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The electric and polarization fields are solved for the case of a point charge near the inter-
face between a dielectric and a vacuum. The solution is obtained microscopically from the
point-dipole model. By knowing the position and polarizability of all of the ions, one can show
how to derive the results of classical image-charge theory. Of interest is the notable contribu-
tion of surface polaritons to the image charge. They give rise to the entire polarization field
if the source charge is located outside of the dielectric.

I. INTRODUCTION

If a source charge is situated near the interface
between two insulating dielectrics, or a dielectric
and a vacuum, the resulting potential field may be
represented by a set of image charges. This wel. l-
known result follows immediately from the solu-
tion of the macroscopic Maxwell's equations. In
this article we are going to derive the same results
from a microscopic point of view. We confine our
discussion to the interface between a semiinfinite
crystal and the vacuum. The point-dipole model
is adopted for the crystal: The local electric field
acting at an atomic site induces polarization which
can be represented as a point dipole centered on
the atomic site. This microscopic viewpoint has
already been applied to investigating potential fields
from impurity charges inside the bulk of the mater-
ial. 1,2

The new result which emerges from the present
investigation is the central importance of surface
polarization modes in determining the image
charges. It is now known that there are three types
of long-wavelength. normal modes of polarization
in a dielectric. For cubic dielectrics, to which
we limit our discussion, these are the longitudinal
and two transverse modes which extend throughout
the bulk of the solid. The third type are the sur-
face modes. The presence of a fixed, static source
(or impurity) charge must induce in the dielectric
a static polarization response. This polarization
field can be represented as some linear combina-
tion of the polarization normal modes of the di-
electric.

If the source charge is placed outside of the di-
electric, in the vacuum region, then the surface
polarization modes are the only one of the three
types of normal modes which are induced. If the
source charge is placed inside of the dielectric,
but still near the surface, then both surface and
longitudinal modes of polarization are induced.
Here the surface modes again produce a polariza-

tion field equivalent to an image charge. The
longitudinal modes provide the screening of the
direct interaction from the source term, as they
do throughout the bulk of the solid. In addition,
the longitudinal modes also provide the screening
of the image-charge field.

These results are only rigorously true in the
limit of long-wavelength polarization modes ~ But
it is these long-wavelength modes which produce
the results equivalent to the image-charge theory
of classical electrostatics. As was also true for
the case of potentials in an infinite solid, there
are additional interaction terms of higher multi-
poles. These become important in the present
case when the source charge is within a few atomic
distances of the surface.

In Sec. II, we discuss the case of a fixed impurity
which is static in time. This problem has neither
time dependence nor frequency dependence. Be-
cause of this, the modes which we find convenient
to use are those which also have no frequency de-
pendence (dispersion). These are the polariza-
tion modes calculated by ignoring retardation.
This is a significant distinction, since retarda-
tion affects the long-wavelength modes which are
of greatest concern in the present problem. So
our use of the term "surface mode" refers to those
modes calculated in the absence of retardation.
This does not mean that our results are in error,
nor that we are neglecting retardation. Indeed, we
have emphasized that there is no retardation in
our static problem. Essentially we are solving a
mathematical problem in which it is convenient to
express the solution in terms of eigenstates (nor-
mal modes) of a certain operator. It just turns out
that the eigenstates which are most convenient for
our problem do not correspond to the physical set
of retarded eigenstates.

II. THEORY OF IMAGE CHARGES

In Ref. 1, it was shown that a charge of q located
at R& produces a potential 4 at another point Rg
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given by the equation

4 (Rz, R,) = q
i

—o.' Q E~ (Rz() E~(Hgg)
)(R12

(2 1)

+n'Z E (R„„)c'„.(H„.) R.(R„.)- ~ .),
Z, (H) =E,/H',

q, .(5) = (&,„-3ft, E„/E')/E',

Z [&..&; +~(~.)q.. (&;)]+.(&,;n)=o
feV

Then we simply get

(2. I)

(2. 8)

where R; are the sites of the polarizable ions. For
simplicity, we have assumed that all of the ions
have the same isotropic polarizability 0.. Equation
(2. 1) is also valid for the present problem, as it
is valid for any number of polarizable ions in any
arrangement. For the surface problem it is more
convenient to rewrite (2. 1) in another form. De-
fine 5'" (R&) as the polarization of ion 8& which
is induced by the charge at H, . Then we get

o (i„H,) = —Z z„(K„)a'„"(5,}), (2. 2)

where the polarization obeys the equation

Z [~., ~, +~(0)c„„(H,,)] J","(H,)

=q ~(o) z, (R„) (2.3)

The central. mathematical problem is to solve Eq.
(2. 3) and obtain the polarization P i)(R&). In prin-
ciple, this can be accomplished by defining a
Green's function G~„(R„R;)which obeys an equa-
tion

[&„„&„+a(0)C„„(H„)]G„,(E„E,) =&„&„,

(2.4)
and we get

@(g )() 1
( ) g (Ri n}&(Rg n))

E~z n 1 —o.(0)/o, ((u„)

~(H„n}=g E„(H„)+".(H„n) .
In the present problem, we let z be the variable

normal to the surface, and p be the position vector
parallel to the surface. The surface extends to
infinity in the p direction, with the normal modes
as plane waves in this direction. Define a two-
dimensional wave vector ~ which is confined to
the Brillouin zone,

+„(5,;n)=e'"''~ y„(l; Z, m),
where m are the additional quantum numbers
needed to describe the various possible eigen-
states. Since we know the form of the eigenmodes
in the transverse direction, we can sum over the
atom positions in these directions. In order to
clarify the physics, we simplify the algebra as
much as possible and assume that we have a mono-
atomic cubic lattice-sc, fcc, or bcc-where the
z axis is the [100]direction. Then each atom po-
sition can be designated as

~„'" (H, ) =q ~(0) g G„,(H„H,) Z, (H„), (2. 5) R) ——(Pq+ l po)+ z la,

c (5„f,)=q —~(0) Zz, (K„) G„„(E,, E,)Ru

x z„(a,)) . (3. s)

We have previously solved these equations in the
case of the potential from an impurity charge in
an infinite solid, neglecting surface effects. '
Then the Green's function depended only upon the
difference of its spatial variables G~„(R,—R,).
In that case the problem could be easily solved by
Fourier transforming all of the equations.

The Fourier-transform technique is less use-
ful in surface problems. Inste"d, we note that
the Green's function may be expressed as a sum
over normal modes. Let us call &„ the eigen-
frequencies and 4'„(R,; n) the eigenfunctions of

where l denotes the number of the lattice plane
counting inward from the surface of the dielectric,
a is the separation between planes, and po is the
constant displacement in going from plane to plane.
So we get

q „(R,; n) = e'"' "~'"0)y„(l; ~, m) . (2. 9)

So the problem reduces to finding the different
modes and their z dependencies. The equations
we have to solve become

0=2
(

'",",+ T„(ir, ( —I')) y(i;ic, m),„
(2. Io)

A(H„T(, m) = Q E„(Tc,l; R&) y*„(l;Tc,m),

(2. 11)
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4~~
4 (R1, R )= q —(4sn(0))
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where

x d J( A(Rs,. )(, m)A*(R» J(, m)
(2)/)' 1 —n(0)/n((u„)

(2. 12)

n= n/Vp,

( l lg) ~ Q -(s (P P, +.-t 1')P-SJ C, (R R )
7l pgg

(2. 13)

equation which results if only the long-range inter-
action term is retained was solved by Fuchs and
Kliewer. They found surface modes. Apparently
no one has analytically solved the case where long-
range and short-range interactions are both in-
cluded.

We have not been able to obtain an exact analyti-
cal solution for the combined case of short-range
and long-range interactions. We can obtain an
accurate solution in the limit of long wavelength by
applying perturbation theory. In this approach, we
divide the short-range interaction term into two
parts

TsR (I lI) TsR (P) (I it) + TsR(1) (I II)

( I R ) ~ Q ls'(P +IPp)
4m-') B]~

(2. 14) where

(2. 21)

T,„(J(, l —l') = T,'"„+T,"„",

T,„"(l—l') = v(l —l') d„„,

T„„"(J(,l —l') = —,
' se "' [)7', )l'„8(l —l')

(2. iS)

(2. i6)

s= va,

+q„q„8(l' —l)), (2. 17)

))', =(J(/)(+iz), , d„„=(5,„—3s, s„) .
The long-range interaction term is zero if l = l'.
The parameters v(l —l') are described in Ref. 9.
They provide the local field correction in cubic
dielectrics, and obey the sum rule

It is shown in the Appendix that the effective inter-
action term at long wavelength has a short-range
and long-range interaction term

T„„"'(l—l') = d„„[S6 J J. + v(l —l')] . (2. 22)

First Eq. (2. 10) is solved using the interaction

(2. 23)y{0) ySR(0) T LR
glP PP PP

Then the interaction T,„"' ' is treated as a pertur-
bation, and an improved solution can be obtained
by first-order perturbation theory. This seems
to work quite well, partly because the coefficients
v(l) are quite small for ls(:0. In the perturbation
scheme, the successive approximations produce
an improved value to the "eigenvalue" I/4sn.

Now Eq. (2. 10), with the interaction (2. 23), is
precisely the equation solved by Fuchs and
Kliewer. The results obtained, in the limit of a
semi-infinite solid, for surface modes are

—-'= v(O)+2 Q v(l) . (2. 18)

However, they rapidly become very small as l —l'
increases in magnitude. The polarization vectors
obey the simple multiplication rules

Q. q„' ~', = o=g.q„~-. ,

(2. 19)

I/4sn((p, ) = —~,
y(s) . +

( )1/S -sl

and for longitudinal modes are

1/4))n((ds) = —s

y„' '= (a/sos)1/s (i)(„sin[)'s, a(l+ —,')]

(2. 24a)

(2. 24b)

(2. 24c)

The electric field term at long wavelength is

( & I R )
~ e-is'P1 -sl la s11-

x [)I'„8(la —s1)+)I, 8(s) —la)] . (2. 20)

The solution to Eq. (2. 10) has been discussed ex-
tensively in the literature. For z- 0 there is only
the short-range interaction (2. 16). Mahan and
Obermair discussed the normal modes in this case,
and showed that there are no surface modes. For
the more complicated case of a rocksalt lattice,
Tong and Maradudin showed that surface modes do
exist from the short-range interaction. '~ The

+ z„)'s,cos[k, a(l+-,')]j, (2. 24d)

with k = I(: +k,. There is only one surface mode
for each value of (d, which satisfies (2. 24a), but
there is a continuum of longitudinal modes, one for
each value of k,. There are also two transverse
modes of polarization in the bulk. These have an
eigenvalue 1/4sn(p)r) = —,'. These do not enter into
the present problem, since the polarization induced

by the source charge does not contain any trans-
verse mode components.

The application of first-order perturbation theory
to the surface modes produces the improved eigen-
value



742 G. D. MAHAN

= ——,
' + Q y„"'(«, l)* T„„")(1 —l') y„"'(», l')

4m o(

+s6+O(s ) k

where

Similarly, the value of A' ' from the longitudinal
modes is

a e i"'1 e"'1(L)A (R~

6= Q lv(l) .
1=1

The parameter 5 is easily calculated for our three
lattices9:

Lattice
sc

bcc
fcc

5

0.01307
—0. 070 53
—0. 03885

A(s)(R )

(2. 26)

which provides a contribution to the potential field
in (2. 12) of

c, (s)

At long wavelengths s= I(a is very small, so the
correction term in (2. 26) may be neglected So. the
short-range coupling between planes of polarization
has little effect upon the long-range interactions.
The short-range coupling determines how the eigen-
states behave in the one or two surface planes where
they match to the outside vacuum. We see that the
precise nature of this matching has little effect
upon the eigenfrequencies. This is reasonable,
since at long wavelength the surface modes extend
deeply into the sample, and extend over many sur-
face layers. A similar result was obtained in Ref.
9, where it was shown the precise matching of the
one or two surface layers has little effect upon the
ordinary optical properties.

The solutions (2. 24) are the basis for obtaining
the image-charge results. First we will do the
case where both the source charge at R1 and the
point Rz are outside of the surface (zq&0, zz&0).
Then the electric field terms in 2. 20 have the po-
larization rl'„. The value of A"' in (2. 11) from the
surface modes is

x Ze "(k,cos[k~(l+-,')] —«sin[k, a(l+-,')]].
1=0

By evaluating the sum over E, one finds that this
term is zero in the long-wavelength limit. So the
longitudinal modes contribute nothing to the polar-
ization field when the source charge is outside of
the dielectric. The total polarization field is pro-
vided by the surface modes.

The other case of interest is when the source
charge is located inside the dielectric. The sim-
plest case to consider is when the source charge is
at an interstitial site, so that it does not disturb the
dielectric properties of the host lattice. We shall
assume that the source charge is located between
the I and I, + 1 lattice planes of atoms. The con-
tribution of the surface mode is

(R») —ia (s) ~z e '"' sl e"sy
l= L+1

= [ia/2(s)' '] e '"') e "'& .
By comparing with (2. 26) we see that, regardless
of whether z, is inside or outside of the dielectric,
we get that

A"'(R„«)= [ia/2(s)' ] e '"' '& e

So the surface modes always contribute a term to
the potential of the form

k"=-k[I, () [(ai-aa)'+(lail a laal)*["'.

The longitudinal modes only contribute if the source
charge is inside of the dielectric interface. In this
case we find that

g3/ 2 e-i" ~ P1 I
l =0

x [k, cos(k, a(l + —,')) + «sin(k, a(l + —,'))] —e"'&

x Q a "[k,aaa(k, a()+ —')) —a'aia(k, a(l+ —
)))) .

l =L+1

Solving the integral gives

Both terms contribute equally at long wavelength,

A' '(R„«, k.)=(a/mk')' 'e ' ') sin(k, z, ),

and the contribution to the potential is

where the distance from the image charge is
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Solving the integrals gives

III. DISCUSSION OF RETARDATION

The previous discussion was for a static charge,
fixed in space. The important equation to be solved
is (2. 10), whose eigenstates are the polarization
modes calculated in the absence of retardation.

The actual eigenstates of the crystal are those
calculated including the influence of retardation.
These modes have been calculated by Kliewer and
Fuchs. ' Yet even if one solves an image-charge
problem which contains retardation, one does not
seem to use the actual retarded polariton modes as
the useful eigenstates.

For example, consider the problem of a source
charge fixed in space at R„but whose charge os-
cillates with a time dependence e '"'. This problem
may be solved, as we have shown before, '

by sim-
ply replacing the instantaneous dipole interaction
in (2. V) by the retarded dipole interaction. The
eigenstates of this new operator are the ones which
are used in the Green's function to solve (2. 6). The
solution proceeds just as in the instantaneous case.
For example, the eigenvalue and eigenfunction of
the surface mode are

1/4mo. (~,) = ——,
' + 0'/2(2~'c'- n'),

(&&)1/2 + &-rat

(&2 f12/ 2)l/2

m' = z /x+iz .

(3.1)

The important aspect of (3. 1) is that one now has a
surface mode frequency (d, determined as a function
of Tc and Q.

These eigenstates (3.1) are not the retarded po-
lariton surface states. The polariton surface states
are instead given by solving (3.1) after setting both
frequencies to be equal

Combining these contributions provides the correct
macroscopic result

(I.) (s) g 1 6 —1 1
C =q/Rid+4' +C

e R & 1 R'
12 + 12

it requires only simple algebra to show that (3. 2)
is equivalent to (3 3)

IV. MANYASCILLATOR SOLUTION

The discussion of Secs. I-III treated the surface
mode as if it were a single eigenstate. However,
in general the polarizability o.'(e) is a sum of many
different oscillators

(4. 1)

from different exciton and phonon modes. In the
absence of damping, each of these oscillators has
a corresponding surface mode at a frequency deter-
mined by (2. 24a). If we call Eo the zero-frequency
dielectric constant, then the image charge

is really obtained by summing up the contribution
from all of these surface modes. There remains,
then, the question of what fraction of the image
charge is contributed by each of the oscillator sur-
face states.

That question may be answered in the following
way. Let us assume that each of the oscillators in
(4. 1) are sufficiently separated in frequency that
the dielectric function settles down to a "constant"
value between each oscillators. That is, a plot of
&(&u) vs ~ would show dispersive regions about each
oscillator frequency, and constant regions in be-
tween. Call E& the constant value in the frequency
region above the oscillator labeled &&. So &p is the
static dielectric constant, E, is the value above the
first oscillator ~„etc. Then each surface oscilla-
tor contributes to the image charge the amount

~~, -1 ~~ —1—Q'
E ~1+1 &g+1

For example, in an alkali-halide crystal the dielec-
tric function at low frequencies can be written as

o-
&(&) =& + 2i a1 —co /(dgo

where the second term is the contribution from
optical phonons. One can show that the surface
optical phonon contributes to the image charge the
amount

1/47ltX((d3) = —'6 + (d ~/2(2K C —(d ~). (3.2) Ep+1 & +1

This definition is equivalent to the more convention-
al definition, as for example given by Economou

while the remaining surface modes contribute

rE ((u,)/[~' —e (ro, ) (u', /c']'/' = —1.

By using the definition

E(&u) = 1+47/o. (&u)/(1 —
3 mn(~)),

Similarly, each oscillator also contributes a longi-
tudinal mode, and each of these modes contribute
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to the net screening function.

APPENDIX: LATTICE SUMS

Here we will evaluate the lattice sums in (2. 13),
(2. 14), and (3.1). For this we use the method of
planewise summation. For the static case we start
with the identity which is valid for z4 0":

e-i& (Pg+ lpp+ p)

f( ~p) 1 Q et@' ((Pp P-l G IPI

(sw p

This is a very short-range function of z. If z, is
outside of the crystal, and more than a lattice con-
stant away from the surface, this term may be
neglected. If z, is inside the dielectric, but sym-
metrically located between lattice planes, this term
still contributes nothing because of the cancellation
for terms z] ) la by those with zy( la.

The result for T~„ is obtained in a similar way
from (Al):

T,(tt, i —it )

Vp
eiG' (p+ l pp) -glgl

(A1) e' ''
U(p, al —al'+z, i —i')

where g= T('+6 and p is an arbitrary vector in the
plane parallel to the surface. The reciprocal-lat-
tice vectors G are for the two-dimensional plane of
atoms, where A = v(t/a is the area of the unit cell.

The result (2. 14) is simply obtained from [R
=(z, p)]

Z, (t(, l, R)= „8R~
e '"' ' U(- p, z —«, f)

1 -i(( ~ p 5 iG ~ (tp(t pt -gl-tpip=+ —,a e ~oe
x [t'g, +gz„sgn(z —«)]/g.

The most important term is G=0, which provides
the result listed in (2. 20). This provides the long-
range part of E,. We have omitted a short-range
part of E~ which derives from the terms with G 4 O.

In the limit of I('-0, this is

gSR(0 i R) (( it) e-tp ~ p 5~ eiG (tPO p) e-glp-tp I

G&p

x [iG,/G + z, sgn(z —«)] .

For the three cubic lattices, the term G, is zero
because of the cancellation of the terms + G. So we

only get a contribution in the z direction:

~
~eiG Ppl -g ll-l' I

[ig„—z~ sgn(/ —l')]

x [ig „—z„g sgn(l —l')].

8 i 5 (p+l pp) e-r ls I

ape e
2 0

x= [(p, +lp, + p)2+z2]'~2,

[
2 g2/c2]1/2

Then, for example, the retarded dipole-dipole in-
teraction is given by

The long-range term (2. 17) comes from the G= 0
term in the summation. The short-range term
comes from the other terms with 64 0.

It is worth noting that the lattice sums are done
the same way for a retarded interactions. First
consider the potential

y - inc ~ (P&+ tP p+P ) i (0/c)x
V(p, z, l, 0) = —' Z

4w p x

E (0, f, R)=+e '"'' z, f(~z —«~, p) sgn(z —«), x [e
'" ' ' V(p, l —i' + z, l —l', 0)]it (t .
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