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Josephson Current Flow in Pure Superconducting-Normal-Superconducting Junctions
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It is shown that the Josephson current in a pure superconducting-normal-superconducting
{SNS) sandwich with normal layer thickness large compared with the coherence distance can
be calculated easily from the quasiparticle spectrum by use of Galilean invariance. The re-
sults agree with Ishii at T =0 K and with an expression of Kulik for the bound-state contribu-
tion, but we do not find a larger contribution from states with E near as suggested by
Kulik. The expected current decreases very rapidly with increase in temperature so that it
would be necessary to go to very low temperatures to observe the effect.

2mv, (g) = h gradx = hg/2d,
3! 3

+et f ~E/ 7l

(2)

which differs only slightly from the usual expres-
sion for the electron density, n, = k~/sw . Thus,
the current may be regarded as arising from a
superfluid velocity given by the gradient of the
phase.

Kulik and Ishii both used a model in which the
effective masses and Fermi velocities are the same
in both the superconductors and in the normal
metal; the only difference is that the interaction
constant and thus the pair potential vanishes in the
normal region. For simplicity, they assume 6
= &0 for Iz l & d and ~= 0 for )g I & d, as illustrated
in Fig. 2. We adopt the same model.

The model used is an idealized one in that effects
of the magnetic field produced by the currents are
ignored so that the phase varies only in the direc-
tion normal to the junction. This situation would be

By means of the Josephson effect, supercurrents
can flow between two superconductors separated
by a normal metal in a superconducting-normal-
superconducting (SNS) sandwich. We consider the
case where the normal metal is pure and the thick-
ness of 2d is much larger than the coherence dis-
tance $0, or 2d» $0. This problem has been treated
recently at T= 0 K by Ishii, who revised an earlier
calculation of Kulik so as to apply at the absolute
zero. Ishii, who followed Kulik in calculating the
Josephson current Qow by a Green's-function meth-
od, found a surprisingly simple result. At T=O K,
the current density J is a piece-wise periodic func-
tion of the phase difference P. In each periodic
region, J varies linearly with p and there are dis-
continuous jumps when P is an odd multiple of v,
as illustrated in Fig. l.

For I P I & v, he found that in the limit 2d» (0
the current density may be written

J(y) = n.„ev, (y), (I)
where

difficult to attain in practice, for the area of the
junction would have to be extremely small. Furth-
er, scattering of electrons is neglected except as
required to bring about an equilibrium quasiparticle
distribution. Nevertheless, it is important to un-
derstand physically the nature of the supercurrent
flow for such an ideal problem without complica-
tions. More realistic geometries can be treated
if desired.

We show that the supercurrent flow can be derived
easily at all temperatures by Galilean invariance
arguments. The current density decreases ex-
tremely rapidly with increasing temperature and
soon attains the Josephson form

J= J& sing .
This form was derived by Kulik and has been as-
sumed in a recent review of the theory of the cur-
rent-voltage characteristics of SNS junctions by
Waldram, Pippard, and Clarke. 3 They discuss the
alternating currents that flow when a voltage ap-
pears across the junction as well as effects of
magnetic fields.

Experimental data reported so far have been on
sandwiches in which there is considerable impurity
scattering in the normal region. Clarke' has re-
ported on experiments on lea&-copper-lead sand-
wiches in which the scattering free path is much
less than the thickness of the normal layer. The
theory of such junctions with use of the Ginzburg-
Landau theory has been given by Baratoff, Black-
burn, and Schwartz. '

In pure junctions, one may regard the flow as
arising from a velocity displacement of the entire
SNS system of electrons by v,. If the SN and NS
boundaries are coupled with the electrons, they
would also move, but apparently such motion of the
boundaries does not affect the current, since no
boundary motion was assumed in Ishii's calcula-
tion. If one allows the boundaries to move with the
electrons the calculation can be carried out very
simply in the moving frame by Galilean invariance.
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phase difference

FIG. 1. Periodic variation of supercurrent density with
phase difference at T =O'K.

The parameter a, which gives the exponential de-
cay in the superconducting regions, is then

n = (mb, o/kk, z) sin@0 . (10)

where k'= k~ in all cases. In terms of a parameter.
gp, defined such that 0&go&m, the energy is

E = 5 k~ q/2m = &o cosy 0 .2

for z&d,
1 ~

=A P ', , 0. e x[pn(z+d)+ik r]

(sb)

for z & —d, (Bc)

Further, it is easy to calculate the current density
at finite temperatures. We show here that the cur-
rent density decreases rapidly at finite tempera-
tures and becomes very small when k~T becomes
comparable to or larger than the spacing between
the bound quasiparticle states in the barrier region.

The nature of the quasiparticle states in the N
region of an SNS sandwich has been discussed by
Andreev, McMillan, Kummel, Kulik, and oth-
ers. A schematic diagram of the pair potential is
given in Fig. 2. We are interested in states near
the Fermi surface E~. For a given k„, k„paral-
lel to the barrier, there is a k~ such that

(k'/2m) (k'„+k'„+k' ) =Z, . (5)

If we take k, =k,z+ ~q, with q small, the energy
relative to the Fermi energy E~ is

E=h k,g q/2m .
Terms of order q have been neglected.

Reflection at a pair-potential boundary changes
a particle into a hole of the same quasiparticle en-
ergy. The hole state corresponds to q- —q and is
below the Fermi surface. The quasiparticle eigen-
states are linear combinations of particle and hole
states with equal probabilities. Both particle and
hole give a current in the same direction; the net
quasiparticle current changes to a supercurrent at
the NS boundary.

The allowed values of q are chosen so as to satis-
fy the boundary conditions at z = s d. If ~ were in-
finite, the allowed q values would be equally spaced
with a separation 5q = w/d, or

q = (n+ ,') (w/d) . —

More generally, with 4=4p for )zl &d and 6=0
for lz l & d, the quasiparticle wave functions for E
& Ao in the Nambu notation are

("
~

/ P[ i(q~+ "&)] e&& for d g=A
[

.
]

fo —d«d
I (8a)

. ~ exp[ - n(z- d)+ i r)
(u l exp[-,'ivPo] ~

~v) exp —2igo j

Values of gp and go may differ f»m go and -gp
by integral multiples of 2m. Matching solutions at
the boundaries (g =+ d) gives

'gp='gp+2gn = qd+'g)[ q

go = —qp+ 2mn = —qd+ qq,

(11a)

(11b)

where n' and n are integers. This implies that
g& may be either zero or g. For q, =0, we have
n'=n =n& and

qd=qo+2mr; (gg=o) .
For g~=7I, we have n'=n +1=nq and

(12a)

0

En
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FIG. 2. Model for an SNS sandwich with abrupt pair-
potential barriers at z = —d and +d. There is an array
of bound quasiparticle states in the normal region„each
consisting of equal probabilities of particle and hole
states. A particle is reflected into a hole at a pair-po-
tential boundary, with no change in current.

qd=gp+ w(28& 1) (Q&= ~) (12b)

In general, qd =go+ &n. Note that for k, positive,
E is positive for q positive. A complete set of
states is obtained by taking those with E positive.
This requires that for k,& positive, n must be a
positive integer. There will be a similar set of
excitations for k, negative.

To see that we have the correct density of states,
consider the case of a normal metal with periodic
boundary conditions at z = —d and g =+ d, so that
the period is 2d. Again, we may consider k, posi-
tive and k, negative as separate states. For k,
positive, there are eigenvalues for k, = k,~+ ~ q,
where
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Q'Cf= 277n p
(13)

but now n may be positive or negative for states
above and below the Fermi energy. The allowed
states are twice as far apart as those confined
by the pair-potential boundaries, but particles
above and holes below the Fermi surface are
counted as separate states, so that the net density
of states is the same.

We are interested in the case where d» $p, so
that there are many levels with E & ~0. The lowest
levels are evenly spaced. When E/hp is small, qp
is not far from ~g, and we may write

If we ignore the small dependence of d* on k~, this
will occur at the same v, for all k,z and corre-
sponds to a phase difference of g. The quasipar-
ticle sum over k„and k„can then be carried out

easily, to obtain

t
py

~ p f(0) 2elf (0)
(kp —kp)~lp k dk2m'* 4~md~

= —2f(0) n, ev, ,

where kP = kP„+kP and n, = kz~/3mP. Since f (0) = p, the
quasiparticle current just cancels the current
n~, 8Vs'.

(14) J= n, ev, -n, ev, = 0 . (24)

where no is small, and

cos'qp= sinnp = np= k k,y q/(2mkp)

For a phase difference slightly greater than v, f= 1,
and the current is reversed in sign:

Thus to this approximation the equation for q is J= ne 8Vs 2ne 8Vs —ne 8Vs ~ (26)

qd = q p+ vn = p p —k k,F q/(2mb p) + vn,

where n is an integer, or
qd* = w(n+-,'),

where

d* = d+ k 'k~/(2mb. p)

(16)

(16)

E„=k k,zw(n+ p)/2md*

Consider the case where there is a flow with
velocity v, . The quasiparticles will come into
equilibrium with the 1attice, which is moving at a
relative velocity -v, . One may take this motion
into account by adding a term vP, to E„, where
P, = Ak', +. The probability that the state n is occu-
pied is then f(E„+v, P,), where f is the Fermi
function (1+e ) '.

The current density is n, ev, plus the contribution
from the quasiparticles:

J=n, ev, + g (ep,/2md*) f(E„+v, p,),
where the sum is over all quasiparticle states.
The factor 1/2d takes into account normalization
of the wave functions, including penetration into
the superconducting region. Note that the quasi-
particle current, representing equal contributions
from particles above and holes below the Fermi
surface, is independent of q and depends only on
the momentum P, = hk, ~ at the Fermi surface.

At T= 0 'K, f will be zero until, with increasing
phase difference, V,P„with P, negative, cancels
E„for n=0, or

pip qp/dm +v p = 0,
giving

(21)

v.=&I qp I/2m= vk/4md*.

takes into account the penetration of the quasiparti-
cle wave functions into the superconducting regions.
The quasiparticle energy is

As the phase difference increases beyond z, the
current again will increase linearly until the next
quasiparticle level (n = 1), corresponding to P = 3w,

is reached, when there will be another reversal in
sign. In this way we get at T=O K the periodic
structure of Ishii shown in Fig. I.

When P =kpT becomes comparable with the
spacing between levels, it is necessary to sum over
the partially occupied levels to obtain the current
density. Rewriting the sum over states for which

p, is negative in terms of a sum over p, positive,
we have

x= vpk p,/(2md*),

y= v, (4md*/vt),

8 rt' xz=n, ev, +
vpI p» ~ exp(x[n+ —,'(1+y)]]+1

(27)

(28)

(29)exp(x[n+-,'(1-y)])+ 1 ' '

If we again ignore the small dependence of d* on

k,~, y is proportional to the phase difference and
is equal to unity for Q=v:

y= y/p.
If we set y= I, the terms in the sum over states
cancel in pairs, leaving only the second term with
n= 0. This gives just the same sum that was eval-
uated earlier:

(30)

J'= n, ev, —
2 Q x= 0 .8
2gPh

(31)

Thus at all temperatures, the current density is a

4= n ev, + —Z 2d'+ [f(E„+v,p ) -f(E„—v,p,)] .e . s m &024+

(26)
The sum is over all quasiparticle states. In terms
of reduced variables,
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2

exp{x[n+-,'(I -y)]]+ I) ' (32)

periodic function of phase and vanishes when the
phase difference is an integral multiple of p.

The sum has been evaluated numerically and
analytically to give the current density as a func-
tion of the reduced variables x and y. Let us define

2

(exp]e[e+ —,'(key)]]+ 1

-3 -2g2=24)/ f (yx), ) e ' "dy .
Vp

(39)

(40)

If we insert the expression (35) for J„, we find

If yz = I/xz is not too small, most of the contribu-
tion to the integral will come from values of close
to y), , so that one may replace (yx), ) by unity in
the integrand. In this limit, the integral is ap-
proximately

-22J /J„= (12/p) e

Note that g(x, 1)= 0 for all x. The current density
is obtained by summing over the k„, k, values,
which may be done by integrating over x from zero
to the maximum value

J,= (Snye/2md +) e-"" "sr/" "~

(6 k /2 de]e) 4(p / (p) (ll pr / pp)
FBI 8 (41)

x„=vP@P,/(2md+) .

It may be seen by a short calculation that

pJ=J„—p x g(x, y) dx,

(33)

(34)

J = Jq (x),) sinpy . (36)

A plot of Jq(x),)/J„as a function of xz is given in
Fig. 4. To give a typical example, take d* = 20)p
so that

x, =(p'/40) p~, -O. 43 (T,/T) (37)

when T= 0. 2 T„xz-2.15, and J~/J„=10 P.

An approximate expression for g(x, y), valid when
x is not too large, may be obtained by expanding the
Fermi functions in terms of the Matsubara fre-
quencies p) = (2)/+1) wkeT. The sum over n may
then be carried out. When T«T„ the main con-
tribution comes from the poles for v = 0, co = + gk& T.
A short calculation gives

g(x, y) = (Sv/x) e ' /" sinvy . (38)

For y= —„ this limiting expression gives very good
results for x as large as 2p, where it reaches a
maximum of 4/ve = 0. 458 and then decreases for
larger x. The correct expression is equal to about
0. 486 for this value of x and then continues to in-
crease to a limiting value of 0. 5 as x-~.

If we use (38), the current density is of the
Josephson form (36), with J~ calculated from (34),

J,/J„= (3/x) ) f "" Swxe-" '*dx,

where J is the maximum current density for T=O
and y= 1:

J =n, ph'e/4md* .
For n, =10 /cmP and d~ =10 cm, J„=lo A/cm,
a very large value.

The current density decreases very rapidly with
increasing temperature, and becomes quite small
when x~ is of the order of unity or less. For x„
&-5, J is approximately of the Josephson form

or

/). p/ks T & 2p'/x), -

ksT&- b, p((()/2d*)

(42)

(43)

Another way to state this condition is to require
that

x), &)/ ($p/2d*) / (44)

Thus for 2d "/$p of the order of 100, x/, would have
to be of the order of unity or larger. This implies
ke T less than the order of ~p b, p, or T/T, & 0. 1.

Numerical calculations have been carried out for
larger x when the approximations leading to (40)

Equation (41) is identical with an expression derived
by Kulik for the contribution from the bound quasi-
particle states. It arises, as he says, from the
quantization of the levels in the normal region. The
decrease in Josephson current with increase in
temperature is extremely rapid. For example,
for x~ = 1, corresponding to a spacing between the
bound states equal to kp T, J~/J is about 6. 7 x 10 P.

Kulik finds another contribution from states near
b p varying with temperature as exp( —2pd*keT/
hvt, ), which could be considerably larger than (41).
However, we do not find this term and believe that
a more careful analysis of the bound and scattering
states is required to obtain the current when (41) is
no longer valid. Great care must be taken, since
the net current is a very small difference between
large terms.

More generally, one would have a quasiparticle
sum corresponding to (26) to evaluate the current
density in the normal region, but it would be neces-
sary to use a more accurate expression than (19)
for the bound states and it would be necessary to
sum over the scattering states with E & ao. One
can estimate the range of validity of the approxima-
tions leading to (20) and (38). The correction to
the sum corresponding to g(x, y) is at most of
order e p/"e . For (40) to be valid, this term
must be small compared with the contribution to
the bound states given by (38). This requires that
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I.G

0.8

0.6

be necessary to go to temperatures very small
compared with T,. The currents decrease very
rapidly with increase in temperature, but decrease
much more slowly with increase in thickness of the
normal layer than would be exyected by the proxim-
ity effect. The effect is due to quantization of the
quasiparticle states in the normal region.

Note addedin Proof. In order to estimate the
errors involved in the use of (32), we have evaluated
numerically a more exact expression for g(x, y).
The bound states contribute

d 2
d* . exp[xq(n+v 'go+-'yq)]a~(xi yi)=»+&—

2

exP[s, (n+r 'qo —'*yi)]) ' (46)

OA where x~ and y~ differ from x and y [Eqs. (2V) and

(28)] in that d* is replaced by d:

xg= wPkp, /2md, yg= v, 4md/xS', (46)

0.2

and d~ now depends on the energy [E(n) = d Ocosqo]
of the nth level:

d'/d = l+ hp, /2md b,0sinno . (47)

-I
IO

FIG. 3. Current density as a function of phase dif-
ference across an SNS sandwich. Parameter x& is the
ratio of the spacing between bound quasiparticle states
and j'g~T, so that T =O'K corresponds to g&

«2
IO

-3
IO

are no longer valid. In Fig. 3, there is a plot of
J~/J'„vs phase difference for several different val-
ues of x. The limit T=O'K, or x=~, is the linear
piece-wise periodic function. Even for x=100 there
are significant departures for phase differences
near p, and for x= V. 2 one is getting close to the
sinusoidal Josephson form. In Fig. 4, we give a
logarithmic plot of J/J„ for Q = ~v (y= ~), or of J~/
J when the sinusoidal form is valid. The abscissa
is l/xz, which is proportional to T. The rapid de-
crease of current with increasing temperature is
evident.

So far we have neglected impurity scattering. As
long as the scattering is relatively small, the only
effect would be to decrease the current by a factor
equal to the probability that an electron go from one
superconducting region to the other without being
scattered. This apylies to scattering by the NS
boundaries as well as scattering within the N region
itself.

These results indicate that to observe Joseyhson
effects in thick SNS sandwiches (2d» $0) it would

IO

«5
IO

-6
IO

«7
IO

IO
0 080.2 0.4 0.6 I.O

(I~XF)=2d kgT/7r Gogo

FIG. 4. Current density for a phase difference of ~ x
across an SNS sandwich as a function of reduced tem-
perature.
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E(n) = jip~/2m = vhp, n/2md, (48)

and a uniform continuum with a density equal to
that of bulk normal metal.

Numerical calculations were made for wells con-
taining 5, 10, 20, and 40bound levels. Even for
as few as five bound levels, we find that (32) is ac-
curate to within 5% for x& 2. For smaller values
of x (higher temperature), the scattering states
become more important and the current decreases
less rapidly with increasing temperature than in-
dicated in Fig. 4. Errors involved in the use of
(32) are less than 3%%uq for 10 levels and x & 2 and 5/0
for 20 levels and x& 1. No significant errors could
be found for 40 levels and x & 1. Thus the plot
shown in Fig. 4, based on (32) and (38), should be
reasonably accurate for most values of the param-
eters.

APPENDIX: EFFECT OF SCATTERING STATES

As pointed out by Kulik, scattering states with
E & ~0 can contribute to the Josephson current. We
need to find the effective density of states in ener-
gy per unit volume in the normal region as corn-
pared with that in uniform normal metal. It is
necessary to take account of scattering from quasi-
particles to quasiholes at the step-function bounda-
ries of Fig. 2. For k,„&0, one can get a complete
set of states from (i) quasiparticles incident from
the left-hand side, partially reflected at z = —d and
transmitted as quasiparticles in the superconducting
region for z & d, and (ii) quasiholes incident from the
right-hand side, partially reflected at z = d and
transmitted as quasiholes in the region z & —d.

For (i), we have in the left-hand-side region (at
z= —d),

+1 - 0/2 )g2 + +1 (I/2)g2 (Al)

where Aq and 8& are prcpor'; onal to the amplitudes
of the incident and reflected waves and

cosh'q2 +/+ ~ (A2)

The sum is over the discrete number of bound
states.

To (45) we must add the contribution from the
scattering states with E & 4. As shown in the Appen-
dix, the scattering states have resonance energies
peaked when qd is an integral multiple of g. The
levels are sharp when E = b but gradually broaden
to a uniform continuum with increasing energy.
Bounds can be set by taking as limiting cases a set
of discrete levels with energies

In the normal region ( —d & z & d),

In the right-hand-side region (at g =d), we have

-(1/2)q2 ~ (A4)

A common factor e'"' has been surpressed in (Al)-
(A4). The incident wave may be normalized such
that A& is real and

A2g(e"&+e "')=1. (A6)

Matching solutions at z = —d and z = d, we find that
the mean-square amplitude in the normal region is

(A6)

An equivalent expression would be obtained from
quasiholes incident from the right-hand side. Thus
(A6) gives the ratio of the density of states in en-
ergy in the normal region as compared with that in
the superconducting regions.

If we average (A6) over the phase 2qd, we find

27)2 2'Q2

e "2 2 cos2qd+ 8" "2 (A8)

which is equal to unity when averaged over the
phase 2qd.

Note that r is a maximum when 2qd= 2mn (n, an
integer) and a minimum when 2qd= v(2n+ 1). The
maximum

(A9)

corresponds to a resonant scattering condition. '
The resonance is sharp when E = 6 and is reason-
ably narrow when E is close to 4. The spacing be-
tween the resonance levels is approximately the
same as that between the bound states. Thus, the
bound states for E & & go into a series of resonance
levels for E & 6, which gradually broaden into a
uniform continuum.

(eq2 e -qg) 2 (g2 g2) 1/ 2

& (C, ('+ (D, )') =,„, ,„, =tanhq, =

(AV)

which is just the usual ratio between bulk-normal
and superconducting regions. If we divide (A6) by
tanhq» we find that the density in the normal re-
gion is changed by the presence of the superconduct-
ing regions by the factor
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