equation for the case where the ad-
sorbate is represented by an attractive 5-function
potential. As shown in Appendix B, the transfer
Hamiltonian method agrees with the DA calculation
[their Eqs. (30) and (41)] with the minor difference
that v~=[B, /(p +P —E —Fd)]'~ in their Eq. (28)
is replaced by [B,/(p. + Q

—B)]' '.
In order to gain some insight into the dependence

of j on ~, we first consider the limiting case in
which the external field as well as the metal-adatom
interaction is very weak. In this case HI. =8 '
=H +H„with H 4 =& 4 and H, C, =&,4„where
H is the Hamiltonian of the metal and H, describes
a free adsorbate atom. Equation (4) yields

The first term in the brackets represents the cur-
rent jo(v) in the absence of the adsorbate. There
is typically very little structure in jo(&),
and the ~ dependence is dominated by the exponen-
tial exp[- (2m/5 )'~2 (4/3eF)(- &u)~~~]. The second
term represents tunneling from the adsorbate
level; electrons can tunnel from the adsorbate to
the vacuum only if they have energy co= e,. In the

presence of the metal-adatom interactions the atom-
ic level will be broadened, and G will acquire off-
diagonal matrix elements G, G, which represent
a mixing of metal and adsorbate states.

The expression (4) for j(&u) is quite general. We
next assume that the metal-adatom complex is de-
scribed by the many-body Anderson Hamiltonian

H '=Be n, + E, Zn„+ Un„n„

+Q(v,„a'P,+ V,"„d.'a„.) . (6)

The first term represents the metal, the second
and third terms represent the adsorbate, and the
last term describes electron hopping between the
metal and the adsorbate. This Hamiltonian ignores
Coulomb interactions between adsorbate electrons
and metal electrons as well as quantities like V

The former can be taken into account in a rough
way in terms of image potentials modified by finite
screening lengths, V, ,~ =e /4(d+ X), and thus re-
normalizing Uand e, . Equation (6) assumes a sin-
gle adsorbate level with wave function P, and energy
&, . However, this level should not be thought of as
the free- adsorbate level. The metal will interact
with the higher-energy adsorbate states as well
as the lowest one, and this may be taken into ac-
count by considering P, to be a "hybrid orbital, "
i.e. , a linear combination of atomic states. Form-
ally, the metal-induced interaction between the low-
est unperturbed adsorbate state and the higher ones
can be removed by a canonical transformation.

It is also easy to generalize the present theory
to include several levels explicitly. This general-
ization is required to understand some of the details
of the experimental data of Plummer and Young~

(p~).
The Hamiltonian of the left system is given by

(2) after substitution of (6). Thus, the "left-sys-
tem" Hamiltonian is identical to EP' of (6) but with

&, replaced by &, + 6&, = e, —eEx, .
By choosing the set of states ( li)}=(Im &, la)},

Eq. (4) takes the form

j(~)= [~f(~)/@]1m~ 64' —&y) [ I &jl ~
I
a

& I
' G.'.

f

+Z (&flail a) G,„&ml V&I f)

(5)
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+~ &five'lm&G.'. &m'I vglf&].
mm'

It is straighforward to show that

I
mm' ~mm' gm+gm VmaGaa Vam'gm' p

Gm. =gmV~aGaa y

~am Gaa Vasgm s

(sa)

(sb)

(sc)

(12d)

Taking the imaginary part indicated in (12a) yields

j(cd) =j,(cd)+ [2f(cd)/5]

x Z, 6 (cd —~~) [(x' —y') G',, + 2xyG,",],

where

where

g =(~ —~)', (sd)

x=&fI~la& &g,

y = oy

(13b)

(13c)

G„,= (&u —e, —Z) '—= G„+iG'„, (se)

~ v.~.& lv&lf»1, (9a)

where

jo(co) = [2vrf(cd)/8]E5(co —e&)5(cu —c„) I (fl V~I m)l' .
mf

(Qb)

Ecluation (9) may be written in a more transparent
form by introducing the operators T and T,

T=y+ggV, T= y+ Vgy, (10)

where g is the metal Green's function and V is the
potential appearing in the matrix element V, . We
find

j((u) =j,((u) + [2f((u)/I]

where G"„ is the real part of G and should not be
confused with G, the Green's function of the
"right system. " Making use of (S) in (I):

j(cd) =jo(cd)+ [2f(~)/h]lmZ5(&u —e&) [((fl rl a)
f

+& &fl v~)
I m) g.v..)G..(&al ~lf &

The expression (13) for j(e) treats the Hamiltonian

of (6) exactly.
The term jo(&u) in (13) represents the current in

the absence of the adatom. The term proportional
to ( fl 7 I a) G~„represents the tunneling of an elec-
tron from the adsorbate to the vacuum, as mod-
erated by the density of adsorbate state G~„. The
remaining terms in (13) arise because the effec-
tive transfer operator is T of Ecl. (10) rather than

The ygV part of T represents the hopping of an
electron from the adsorbate to the metal via V; it
propagates in the metal and then tunnels to the
vacuum under the influence of Vf.

The matrix element (fl V~l m) of (12c) can be
written in a more convenient form by noting

V/ =8(x)Vy = (T+ Vy)8(x) —8(x)I'+[8(x), I']

=Hg8(x) —8(x)H +[8(x), T] . (14a)

Thus,

&fl V~1m&=(~~-~.) (f18(x)lm&+ &f1&1m&,
(14b)

&f1~i &= &fl[«), 1"]I

x 1mB&5(&u —ey) ((fl I
I a&G..&al Tlf&).

(11)

An examination of (9) reveals that (f I v I a) is real;
also g„(fl v&lm)g V is real for &z(0 (see Ap-

pendix D). Hence, (al Tlf&= (fl Tla) and (11)be-
comes

j (~) =jo(cd)+[2f(cd)/ff]~~g 5(& &y)lm(G..(fl I'I a&'),

(12a)

where

(12b)

of = Pf +iox =+|a (f I V~ I
m & v|aa(& —&„) '

+i7cZ„(fl V&l m) V, 5(u —e ),
(12c)

oi =7cZ (flail m) V, 5(cd —&„),

where V in (15a) is the potential appearing in the
matrix element V and we have used the fact that
~= &&, as dictated by (12a).

III. EVALUATION OF TUNNELING CURRENT

The Anderson model uses the set of states
(I m ), la ) }as a basis set and thus describes the
metal-adsorbate eigenstates [li)}by a linear
combination of elm&} and la). The set (Im&, la)}
is, however, overcomplete since the set of states
(I m )}is complete. It can be shown' that because

(14c)

where the integration f d S is over the metal sur
face. Use of (14b) and (12c) yields

oc =(fl8(x)Vla)+Z (flZlm&v, (~ —e ) ',
(15a)
(15b)
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y/(r) = s(r—, c~)e "/

=ex p[ ).„-+((q„)x- [4nx2/](g, I)]+zx„, pQ,
(16a)

(16b)2/= 2,/+ (8'/2m) k„/',

)„I= (2/3a)](~„)', (16c)

h (q,/) = (- 2m&I//8 )' ',
u = 2meF/8

Making use of (14c) and (16) gives

(f1~1m)= r„(&,) e-"~/,

(16d)

(16e)

(17a)

In deriving (1Va) we have replaced e,& by e/ in all
terms of (16) except e "/. This replacement is
justified because the summation K/ in (13) is dom-
inated by e «, which has its maximum at E f = E'y.

Use of (17) in (15) gives

e/ =[r(~/)+b" (2/)]e "',
I bI( )

r(~, ) = ( a
l
9 (x) Vl s(~, ) ),

(18a)

(18b)

(18c)

b (e/) = P„r„(&/)V ./(&u —e„), (18d)

b'(;) =.Z.l.(;)V..5(~-.„), (18e)

where s in (18c) is defined by (16a). The matrix
element (f1~ la) of (12d) is given by

( fl 7
l ) = s(c/) e "'/, (19a)

a(e )/=(al~ls(~ )/) . (19b)

It has been assumed that I a) has zero angular mo-
mentum about an axis normal to the metal; if this
were not the case the matrix element (ale I f )
would be very small.

As already noted, the first term in (13), j()(&u),
is the current in the absence of the adsorbate.
Equations (Qb), (14b), and (1V) give

j()((u) = [2f((u)/)~] c(&u) g/ 6 ((u —e/) e "&, (20a)

the Anderson model ignores this overcompleteness
it gives an incorrect asymptotic dependence of the
metal-adsorbate eigenstates. To compensate for
this, we always give the states I a) inside matrix
elements of the form (f I7 la) the asymptotic de-
pendence on position which obtains for &, equal to
q&, this better represents the exact eigenstates
(I i )) inside the tunneling barrier.

We next evaluate (f1~ la) and (fl Jim). The
primary contribution to these matrix elements
comes from a region of space in which I f ) may be
replaced by the asymptotic form

where &I/ is defined in (16c) and

C((()) = IIE~ b ((() —E~) I' (&d) (20b)

This expression for j3(~) is evaluated in Appendix
C, assuming that the metal potential is the square
well shown in Fig. 1. The resulting expression
is identical to that which would be obtained by
combining the supply function with the Fowler-
Nordheim expression' for the barrier-penetration
coefficient in the WKB approximation limit. It is
thus essentially identical with an expression previ-
ously derived by Young. ' Use of (18)—(20) in (13)
gives the final result

j(&)/j2(&) = 1+ (sP —v )G„+2uI/G„,

u= [a((u) + y((o)+E I' ((d) V, ((u —2„)-']/c((u)'/',
(21b)

(21c)v = II &~„r" ((d )V, 5 ((u — ()/c((u)'/2 .
By definition, V =(m!H~('la), where HI.

' is the
one-particle part of the "left-system" Hamiltonian.
Thus, in (21b), a+y=(ale+8( )xV!s)
= ( al 8(x)H") I s ), where H'" is the one-electron
part of the total Hamiltonian for the metal, ad-
sorbate, and electric field. We remark that the
summations g in (20b) and (21b) do not include a
summation over k I, the momentum parallel to the
surface which is zero by (1Vb).

The interpretation of (21) is the same as that of
(13). The term (h2/c)GI„ is associated with the di-
rect tunneling of adsorbate electrons, and the other
terms arise from the more complicated processes
previously mentioned.

In Appendix D we estimate the magnitudes of
b, (~), y((d), P„I'„(~)V,((d —e„—ib) ' of (21). We
find

y(~) [v-I/2 ((~)3/2 ~-I/2] n( )

Also, (D7) and (D8) give

Z„i' ((u) V„,/((u —2„)

(22)

= (z/pvw /II)' (w +2(u)/[2w„(w +(u)]'/2,

(23a)

&~ I' (~)V 5((d —e„)=—(-2&uZ, p„/ )'",
(23b)

where Z~ is the broadening of the adsorbate reso-
nance as determined from experiment and p~ is

Z(((I) 4II( (())& I /2 (1 y +g)(1 + y2) I /2 eI( )

(D2a)

where I2, $ are defined in (16) and g=II ' c(' 2$ 3

y, is a measure of the polarization of the adsorbate
by the metal; y, satisfies 0 & y, & 1 and large polari-
zation corresponds to large y, . We also find from
(D2a) and (D4) that
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metal volume per atom. We estimate a minimum
value of I ((/v I of (21a) from (D2a), (22), and (23)
by the choices x, =2 A, y, =0.8, eI'=0. 2 eV A ',
W =10 eV, Z, =4 eV. The energies of greatest
interest are 0-3 eV below the Fermi energy so
we choose (u = —5 eV (the choice (u = —8 eV would
not make a substantial difference). For the values
of the parameters given above b, ((u), y((u)
» $„1' ((u)((u —e —i6) ' and I((/v I =10'. The re-
sult is due to the fact that the tunneling processes
represented by u and v, respectively, are such that
the barrier width in u is smaller than that in v.
v represents the energy-conserving process "ad-
sorbate-metal vacuum" while u represents the tun-
neling of an electron directly from the adsorbate
to the vacuum as well as the process "adsorbate-
metal vacuum" where the energy of the electron
in the metal can be different from its energy in the
adsorbate or in the vacuum.

For ((»v, Eq. (21a) becomes

[j((u) —jo((u)]/jo((u) = &j((u)/jo((u) = (('G,', , (24a)

2((s&)xz

X = 4((p, (]'/a) W„[(u/((u + W„)]'~'

x (1 —y, +g)3 [1+ (((g) '], (24c)

v = (I/2(( )p, W ((u+ W„) '~'( (u) '~'5, $'p (25)

for the square-well approximation. PY estimate
p, to be at most 10 3; thus (25) gives v~ & l. 5&&.10 3

and u» v3.

Finally, we estimate u from the theoretical ex-

where p, =((a /S, a is the adsorbate radius, and S
is the surface area seen in the experiment. (24b)
and (24c) result from (21b), (D2a), (22), and (C2).
(22a) is valid if G'.,» 10 'G„, which is certainly
the case if the adsorbate resonance lies within the
metal conduction band.

(24a) is a remarkably simple result; it shows
that TED essentially measures the density of states
near the adsorbate as determined by G"„. We stress
that the result bj/jo= (PG„obtains if u» v. v does
not involve (fl 7 t a) and is thus not affected by the
ansatz of correcting the asymptotic behavior of

I a) discussed in the beginning of this section. This
gives additional confidence in the result u» v ob-
tained above. The consistency of the result u» v

may be checked by obtaining a value for u from the
Plummer-Young experiment of Ba adsorbed on W.
At the adsorbate resonance e„, Gs (e„)= 0 and

G„(e„)=1/Zz(e„). From (21a), u —v =Z~(e„)bj(e„)/
jo(e„). ZI(e, ) is estimated from the broadening of
the peak in j((u) to be Z, -1 eV and aj(&„)/j~(&,)-1 —4, depending on the experimental conditions.
Thus, (( —v3=1 —4. v obtained from (21c), (DVc),
and (C2) is

& 5~5((u —&~) [(x"—y")G'„+2x'y'G„], (26a).'= &fl "8( )I I.&

+Z& flz+ v(„lm') v„,, ((u —e„.) ',
m'

(26b)

y'=~. &flu+ V,.lm'& V„..6(~- &„,),
j'((u) = [2((f((u)/I] Z„.~ 5 ((u —eg) 5 ((u —&„.)

~
I (fl ~+ I;.I

m'
&I ',

(26c)

where it is understood that Im'
& is an eigenfunc-

tion of the metal Hamiltonian with t/', included.
WEB calculations indicate that for the parameters
relevant to the PY experiment j(((&„)is larger
than the metal current without image correction
jo((u) by a factor - 5x10 . A similar analysis to
that carried out in Appendix D yields the result x'
» y' and x'—- (f I r +(8)xV la& for values of the pa-
rameters typical in field emission. Equations
(26) give

j'((u) =jI(((u) + [2f((u)I/@]

2&5((u —
&&) (fl T+8(x) VI a) G'„. (27)

The enhancement due to the adsorbate is given by
the second term on the right-hand side of (27) and
is not changed by the inclusion of the image poten-
tial, except to the extent that I a) is modified via
the interaction of the excited adsorbate states with
the metal. This effect is very small compared to
the effect of the image potential on the metal tunnel-
ing as given by jo. Nordhelm11 and Burgess12 have
determined jo((u)/j((((u) to exponential accuracy:

jl( )/jo( )=e p([4&( )'/3 ][1- (y)]), (26 )

y = (e'F)"'/(- (u), (26b)

and v(y) is defined in Hef. 11. Values for it are
given in Table I. These considerations show that

pressions (24b) and (24c). Again, we use —(u

=5 eV, TV =10 eV, eE=0. 2 eV A ', y, =0. 8. PY
estimate 10 3& p, & ) 0 . We estimate 2 A & x, & 3 A.
These values of the parameters give 50 & (( & 5
x 10 . At the adsorbate resonance, G', ,(e„)= 1/
Z, (e„)-1eV as stated above, and thus (24a) yields
50& hj(e„)/jo((.„)& 5&&10 . The experimental result
is Aj(&„)/jo(&„)=1 —4, depending on the experimen-
tal conditions. The high calculated value is largely
due to omission of the image potential in our work.

We can allow for an image potential V, in our
calculation by including it in the metal potential,
H . Repeating the calculation of Sec. II gives the
current j'((u) as

j'(~) = j(((~)+ [2f(~)/@]
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TABLE I. Functions v(y), t(y) appearing in Eqs.
(28)-(30) of the text.

&=exp(2t(~„)x, +[4)'(e„)/3n] [v(e"'F' '/I &„I ) —1]],
(30b)

0
0. 1
0. 2
0. 3
0. 4
0. 5
0. 6
0. 7
0. 8
0. 9
1.0

v (y)

1.000
0. 982
0. 937
0. 872
0. 789
0. 690
0. 577
0. 450
0. 312
0. 161
0

f;(y)

1.000
1.004
1.011
1.021
1.032
1.044
1.057
1.070
1.083
1.097
1.111

G.', exp[2(x. + (4]'/3n) (v —1)]

exp(BI'&),
(x/r')
q +1 (31a)

B= (2m/8 )' ((x,/I g„I
'

)

+ (2$ /eF)[f(e F /I &„ I ) —1]],
(3Oc)

where t is given in Table I. In the absence of
image-potential corrections, v = 1 and f = 1 in (30).
Assuming G„ is represented by a Lorentzian
(E3a) gives

image-potential corrections change Eq. (24) to (31b)

[j'( )-j,'( )]/j,'( )=gj'(~)/j,'( )= "G'. (29a)

u" = ).expI2$ (~)x, + [4$ (~)'/3n] [v(y) —1]),
(29b)

where we have assumed that ~ is still given by
(24c); this should be correct to -10% accuracy.
Use of Eqs. (29) changes our previous estimate
of Aj/j for the PY experiment from 50 & bj(e„)/
jo(&„)& 5 && 10 to 10 ' & hj'(&„)/jo(e„) & 10; the experi-
mental value is bj(e„)/jo(e„)-1 —4. Thus we have
achieved quite reasonable agreement with experi-
ment, granted the uncertainties in the parameters
entering our theory.

The overcompleteness of the basis states in the
Anderson model will introduce pseudopotentials'
which may affect j(~). Thus X in (29b) or (24c)
should be regarded as a parameter.

In the case in which the adsorbate resonance is
below the metal conduction band, G'„(~)-0 for
—~- Q and Lj/jo =2uvG„, where now G„- (~ —e„) '.
Also, uv & 0 so bj /j 0 & 0, in agreement with DA.
However, our theory should be most reliable when

q„ lies near energies observable in TED, i.e. ,
0-3 eV below the Fermi level.

The experimental j(~) will give G„(&u); in Appen-
dix E we discuss the form of G„(v) as determined
by the Anderson Hamiltonian (6). We conclude that
G~„(~) will often be well represented by a Lorentz-
ian near the adsorbate resonance &„.

Although the enhancement factor j(ur)/jo(ur) will
have an energy dependence determined primarily
by G,'„ there is some additional energy dependence
from the factor exp {2)(&u)x,+ [4$ (&u) /3n][v( y) —1])
which multiplies G„, Eq. (29b). For energies near
the resonant energy &„(which is the case of interest
in field emission) one has

For values of I", x„e„,and eF equal to 1 eV, 2. 5A,
—5eV, and0. 2eVA ', respectively, BI'=0.9. Aplot
of (& +1) ~e ' is shown in Fig. 3. For BI'=0. 6
and 0. 9, the peaks are shifted by 0. 33I' and
0. 62F below the actual resonance, and the curves
are not Lorentzian in shape. Thus G'„(~) must be
"unfolded" from the experimental curves.

APPENDIX A

We derive the independent-electron version of (3).
IIL has the form

HL T+ ~ma+ P a +~aPa p (Al)

.5C3

as stated in Sec. II; its eigenfunctions and eigenval-
ues are denoted by +L and EL, respectively. Hz is
given by

H~ = T —efx —= T+ Vy,

with eigenfunctions and eigenvalues +~ and E~. The
Hamiltonian for the metal-adsorbate complex in the
presence of the external field is

exp[2t'x. + (44'/3n)(v —I)]-~exp[B(I ~
I

—
I ~, l )],

(3Oa)
FIG. 3. Plots of j' (z)/jo(cu) as given by Kq. (31) for the

cases o. —= BI'=0, 0.6, 0.9.
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where

g (f) y e-lsgtl& b(f) y e-EEstl& (A4)

a (0)= 1, b(0) = 0 . (A5)

Using H@=ih(S+/St) with (A4), and recognizing that
for small t, a (t) = 1, a (t) = 0, b(t) = 0, we find

b(t) =——. (4's IH —E~
I
4~ ) .

d 1
(A6)

The matrix element in (A6) is small due to the small
overlap of 4~ with +&. Thus the usual methods of
second-order perturbation theory yield

P-=(»/&)1(~. IH-E. I+.&I'bg. E.) (A—7)

as the probability per unit time for tunneling. The
current density at energy is obtained by summing
(Av) over all states such that the final states have
energy . One finds

j(~)= (»/&)Z I«IH-E. II &I'

x 6(Ei Es)6(~-E„)f(-Ei), (A8)

where the Fermi function ensures that the initial
state is occupied. Equations (Al) and (A3) yield

H —EI =HI —EI+H —HI =HI EI+ V~ —Pghe P

(A9)
Use of (A9) in (A8) gives

(-)= [2e(-)/~i~ I&HI I~&l'6(E.-E.)6( -E.),

v'=H —H~= Vy —P,hfP~ .

Equation (A10) may be written as

LR

(A10a)

(A10b)

x 1m&1. IG'(~- fb) II &

x —1m&K IG'("-fb) IH &

where G, G are the one-electron Green's func-

tions

G'=(~-H. ) ', G"=(~-Hs) '. (A12)

Introducing the complete sets of states li&, Ij) for
the left and right systems, respectively, we have

j (w) = [2f(~)/wh] Ts (ImG r ImG r)

=[2f(v)/v@] p (i'IImG lf & (f
I ylj)

H = T+ V~~+ Vg .
Prior to turning on the field V&, at time t= 0 elec-
trons are governed by HI, . Application of V& induces
an electron in state +~ to tunnel to a state described
approximately by a wave function +&. The wave
function of an electron is thus assumed to be

Hi = T+ V„+ V,"'+ P, Vy(x, )P, ,

H~ ——T+ V~(x),

(Bla)

where V,"' = Xb (x —x, ) is the adsorbate potential giv-
en by DA [Eq. (4)). The current density is calcu-
lated from (A10):

j(~)= [2'(~)/b]Z I &fl ~lf &I'6(~- e, ) 6(e, —e,),
(B2a)
(82b)v = Vy —P, he ~P, = Vy —P, Vy(x, ) P, ,

where I f & is an eigenfunction of Ks, i. e. , an Airy
function, and where li & is an eigenfunction of H~.
Following the procedure that led to (14) we write

(f I

r If &= (f I
e(x)(T'+ v&) lf &

(fI f (x)v."'Ii& —&f le(x)K. lf &

= &f I
z+ e(x) V,'" lf &+ (&.,—e& & &f

I
8(x) If &, (BSa)

where

(BSb)

By (B2a), e&= e„and the term (e&- e~)&f1 8(x)li ) of
(BSa) gives no contribution to j(&). Thus

sky
&fl I

&--~~.(..)&;(") 2m sx sx o

(B4)
The asymptotic form of Q~ may be used in evaluating
(B4); this is given by (16a) combined with a normal-
ization factor N(~) which is discussed in Appendix
C immediately preceding Eq. (C3).

It is trivial to solve for Q;(x); one obtains

Pg(x)=Ce 2"+De 2", 0 &x &x,

Q, (x) = E e ~2",

C —E yo
e-~~a&a

&=E(1—yo),

E=(2/I.„)' ' ([I y, (1 e-' ~")]2

(B5a)

(B5b)

(B5c)

(B5d)

+»[I —yo(I+e '')] ] ", (B5e)

~ 0 limG'lj'& O'I r l~'&,

which is identical in form to (3).

APPENDIX B

We calculate here the tunneling current by means
of the transfer Hamiltonian technique for a model
in which the metal is represented by a square well
and the adsorbate is represented by an attractive
5-function potential. This is model 1 studied by
DA.

The prescription for defining HI, , H~ in Sec. II
gives
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(2m/A2)1/2( e )1/2

y3= II. /(- ~;)"', y, = (- e;-)"'/(p+ V+ e;)"',
(B5g)

where S, is the binding energy of the lowest state of
V,'" and the metal has length L U.se of (B5) in

(B4) yields
2 1/2 1/2 -2f 3/3 fM3) 2N(~) (if /2m) ( ~) E

(B6)

where $ = $ (v) is defined in (16d) and o.'= 2meF/5 .
Use of (B6) in (B2a) yields an expression for

j(~) which is identical to that of DA [Eqs. (30b) and

(41)]with the trivial difference that they find
Q= B, /( &; Ed-) -rather than 8,'/

( e;)'/ -(our

zero of energy is the vacuum level).

APPENDIX C

The expression (9b) for the current in the ab-
sence of an adsorbate, j3(&o), is evaluated in this
Appendix assuming the metal potential is a square
well of depth W„. The metal wave functions g„are
given by

(„(r)=M(&,„)exp[- 5(e,„)x+ik„„p] (Cla)

in the region x& 0. Here

M(~,„)= 2(W„+~, )' '(2SL W ) ' ',
5(q ) (2m/R2)1/2 ( g )I/2

(clb)

(Clc)

~ =~. +(@2/2m)&„„2 . (cld)

The region x & 0 is taken to be a cylinder of length
L„and surface area S. Only those states m with
R„„=0 and & = e,„enter the summation in (20b).
We find

C ((o) = v[N((o)M((o)(Ã2/m)(((o)S]'

x (L„/m)(m/K')' '((u+ W„) ' ' . (C2)

ing the region x& 0 is a cylinder of surface area
S and length Lf . 8'f does not appear in the final
expression for j3(e), which is unaffected by the
truncation of V/ as given by (C3).

After converting the summation in (20a) to an
integration, the resulting integral may be evaluated
by replacing &,

&
by &&, in all nonexponential terms.

This is justified by the strong dependence of
e ~f on E,&. We thus obtain

e2ll J.; /5( g )

APPENDIX D

In this Appendix we evaluate b, (&u), y(&u),

$„1'„(&u)V, ((o —e —i5) ', u((u), and v((u) of (21).
&(~) is given by (19b), where v= —eF(x —x,).

The Airy function is defined in (16). Q, appearing
in (19b) represents a polarized adsorbate state
with asymptotic behavior e '"'" for large x. In
order to estimate &(&u) we assume P, is given by

the s-P hybrid

y, (r)=N, [l-y(x-x, )/r]s ""'",
r =(x —x) +y +z

/ 2
$ (&)

3/ 2
(1 + y

2
)

1 / 2

(Dla)

(Dlb)

(Dlc)

and y, is a parameter satisfying 0 y, 1. y, must
be positive if Q, is to be a bonding state, and y,
must be less than 1 if Q, is to have no nodes.
Making use of (Dl) and (16) in (19b) we find'

&(~)= 47/~n '/'(1- y, +g)(1+-3'y,') ' 2e""'"~, (D2a)

= (SL//2 & )(m/h ) eF[((u+ W/)(-(g)]-'/2

x exp[- (4/3eE)(2m/if' )'/2(- (u)3/2] . (C4)

Use of (C2) and (C4) in (20a) yields

j3(&u)=Sf(&u)eF(&u+W )' '(2' 'v't3W ) '(m/h')' '
x exp[- (4/3eF)(2m/K2)'/'(- ~)3/'] . (C5)

N(v) is a normalization factor for the function

g/ of (16a);
where

~-1/2 1/2 ((~)-3/2 (D2b)

N((u) = ((u+ W/)"'(- ~) "'(2L/S) "'
This result is obtained by replacing V&= —eI"x by
a square well of depth Wf for large x,

V/&- —eFx8[W&/eF) —x] —W/8[x —(W&/eE)]

(c3)

y(a&), as given by (18c), is

y (cu) = ( a
~

&(x)V
~

s ) = (a
~

6(x)H
~

s )
= &u(a( e(x) )s)

Use of (Dl), and (16) in (D3) yields

y((u) = 47/'/'f((o)'/2n '(o(I —y, +-,' vg) .

(D3)

(D4)
The asymptotic form of the wave function cor-
responding to the potential (C3) is given correctly
by (16). N(v) is the normalization factor assum-

The quantity Q„I' (&u) V /(&u —&„—i5) is evaluated
by noting

m m.
'

d3 d2Sg (,)V(, ) (( ) g 4~( ')g~( )
(&o- e —i5) 2m m &m &~ go

(D5)
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where (17b) has been used and V(x') is the potential appearing in V„,. It is easily shown that

Z„(p (x)(t) (x')/((u —e„—i&)-=G(x, x')

= m(Sh &) ~fe ~ '" ' '+ [()+ik)/(E —ik)]e ""'"'], x, x'&0 (D6a)

where g= g(&u) and

k = [2m(W„+(d)/k ]~~

Use of (D6) in (D5) yields

Z„I'„((u)V„,/((u —&„—i5)

(D6b)

where

and

(E3b)

= —[N((d)/M((d ) ] [($+ik)/(g —ik) ] V„, ; (D7a) P=1 1 ——Zq c„ (E3c)

equivalently,

Z„i'„((u)V,„/((u —~„)
= (L S)'i V„,(W„+ 2(u)/[2W„((() + W )]'i, (D7b)

vZ„r.V„.&(~ —~„)= —(L„S)"'V„.(-2~)"'W-.'~',
(D7c)

where M((d) in (D7a) is given by (C1b) and it is
understood that ~m) appearing in V, [on the right-
hand sides of (D7a)-(D7c)] has energy E„=&u. V,
is estimated by assuming that broadening of the
adsorbate level is given roughly by the Hartree-
Fock expression for the broadening. That is,

Z,( )= V.'.p.( ), (D8a.)

where the metal density p„((d) is approximately

p„(e)= L„S/W„p„ (D8b)

and where p„ is volume per atom of the metal.
(D8a) is probably correct to within a factor of 2.

APPENDIX E

where &„= &, —eEx, is the adatom energy level in the
presence of the external field and Z~, Z& are the real
and imaginary parts of the self-energy. The reso-
nant adatom levels e„are determined by

es —eu —Zs(e ) = 0 . (E2)

This equation may have more than one solution, as
will be discussed later. In the case that Zg, Z~
vary slowly near a resonant energy &„, one may
write

G„,(&- e~) = pl'/[(ur —es)'+ I'~],

We discuss the form of G„(&)as determined by
the Anderson Hamiltonian (6). We are primarily in-
terested in energies near the adatom resonance lev-
el in contrast to the Kondo problem, where one is
concerned with energies very close to the Fermi en-

ergyy.

In general,

G'. (~)= ZI((d)/u(d- e —Z ((d)]'+ [ZI((d)]'] (El)

Zz = 2 Un, +Z„V, /((d —& ),
Z, '= v V,' p (~),

(E4a)

. (E4b)

where n, is the average number of electrons on the
adsorbate. In the Hartree-Fock case there will nor-
mally be one solution &„ of (E2), although Newns'
has shown that if V, is large and &, lies near the
center of the band, then (31) yields two solutions,
both at energies far from the band center. In gen-
eral, (33) indicates that Zs, Zz are slowly vary-
ing and G (v = e„) is well described by the Lorentz-
ian (E3a), with I' = I'0= v V, p„(e„).

In the case U/p V, 1 the adsorbate may ex-
hibit magnetic behavior, i. e. , have a net spin above
the Kondo temperature. G„(~)will then have two
peaks. For example, in the limit V,~-O, the ad-
sorbate is free and G„(~) is the sum of two 5 func-
tions, one at energy &, and the other at energy &,+ U.
No rigorous theory exists in this regime, and we

shall make use of an approximate theory developed

by Appelbaum and Penn. ' Their solution for G~, (~)
takes a particularly simple form in the case that
the metal conduction bands is described by a Lorentz-
ian density of states, is half-filled, and U=2&„,
where the zero of energy is taken to be the Fermi
level. In other words, there are two levels when

V, is zero, one below the Fermi energy at &„, the
other above the Fermi level at e„+ U, with the Fer-
mi level midway between the two levels. They found

G.'.(~)= r,-'(~'+ 8+ 3,')/[(~ —3 —e,')'+ (4~)'],
(E5a)

where

Thus, under fairly general conditions the peak or
peaks in G„, will have Lorentzian shapes with widths
I' given by (E3b).

We now distinguish two regimes according to
whether U/p„V, „is greater or less than one. In
the case U/p V,

' « I, the adsorbate does not exhibit
magnetic behavior, and the Hartree-Fock treat-
ment of the Coulomb interaction is valid. In this
case Anderson has shown
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/r. . .= gr, ,

r, = v V.'.p„(0) .

(E5b)

(E5c)

(Es)

(b) In the limit U/I'0«1 it reproduces the Har-

The approximate G~, given by (E5) has the following
properties:

(a) In the limit V, = 0 it reproduces the correct
atomic density of states:

tree-Fock approximation to G„((o) for energies &u

near the resonance (which is located at e„= p, = 0).
(c) For e~= t~/ra= U/2I'0& 1. 95, the quantity G„

exhibits one peak. If &„«1, the peak is Lorentzian
and has width I'0 (1+ —, i~).

(d) For U/2I'o &1.95, the quantity G„exhibits
two peaks; this is the magnetic limit. For U/I'0
»1, the peaks are separated by an energy U, and
they have Lorentzian shapes of width 2&p.

Thus, in the large Coulomb interaction limit as
well as in the weak interaction limit, we expect a
Lorentzian peak or peaks in G„(~).
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The paraelectric resonance of KCl: Li was studied in the presence of uniaxial stress applied
along the crystallographic [110]direction. The results are interpreted in terms of the simple
tunneling model proposed by Gomez, Bowen, and Krumhansl and yield a coupling coefficient
for coupling to T2~ symmetry strain of —0. 185+0.03 GHz/bar.

VOLUME 5, NUMBER 3 1 FEBRUARY 1972

Stress Effects in the Paraelectric Resonance of KC1: Li~

I. INTRODUCTION

KCl, doped in the 1-100 ppm molecular range
with lithium, has been extensively studied using
paraelectric resonance, thermal conductivity, spe-
cific heat, electrocaloric effect, acoustic attenua-
tion, dielectric constant, and NMR. '

The singly ionized lithium goes in substitutionally
for a potassium, but sits off-center in a crystal-
fieM potential characterized by minima in the eight
equivalent (111)directions. The eight low-lying
tunnel split levels of this system, having a perma-
nent electric dipole moment of 5. 6 D, couple strong-
ly to an applied electric (both dc and microwave)
field. They also couple strongly to distortions from
cubic symmetry of the cubic host KCl lattice. In

particular, Ta, components of lattice strain are the

dominant ones which produce energy- level shifts
within the eight-level ground-state multiplet. The
nature of this coupling is predicted by a logical
extension of the tunneling model of Gomez, Bowen,
and Krumhansl (GBK), ~ assuming equal zero-field
tunnel splittings.

The object of this work was to determine whether
the GBK model is adequate to describe the stress
effects and to measure the magnitude and sign of
this coupling between the T„ lattice strain and the
tunneling levels of the ground-state multiplet. %e
used paraelectric resonance measurements at 4. 2
and 1.9 'K and at 56 and 64 GHz in the presence of
an, applied uniaxial stress.

II. SAMPLE PREPARATION

KCl doped in the melt with Li was grown using


