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An efficient method for computing self-consistent energy bands within the framework of the
linear-combination-of-atomic-orbitals (LCAO) method is applied to Li F. Efficiency of the
method is a result of characteristically small LCAO secular determinants, the ease with which
energy bands may be computed at general points in the Brillouin zone, and a formalism which
expresses iterated-Hamiltonian matrix elements in terms of LCAO integrals computed in the
first step only. A study of the self-consistent procedure is presented, including an investiga-
tion of convergence and accuracy. On the basis of this study it is concluded that self-consis-
tent calculations using small Brillouin-zone samplings of symmetry points to compute charge
densities contain errors as large as 1 eV. Accurate self-consistent energy bands are com-
puted for LiF in the Hartree-Fock-Slater approximation and compared with previous calculations
and experimental data. While an initial linear combination of ionic potentials with an adjust-
able exchange potential yields reasonable agreement with optical data, only a self-consistent
potential produces agreement with both optical and photoemission data. It is suggested that
to obtain reliable spectra, even when using an adjusted exchange potential, it is necessary to
compute optical properties with self-consistent energy bands and wave functions.

I. INTRODUCTION

In the last five years there has been renewed in-
terest in the linear- combination- of- atomic- orbitals

(LCAO) method for obtaining energy bands in solids.
Although it is the oldest method of band calculation, '
poor results from early inappropriate approxima-
tions caused it to fall into disfavor for a few decades.
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The advent of modern high-speed computers, new
mathematical techniques, and increasing interest
in transition metals and their compounds led to a
reexamination of the LCAQ method, both in first
principles ' and pseudopotentials or interpolation'
applications. While other methods of band calcu-
lation exist which yield accurate band energies at
symmetry points in the Brillouin zone for certain
model potentials, the LCAO method places fewer
limitations on the type of crystalline potential and
has the advantage that it can easily produce band
energies at arbitrary points in the zone. The LCAQ
method usually results in a relatively small secu-
lar determinant, but only at the expense of matrix
elements which are more costly to compute. Adop-
tion of Gaussian-type atomic orbitals and techniques
of accelerating convergence of sums ' have made
the LCAQ method competitive in speed with other
standard techniques.

In a previous report Callaway and Fry outlined
a procedure for computing self-consistent energy
bands within the framework of the LCAO method
(referred to in this paper as the SCLCAO method).
In essence it is a method of obtaining SCLCAQ energy
bands without computing new LCAO integrals at
each iteration. This technique for generating self-
consistent energy bands is tested here by applying
it to the simplest alkali-halide, LiF, and it is
found to be quite efficient.

While energy-band theory has progressed during
the last decade, it has not yet reached a state of
development comparable to the self-consistent field
theory of atomic structure. There have been only
a few attempts to make truly self-consistent energy-
band calculations from first principles. The major
efforts in this direction have been with the orthog-
onalized-plane-wave (OPW) method, 'o'" the local
orbital method' and the augmented-plane-wave
method (APW). ' '

In the APW method a muffin-tin potential is usual-
ly employed, so that charge within the atomic
sphere and charge without are treated differently
in the self-consistent scheme. During iterative
cycles charge moves in and out of the sphere, and
it may not be possible to arrive at a stable self-
consistent result. Even when it is possible, the
results obtained would have to be described as self-
consistent within the muffin-tin constraint. While
methods of improving the muffin-tin approximation
exist, ' a self-consistent APW calculation using the
methods is a very ambitious project at present.

The QPW method also makes an artificial divi-
sion between core and valence states. It requires
that a self-consistent cycle consist of two steps,
one for core and one for valence. But this is mere-
ly an inconvenience and presumably places little
or no constraint upon the final self-consistent
charge distribution in the crystal. By adding the

core states to the basis of plane waves instead of
orthogonalizing to them, the self-consistent calcu-
lation would procede more naturally and easily.
In this case, as with the mixed basis used in local-
orbital calculations, the method described in this
paper could be used to obtain self-consistency.

The purpose of this paper is to study the SCLCAO
procedure and examine effects of self-consistency
upon the energy bands and wave functions in LiF.
Some conclusions reached here are unexpected,
but are believed to hold for other crystals as well.
The remainder of this paper is organized as follows.
In Sec. II a brief outline of the SCLCAQ procedure
is presented. Section III describes the initial LCAQ
band structure for LiF, and Sec. IV details the
self- consistent calculations. Section V makes con-
tact with experiment and compares initial and final
energy bands. Section VI contains concluding re-
marks.

II. SELF-CONSISTENT PROCEDURE

In this section the essential equations for the
SCLCAO method are presented. The fundamental
problem in a self-consistent calculation is to de-
termine a new potential after a given stage of band-
structure calculation has been completed. The en-
ergy bands E„(k) and Bloch functions 4'„(k, r) are
obtained from a starting potential and a variational
basis set by simultaneous diagonalization of Hamil-
tonian and overlap matrices. The Bloch solutions
are expressed as

+„(k, r)=+a„,(k)(, (k, r),
where the coefficients a„& are determined by the
diagonalization process and g;(k, r) are linear com-
binations of atomic (or individual) orbitals u; lo-
calized on sites R„:

g;(k, r)= (1/N'~ ) 4 e'"'"~ u, (r- R, ).
The summation is over all N lattice sites R„, and

the coefficients e'"'"' ensure that the basis func-
tions (;(k, r) satisfy Bloch's theorem. For sim-
plicity, the equations in this section are written
for a monatomic lattice. Generalization to poly-
atomic crystals is straightforward.

A. Iterated Coulomb Potential

The iterated potential is computed from the crys-
tal charge density corresponding to the solutions
given by Eq. (1). In the LCAO method employed
here it is the Fourier transform of the crystal po-
tential which is required. This may be obtained
from the charge density using Poisson's equation

V(K)= —
Bmp r (K)/K~

in atomic units with energy measured in rydbergs.
p r(K) is the Fourier coefficient of the total charge
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density. The Fourier coefficients of the electron
charge density are given by

p(K) =(1/NQ) fp(r) e "'d r
with Q the unit cell volume, N the number of unit
cells in the crystal, and

It.(k, r) I'
n, f, occ

(5)

Substituting (1), (2), and (5) into (4) and converting
the sum on k to an integral one obtains

S;, (k, K) = Z, e'"'"& fu; (r}e '"' 'uz(r —R, )day

(7)
For K= 0, Eq. (3) fails and a limiting procedure
must be used:

V(0) = —8& lim [p r (K)/K' j as K- 0.

The limit exists and may be expressed as

(6)

V(0)= 2 Q a„*& (k)SI&'p(k)a„& (k)d k, (9)
no

where the integral again is over the occupied part,
and

S, '(k)= Q, e'"'"~ fu; (r)t' u; (r —R, )d v . (10)

The utility of these expressions is obvious when:
it is realized that the quantity S;& is related to the
Hamiltonian matrix elements

f g*; (k, r) V(r)g&(k, r)d x

= Z V(K, ) e' '"' fu* (r) e' "I& (r —R,)d r
Sy0

p(K)=, Q d~ka„*, (k)8;~ (k, K)a„,(k),
17 n, k, d

(6)

where the integral is over the portion of the Bril-
louin zone in which band n is occupied. S&& is a
generalized overlap matrix defined by

diagonalize the Hamiltonian and overlap matrices
at the grid points selected in the Brillouin zone for
doing the integrals in Eq. (6).

The chief limitation in applying these equations
efficiently is data handling. The size of the four-
dimensional array 8;&(k, K, ) may get very large,
depending upon the sampling in k required and upon
the number of reciprocal-lattice vectors K, needed.
These details are discussed in Sec. III.

B. Iterated Exchange Potential

It is assumed that a local-exchange approximation
is made in the band calculation, for example, the
"X&" approach, ' with an exchange potential propor-
tional to p'~'(r) In. the initial band calculation it
is necessary to compute the Fourier transform of
p'~ (r), but in subsequent iterations it is more
convenient to Fourier-transform the difference be-
tween p

~ (r) and p'o~ (r}:

(12)

By expanding p(r) and po(r) in a Fourier series and
extracting the cube root, it is possible to determine
b(K):

2/3
&(K) = 3

— p(K)- po(K)
gg

& [p(K~) p(K-K&)
e t+

—po(Kg}po(K- K~)1+ " (13)

where n, is the number of electrons in a unit cell.
For K=O, one has

&(0) = —9 (~l/&. )'"G [p(@)p( «)-
-po(«) po(- «)],

to second order.

= &~ V(H;)8;~ (k, —K,), III. APPLICATION TO Lip

where V(r) is the periodic crystal potential. For
a fixed set of basis functions and a given lattice
constant, the integrals appearing in (10) and (11)
need be computed only once and saved. In subse-
quent iterations the only quantities which change in

the Hamiltonian matrix as expressed in Eq. (11)
are the Fourier coefficients of the potential, which
are given by Eqs. (3), (6), and (9). Thus, an itera-
tive cycle is established which requires none of the
lengthy integral computations encountered in the
initial band calculation. Since the last expression
for the Hamiltonian matrix elements in Eq. (11)
may be evaluated very rapidly, the time required
for a complete iteration is just-the. time needed to

LiF was picked as a simple example to test the
SCLCAO method of Sec. II. It is simple in two
respects. First, it is composed of two light ele-
ments with only a few electrons each, so that the
LCAQ secular determinant is small. For purposes
of computing charge densities and iterated poten-
tials, no d wave functions are important. The sec-
ond major simplification occurs because LiF is an
insulator: There is no need to compute the Fermi
energy for each iteration to determine occupied
and empty levels. Generation of self- consistent
potentials is a considerably more sensitive process
for metals, especially when a small sampling of
states in the Brillouin zone is used.
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3 184.4671
480. 512 66
108. 863 25
30.289479
9.641 513 7
3.391555 9
1.272 028 5
0. 496 432 05
0. 097 186 33
0. 049 98814
0. 022 952 09

37 736. 000
5 867. 079 1
1332,467 9

369. 85866
117.129 69
40. 302 862
14. 898 010
5. 877 735 9
1.6267606
0. 610 724
0.233 411 5

is

0. 00029
0. 002 24
0, 01173
0. 048 10
0. 14852
0.32038
0. 421 13
0.204 75
0. 00922

—0. 004 58
0. 001 39

0. 00022
0, 00163
0. 008 68
0. 03643
0. 122 88
0. 30944
0. 44064
0.22146
0. 014 55

—0, 002 30
0. 00092

TABLE I. Gaussian wave functions.

~2s

Lithium

—0. 000 05
—0. 00035
—0. 001 84
—0. 00766
—0, 02442
—0, 05725
—0. 098 17
—0. 123 82

0.252 85
0.545 20
0.305 37

Fluorine

—0. 000 05
—0. 00038
—0. 002 04
—0. 00850
—0. 030 75
—0. 083 18
—0, 17029
—0. 10832

0.379 80
0. 568 88
0.201 56

0. 022 943 4
0.076 491 8
0. 444 620
1.156 85
3. 157 89
9.353 29

31.941 5

102.40
23. 794 387
7.495 459 0
2. 763 8713
1.099 057 5
0. 451354 09
0.17213936

0. 006 285
0. 032 22
0. 06323

—0.027 82

0. 10731
—0. 063 58

0. 11899

0, 004 29
0. 030 81
0, 11892
0. 269 64
0. 362 25
0. 330 00
0. 153 23

A. Initial Band Structure

The initial band structure was computed using
methods previously described. The Coulomb
potential was constructed as a superposition of
atomic potentials, while the exchange potential was
approximated by p'~ (r), where p(r) is the crystal-
line charge density computed in the first iteration
as a linear superposition of the ionic charge den-
sities. In the first attempt to obtain LiF energy
bands, atomic wave functions u; of Eq. (2) consist-
ed of linear combinations of Slater-type' orbitals
(STO), but, subsequently, Gaussian-type' orbit-
als (GTO) were used to reduce computer times.
Atomic orbitals used included 1s, 2s, and 2P for
lithium and 1s, 2s, and 2P for fluorine. The GTO
wave functions used are shown in Table I and ener-
gy bands obtained with them from the starting po-
tential are shown in Fig. 1.

Only the highest valence (mainly fluorine 2P)
and lowest conduction band (lithium 2s/2P) are
shown at this stage of the calculation. Three sets
of bands are shown corresponding to different
"X&" exchange potentials: Slater, &=1; Kohn-
Sham-Gaspar, &= 3, and a fit to experimental gap,

This latter value differs from the value re-
quired to fit the fundamental gap in a previously
reported APVf calculation of the energy bands of
LiF (n= 1). This disagreement may reflect dif-
ferences in crystal potentials (the APW calcula-

tion used a point-charge approximation when cal-
culating non-spherical terms), or lack of conver-
gence in one of the band calculations. The former
is probably the proper explanation since exhaus-
tive studies of convergence have been made in this
effort, and convergence properties of the APW

method are well understood.
Nothing remarkable appears in Fig. 1. The

minimum gap appears at I', where the lowest con-
duction band is s like. At X and L it is P like.
Reduction of the strength of the exchange potential
raises and slightly broadens the energy bands with

no dramatic structural changes occurring, since
no complicated hybridization of bands is present.

In SCLCAO calculations there are five types of
"convergence" which must be obtained: (i) Conver-
gence of the Fourier series in Eq. (11) (sum over
reciprocal-lattice vectors), (ii) convergence of the '

Bloch sum in Eq. (11) (sum over firect-lattice
neighbors), (iii) convergence of the sum in Eq. (1)
with respect to addition of more basis functions,
(iv) "convergence" of the Brillouin-zone integration
scheme for Eq. (6) with respect to finer sampling
methods, and (v) convergence of the iterative cycles
to a self-consistent result.

Each type of convergence is crucial to accuracy
in the final energy bands, so examples of each are
given in this paper for future guidelines. The first
three types are discussed here, and the last two
are considered in Secs. IIIC and IIID.
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I.O

0.0—

C9
K
LLJ

0.5

Eg= l.08

Q =2/g

Fg=l.42
E9=.88

- I.O—

L'p a=. I

- l.5
L

FIG. 1. LiF Bands from atomic superposition. The
lattice constant used throughout this paper is 4.0172 A.

1. Recipxoca/-Lattice Convergence

The original STO band structure was abandoned
because it was too time consuming to obtain ade-
quate convergence of reciprocal-lattice sums. STO
bands obtained at different stages of convergence
of the Fourier series are shown in Fig. 2. As the
number of reciprocal-lattice vectors (RLV) used
to compute s-s- and s-P-type integrals was increas-
ed, the I'j conduction band slowly converged to-
ward the F» conduction band, and the spurious os-
cillations along the ~ axis smoothed out. The
dashed curve was obtained with a typical s-P integral

summed to 38 independent magnitudes (or stars)
of RLV, while the solid curve was obtained from
s-P integrals summed to 800 independent magni-
tudes of RLV. Inadequate convergence was still
reflected in the incorrect ordering of the I'I and
I'» levels.

Direct summation of the Fourier series of Eq.
(11) to convergence was not found to be practical
using STO basis functions because complexity of
integral expressions and slowness of the numerical
integration required very excessive computer costs.
Techniques for handling this type of convergence
difficulty are available, but it was decided to con-
vert the basis set to GTO before using them. Com-
putations were then made much easier because
analytic expressions exist for all integrals, and

computer times were greatly reduced. Table II
shows representative integrals and their conver-
gence properties. The GTO integrals were con-
verged until summing a substantial number of addi-
tional RLV caused changes of less than 0. 001 Ry
in any energy bands. A comparison at the midpoint
of the 4 axis in the Brillouin zone is made in Table
III between unconverged STO matrix elements and

converged GTO matrix elements. Differences are
typically small, but enough to reorder the s and P
bands at I' and remove spurious oscillations of the

P bands.
As a rule, valence bands were much less sensi-

tive to problems of convergence, either direct or
reciprocal lattice, then the conduction bands. The
self-consistent valence bands and potentials report-
ed below would not be influenced by more stringent
convergence criteria. Conduction bands are be-
lieved converged to less than 0. 01 Ry with respect
to both reciprocal- and direct-lattice sums.

2. Direct-Lattice Convergence

The number of neighbors required for direct-
lattice convergence depends upon the type of integral
computed. Insufficient convergence was always re-
flected by negative overlap eigenvalues for conduc-
tion bands. The number of neighbors used for dif-
ferent integrals is shown in Table IV.

TABLE II. Convergence of reciprocal-lattice sums for various integrals (energy in Ry).

No. of stars I (2g)Z(2P ) I" (2p„)Ii (2p) Z(2g)Z(2P„) F(2s)L (2pg

423
810

1185
3000

—1.460 778
—1.480 798
—1,489 131
—1.498 195

0. 011771
0. 011768
0. 011768

—0. 017384
—0. 017433
—0. 017450

I.(2s)L (2s)

—0. 222 361
—0. 222 439
—0. 222 448

—0. 034 388
—0. 034405
—0. 034408

S.(2~)Z(2s)

10 000
15 000
20 000

—0. 283 141
—0.283 139
—0. 2 83 137

—0.271 089
—0, 270 933
—0.270 857
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TABLE III. Comparison of unconverged STO matrix
elements and converged GTO matrix elements (energy in
Ry).

Matrix element

I.(2s)I.(2s)
& (2p,)L (2pk)
i.(2s)r, (2p„)
Z(2p„)Z(2p„)
I.(2s)Z(2p„)
L (2px»(2px)

STO

—1.7677
—7. 7457
—3, 5671
—1.5158
—0. 9390
—1.9830

GTO

—l.7663
-7.8132
-3.5750
—1,3483
—0. 6519
—1.3310

E(Ry)

It is interesting to think of the LCAO calculation
as a giant molecular-orbital (MO) calculation. From
that point of view the minimum number of atoms
required to make a LiF crystal, as far as the lowest
conduction bands are concerned, is about 4500. By
then all of the properties of the crystal necessary
to produce energy bands satisfying Bloch's theorem
will have been realized by at least one electron
near the central atom. As more atoms are added,
more electrons near the center will see a "periodic"
potential. The number of bandlike electrons would

rapidly increase. When bandlike electrons greatly
outnumber "surface" electrons, bulk electronic
properties would presumably be perfect- crystal-
like. Assuming a spherical distribution, this would
occur for ~/N «1, where dK is the number of
atoms in the surface region and N is the number of
atoms in the body of the crystal about the central
atom. Thus, bulk properties of LiF depending upon
detailed structure of the lowest conduction band
would be exhibited by a large molecule with 225
nearest-neighbor sets, corresponding to dÃ/N=O. 1.
In terms of a thin film, this is a thickness of 904 A.

3. Convergence of Basis Set

The basis set used for the LCAO calculation may
be improved in two ways: First, nonlinear varia-
tions in the individual orbitals could be permitted,
i. e. , variation of the parameter in the orbital ex-
ponent. For a reasonable set of starting functions
in atomic calculations these variations produce
changes which are smaller than other errors in
this calculation. Qn the other hand, the addition
of more basis functions can affect the energy bands
substantially.

By varying the size of the basis set in this and

previous calculations it has been found that lower-
lying bands are insensitive to additional functions,
but the highest band of each symmetry type can be
readily influenced, It has usually been sufficient
to include one more band of a given symmetry,
represented by a well-chosen function, to obtain
convergence to less than 0. 1 eV for the last band
of that same symmetry. This will vary from crys-
tal to crystal depending upon choice of basis func-
tions and the number of bands of the same symmetry
lying close in energy to the one under consideration.

Because of the difficulty in computing LCAO mat-
rix elements, the total number of basis functions
or energy bands to be retained must be decided with
care. In this calculation all bands through the low-
est conduction band are believed to be converged
to better than 0. 1 eV with respect to the basis set.

IV. SELF-CONSISTENT LiF ENERGY BANDS

%ith properly converged first-iteration energy
bands it was possible to proceed to the self-consis-
tent calculation and study the behavior of the equa-
tions of Sec. II with reasonable assurance that any
peculiarities were due to the procedures and not to
errors in the initial energy bands and wave func-
tions.

A. Computation of 5;j(k Kp)

I.O-

4 I

The fundamental quantity which is needed for the
SCLCAO equations is the generalized overlap ma-
trix S,~(k, K„)of Eq. (7). This quantity must be
computed and stored for reuse at successive itera-
tions. Computation of S,&

is straightforward: It

-I 0--
TABLE IV. Number of direct-lattice neighbors used

for different integrals.

Iis

FIG. 2. Unconverged STO bands of LiF. he solid
curves contained more terms in the reciprocal lattice,
but are not completely converged.

Integral

I- (s)I- {s)
L (p)1- (p)
I (s)L (P)
&(s)&{s)
~V»~(p)

Neighbors

75
75
75
3

10

Integral

&{s)&(p)
L ()&(s)
I-(p)~(p)
I (s)&(p)
E(sQ (p)

Neighbors

5
30
50
30
30
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TABLE V. Self-cogsistent corrections to Fouxiex coefficients of Coulomb potential. AS means atomic superposition,
SC means self-consistent. The prime indicates equal-volume weights used; unprimed grid numbers refer to nearest-
volume weights (units are Ry).

V(nuclear)
v, (As)

~v, (4, sc)
sv, (6, sc)

sv, (6', sc)
av, (20', sc)
av, (89', sc)

AV (89', 1st)

(ooo)

—0.675 39

—0. 1837
0. 10195

0. 164
0. 2158
0. 190 9

0. 19937

0.670 86
0.089 65

0.003 67
0.003 46

—O. 029 8

0.007 87
0.009

0.005 32

(200)

—1.006 28
—O. 27142

—0.00202
—0.001 65

0.02344
—0.00446
—0.005

—0.003 14

(731)

0.034 11
0.000 37

0.000 06
0.000 02

0.000 02
0.000 00
0.000 00

0.000 06

has exactly the same form as an LCAO Hamiltonian
or overlap matrix. In fact, the same computer
programs may be used, although it is better to re-
vise them to avoid repeated calculation of identical
quantities for each K„. The size of the array
S;;(k, K„)depends upon the number of points k in the
Brillouin zone needed to perform the integral of
Eq. (6) and also the number of RLV necessary to
describe changes in the crystal potential from one
iteration to the next. While several different
S,, (k, K„)array sizes were tested for LiF, it was
found that a 10 & 10~ 89 & 25 arr ay gave best results
in terms of accuracy achieved for reasonable com-
puter core requirements and time used. This S;&
was a 10&10 matrix computed for 89 points in ~8

of the fcc Brillouin zone for only 25 different mag-
nitudes of K„.

The generalized overlap matrix S;&(k, K„)does
not transform like p(K„), i.e. , the I', irreducible
representation, yet it is necessary to compute S;&
only for points within ~8 of the Brillouin zone if the
sums on indices i and j are also performed, as in

computing p(K ) via Eq. (6). Computation of

S;~(k, K„)for a given sampling of points k is equiva-
lent to computing the Hamiltonian matrix over the
same grid, and it must be done for all K„which
contribute to changes in the band structure via
p(K„), so not only can the size of the array get too
large and cause data handling problems, but the
time required to compute S;& may become substan-
tial, depending upon hom many direct-lattice vectors
(DLV) must be summed in Eq. (I). It is important
to keep indices k and K„as small as possible.

B. Iterated Potential Coefficients

Clearly, the usefulness of Eq. (6) is limited to
changes in potential from one iteration to the next
which can be described by a few Fourier coefficients.
In addition, Eq. (13) is useful only if the changes
are small enough that higher terms in the series
are negligible. Both of these conditions will be met

if the starting potential is mell chosen and almost
self-consistent. This will be easy for most simple
insulators, but may be more difficult for transition
metals. For LiF the superposition of ionic poten-
tials was a good starting point. Table V shows the
various contributions to the Fourier coefficients of
the potentials and the changes which occur when the
potential is made self-consistent. For large K„
the nuclear contributions (which remain fixed during
all iterations) dominate. In addition, changes in

the electronic Coulomb potential are caused pri-
marily by rearrangement of valence charges, so
that important changes in Fourier coefficients occur
only for low K„. While some computations were
performed retaining changes in the first 100 inde-
pendent magnitudes of RLV, only 25 were retained
in most of the results quoted below. This was more
than adequate for the accuracy desired; usually
half that number would have been enough. The
accuracy of expression (13) for the exchange poten-
tial was good at first order in p(K„), so second-or-
der terms were neglected in order to avoid the
fairly time consuming task of summing the Fourier
product series for each value of K„.

C. Convergence of Iterative Cycles

There was no assurance that the iterative cycle
established in Sec. II mould stabilize to a self-con-
sistent result. The first attempts at self-consis-
tency were made using six points in ~ of the zone,
retaining 100 distinct magnitudes of K„up to RLV
(731). Computations proceed very rapidly because
of the small secular determinant and the speed of

Eq. (11)using S;&(k, K„) to compute matrix elements.
For the six-goint integration grid, changes com-

puted in potential coefficients were always too dras-
tic to lead to self-consistency rapidly, the result
being that oscillations in the coefficients occurred
from iteration to iteration. By taking a suitable
average of the coefficients for the ith and (i+ l)th
iterations, the procedure was made to converge
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TABLE VI. Self -consistent iterations. Changes in the valence-band maximum I'&5, changes in the energy gap g and

changes in Coulomb Fourier coefficients as they approach self-consistency are shown. o.' = 1 exchange parameter, and

x = 0.25 convergence factor were used with an 89-point integration grid (energy in By).

Iteration

—l. 2657
—1.0924

101123
—1.1252
—1.1336
—1.1392
—1.1429
—1.1454

1.4224
l.4504
l.4689
1.4812
1.4895
l.4952
1.4990
1.5017

0.002 66
0.004 50
0.005 77
0.006 67
0.007 30
0.007 75
0.008 07
0.008 30

aV(200)

—0.001 57
—0. 002 64
—0.003 39
—0.003 90
—0.004 27
—0.004 53
—0.004 71
—0.004 85

~V(731)

0.000 00
0.000 01
0.000 01
0.000 01
0.000 01
0.000 01
0.000 01
0.000 01

much more rapidly. Without a convergence factor,
ten iterations were needed to stabilize energy bands
to 0. 001 Ry, but a crudely chosen convergence fac-
tor obtained the same results with only three itera-
tions. The scheme used here was

V;,g (K„)=xV) g( K)+ (l-x) V;(K„),

where 0~x&i is the convergence factor, (which,
in general, could be chosen different for different
K„) and V;, (K„) are the Fourier coefficients which

gave energy bands and wave functions which, in

turn, yielded new Fourier coefficients V;(K„).
Successive iterations started with modified Fourier
coefficients V, , (K) instead of the directly com-
puted V; (K). For small Brillouin-zone integra-
tion grids, small values of x gave better results
(x =0. 25), while the 89-point grid worked better
with larger values of x (x=0. 75). An example of
an overcorrection using the 89-point grid and x
= 0. 25 is shown in Table VI. No oscillations are
present, corrections at each iteration being in the
same direction, but the rate of convergence is
too slow. With x= 0. 75 a similar accuracy was
achieved in only three steps. For x= 1 oscillations
occurred, but not as strong as with the six-point
integrations grid.

Convergence properties of Coulomb-potential
coefficients, fluorine 2P valence band, I'», and
the fundamental energy gap E, shown in Table VI
are typical of all calculations performed here.
Corrections to the atomic superposition potential
coefficients for RLV numbers 2, 3, and 25 are
shown. The last contributes nothing: No changes
would have occurred had only 10 RLV been retained
instead of 25. During iterative cycles the higher
coefficients always reached self- consistency first,
so it was possible to monitor the first one or two
during calculations to check over-all convergence
rates. Convergence of the energy eigenvalues
followed a similar pattern. Core levels became
self-consistent rapidly, with valence next and then
conduction levels.

D. Choice of Brillouin-Zone Grid

In order to perform a self-consistent energy-
band calculation it is necessary to evaluate either
the charge density or its Fourier transform by
intergration over the occupied part of the Brillouin
zone. Because of the difficulty of computing ener-
gy bands and wave functions at a large number Of

points 0 in the zone, this integration has always
been replaced by a weighted sum over a very few

points, usually symmetry points. ' '" Symmetry
points are not good representatives of the totality
of points in the zone, and doubts about performing
volume integrals with only six points were checked
in this calculation, since a good sampling through-
out the zone could be generated without difficulty.
Suspicions were confirmed: Small samplings led
to errors of the order of electron volts, which is
substantially larger than previous estimates, " and

one order of magnitude or so larger than experi-
mental uncertainties.

The first self- consistent band structure for LiF
was done with a six-point grid in the irreducible
portion of the zone including the points Z', ~, X,
Z, W, and I, where 6 and Z were chosen at the
midpoints of the ~ and ~ axis. The computation
was then repeated using 89 uniformly spaced points,
with unexpected results. Figure 3 compares first-
iteration bands (atomic superposition) with self-
consistent six- and 89-point energy bands. The
six-point formula raised the valence band by 0. 5

Ry, reducing the fundamental gap from 1.42 to
0. 928 Ry. On the other hand, the 89-point grid
produced smaller changes, raising the bands slight-
ly, but inc~easing the energy gap from 1.42 to 1.50
Ry. An additional check was made by running a
20-point grid of uniformly spaced points: The
bands agreed to within 0. 01 Ry with the 89-point
results. These bands were too close to the 89-
point bands to display clearly on the scale of the
graph in Fig. 3 and are not shown. It must there-
fore be concluded that the six-point sampling yields
a poor approximation to the true crystal charge
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FIG. 3. Self-consistent LiF bands. These three sets
of bands were computed using an Xg exchange potential
with m = l. AS means atomic superposition, non-self-
consistent.

density. The 20- and 89-point grids produce charge
densities much closer to the atomic superposition
and yield energy bands not radically different from
the initial band structure: A superposition of ionic
potentials is a fairly good approximation to the self-
consistent potential for LiF.

The last fact may be appreciated by examining
Table V, which compares Fourier coefficients of
the Coulomb potential. The first row is the nuclear
contribution and the second row is the electronic
contribution computed from the atomic superposi-
tion. Self-consistent corrections to be added to
the second row for the six-, 20-, and 89-point grids
are shown in the last four rows. While corrections
to the electronic Coulomb coefficients are small
in all cases, the six-point formula yields corrections
which disagree both in sign and magnitude with the
others. The last row of Table V shows 4V, com-
puted from the initial band was'e functions. Correc-
tions computed at the first iteration and last itera-
tion are rather close for the 89-point grid. X-ray
form factors computed from the initial band struc-
ture would agree well with the self-consistent form
factors, although errors larger than those associat-
ed with experimental measurements would still

persist in the non-self-consistent result. This is
not the case for the six-point grid: The initial po-
tential is considerably more nearly self-consistent
than the small grid would suggest, either after one
iteration or after the last six-point iteration.

Since the six-point grid, contrary to previous
reports, "yielded such poor results for LiF, further
tests of the integration grid were made. In the
grids discussed so far the integration weight factors
associated with each grid point were computed in
a standard way: Each point of the uniform grid was
assumed to occupy the same volume of k space,
weights differing from point to point only because
parts of the volume for some points fell outside of
the irreducible portion of the zone. This is re-
ferred to as the "equal-volume" set of weights.

Perhaps a more reasonable assignment of freights,
especially for a small nonuniform grid, is the "near-
est-volume" assignment, in which the weight as-
signed to a point is proportional to the volume of
the zone which is closer to it than any other grid
point in the zone. For a large number of points
the two weighting schemes should yield very nearly
identical results since symmetry points contribute
little; i. e. , they occupy a negligible volume of the
zone.

The accuracy of the nearest-volume weights was
checked by self-consistent calculations with thefour-
and six-point grids using weights given in Ref. 11.
Energy bands are shown in Fig. 4 compared with
the previous 89-point grid, and self-consistent cor-
rections to the potential are shown in rows three
and four of Table V (unprimed grid numbers).
Comparison of energy gaps obtained from the near-
est-volume grids and from the equal-volume grids
at each stage of self-consistency is made in Table
VII.

The following conclusions must be drawn. Energy
bands for the four- and six-point nearest-volume-
weight grids are different in absolute energy, mainly
because of different signs on V(000) shown in Table
V, but energy differences computed from either
set of bands would agree to within a few mRy, e. g. ,
the fundamental gap shown in Table VII. This
corresponds to the sort of "accuracy" estimated in
Refs. 10 and 11. The surprising result is that
these energy differences do not agree with the more
accurate 20- and 89-point grids. Although the four-
and six-point nearest-volume grids are in good
agreement with each other and are better than the
equal-volume 6-point grid, they are accurate to
only 0. 1 Ry when compared with the 89-point grid.
The very close agreement between valence bands
for the nearest-volume 6-point grid and the 89-
point grid must be regarded as accidental. If V(000)
had been computed correctly with the six-point grid
there would have been a constant shift upward of 0. 1
Ry.



SE LF- CONSISTENT PROCEDURE FOR

1.0

0.5

c9
K
LLj

-0.5

- I.O—

m 4pt. (N. VOI. )

—89 pt. (Kq. Vol. )

point (I.) above it. Finally, all six points are
symmetry points, which are simply not represen-
tative of the vast majority of general points. Un-
less there is something peculiar about LiF or the
equations of Sec. II, one must conclude that pre-
vious self-consistent energy-band calculations
based on small samplings of the Brillouin zone
have errors of the order of eV. This is as much
as two orders of magnitude larger than some
quoted estimates of errors associated with the
small integration grids.

At the risk of making the same mistake, errors
associated with the integration grids for this cal-
culation may be estimated. Comparing the 20- and
89-point grids, the bands differ typically by 0. 01
Ry. Judging from the trends between the six-,
20-, and 89-point grids, the 89-point grid has an
error associated with it which is probably consider-
ably smaller than, but, at most, equal to 0. 01 Ry.
This is suggested by the computed Fourier coeffi-
cients in Table V, the absolute positions of the
energy bands, and agreement between the transi-
tion energies.

4 pt. (N.vol. 3

- r ------=-r--=--==
L r

FIG. 4. Self-consistent LiF bands. Comparison of
four- and six-point "nearest-volume" grids with the 89-
point equal-volume grid.

Explanations for the close agreement between
energy differences for the four- and six-point grids
are fairly obvious. First, they differ by the ad-
dition of only two points, and the two points which
were added to obtain the six-point grid lie in the
same plane of the Brillouin zone as three of the
points in the four-point grid. Thus, both grids
attempt to replace a volume integral by a sampling
of points in a single plane (1XW) and one more

E. Self-Consistent Charge Distribution

A complete self-consistent energy-band calcu-
lation offers the opportunity of examining the charge
distribution with a model not restricted to the
assumptions made in constructing the starting
crystal potential. The usual starting point for non-
self-consistent potentials has been a linear super-
position of atomic or ionic charge densities, the
assumption made that there is not much charge
rearrangement when the solid is formed. The prob-
lem is to decide whether to use atoms or ions and
how to determine the effective atomic configuration
to be used. An interesting discussion has been
given by Slater. ' The general problem of charge
distributions and bonding in molecules and solids
has been studied systematically by Pauling' and
by Phillips and Van Vechten. " While LiF is an

TABLE VII. Approach of energy Zap to se1f-consistency. The prime grids had equal-volume weights, the unprimed
had nearest-volume weights. G'. =1 exchange parameter was used in each case, but different convergence factors were
used for different grids. (Energy units are Hy. )

Iteration Eg(4)

1.422 40
1.426 73
1.432 84
1.433 98
1.434 23
1.434 25

Eg(6)

1.422 40
1.424 00
1.430 03
1.430 94
l.431 14
l.431 14

Eg(6')

1.422 40
0.840 30
0.968 28
0.909 66
0.905 03
0.924 03
0.928 92
0.926 79
0.927 72

Eg(20')

1.422 40
1.488 84
1.490 23
1.49207
1.492 31
1.492 33
1.492 24

Eg(89 ')

1.422 40
1.450 36
1.468 87
1.481 22
1.489 54
1.495 19
1.501 70



694 D. M. DROST AND J. L. FRY

especially simple case, it is still interesting to
examine the self- consistent charge distribution
since the paper of Zwing and Seitz suggests cova-
lent or metallic bonding, while Yamashita claims
ionic bonding.

Figure 5 shows the change in charge density
which occurs when the potential is made self-con-
sistent. While some electrons are moved in near
the lithium nucleus, the major rearrangement
occurs in the vicinity of the fluorine atom. How-

ever, the total charge movement is small. The
change in charge near the lithium nucleus was
computed by integrating to the first zero shown in
Fig. 5 and found to be 0. 006 electrons. Integrat-
ing further would change this number, depending
upon where one chose to define the ionic radius
of lithium. Cancellations occur further away from
the lithium nucleus, so it is probably safe to say
that the maximum charge transferred from the
F ion to the Li' ion is less than 0. 01 electrons.
In other words, the crystal could be described as
fully ionic. An interesting check of this self-con-
sistent result would be to repeat the entire calcu-
lation starting from neutral atoms.

V. ANALYSIS OF BAND STRUCTURES

Since the emphasis of this paper has been the
self-consistent procedure, exhaustive study of the
band structure will not be given now, but will be
reserved for a future publication which will include
d bands and calculation of the optical properties
as well.

There have been several previous investigations
of the band structure of LiF. The earliest was
done by Ewing and Seitz" using the cellular method.
Yamashita" performed a tight-binding calculation

of the coehesive energy and lattice constant, and
Kunz et al. used a mixed basis method to obtain
the band structure. The most recent LiF band
calculation was done by Page and Hygh using the
APW method. Of the four calculations, the first
two gave incomplete band structures, and only the
energy bands of Page and Hygh are comparable to
the ones obtained here. Kunz et al. predict
(and attempt to justify with elaborate arguments)
that the minimum gap is a direct gap at the I
point in the zone. None of the band structures ob-
tained here show this behavior: They are all
quite similar to the energy bands of Page and Hygh.
Perhaps the results of Kunz et al. can be attributed
to the details of their potential, but it is more
likely just an error in their calculation. Their
first-neighbor approximation and spherical approxi-
mation to three-center integrals are not adequate
for the LCAO part of the LiF Hamiltonian matrix.
These errors would be realized in conduction
bands as well as valence bands via coupling of
bands of the same symmetry. Similar errors
probably account for the off-center maximum found
by Gout et al. in a NaF calculation.

Since the present energy bands agree fairly well
with the work of Page and Hygh, numerical com-
parisons are given here. The SCLCAO energy
bands obtained using an X& exchange potential
depend upon the choice of &, of course. With the
atomic superposition potential, a value of n= 4

gave agreement with the experimental gap. The
self-consistent procedure alters the energy gap,
so if the exchange potential is to be picked with an

appropriate e to obtain agreement with experiment,
it must be guessed correctly in advance. Other-
wise, the entire calculation must be repeated un-
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FIG. 5. Self-consistent corrections
to LiF crystalline charge density.
The unit of charge in this figure is
such that if the values shown are divided
by A, where A is the lattice constant
in atomic units (7.5918 for LiF), the
negative of the change in electronic
density is obtained.
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FIG. 6. Self-consistent LiF bands for different Xo.
exchange potentials.

til the desired gap appears self-consistently.
Once the generalized overlap matrix S;& has been
computed, many self-consistent runs may be done
quickly, so several different band structures may
be obtained without difficulty. However, other
problems do occur, as shown in Fig. 6. With an
accurate integration grid the energy gap increases
with self-consistency (see Table VII), with the
consequence that there is no value of ~ in the gen-
erally accepted range 3 & + &1 which yields a gap
of 1.0 Ry: A smaller & mould be needed. At this
point it was decided to separate the polarization
corrections from the band calculation rather than
attempt to portray them with the Xe local exchange
correlation potential.

Polarization corrections to the band energy
levels of alkali halides have been computed by
Fowler using a static Mott-Littleton-type ap-
proach. In this approximation valence bands are
raised and conduction bands are lomered by con-
tant amounts: for LiF the amounts computed by
Fowler are 1.81 and 2. 92 eV, respectively. Thus,
Fowler's prescription for fitting the energy gap
to experiment is to add 4. 73 eV to the observed gap
and adjust potential parameters to obtain agree-
ment to the corrected gap. When this was done in

the present calculation a value of & was found
which was comparable with those found in semi-
conductors and metals, i. e. , e = 0. 87.

Table VIII compares some of the results of this
calculation mith the work of Page and Hygh and
with various experimental data. "" The fol)owing
facts must be kept in mind when making compari-
sons in the table. Since no d orbitals were included
in this LCAO calculation, transitions to levels
which allow d-mixing may not be accurate, e. g. ,
X5 Xg. The present authors have made no attempt
to analyze the optical data, but list the assign-
ments of experimental transitions made by Page
and Hygh. A complete calculation of the optical
properties of LiF will probably prove some of
them wrong. Self-consistent results in the table
are headed by the notation SC, while NSC empha-
sizes the non-self-consistent results.

Considering the different techniques ard poten-
tials used, there is rather good agreement between
the LCAO and APW results. In the APW calcula-
tion nonspherical corrections to the potential were
computed by treating all neighbors as point ions.
The non-self-consistent transitions with n = 0. 75
agree closely with the non-self-consistent APW
energies. This would not have been the case with-
out nonspherical corrections to the muffin-tin po-
tential used in the APW calculation, since these

~ 18corrections amounted to 0. 8 eV for LsF.
Self-consistent energy bands with a gap equal to

the experimental gap plus polarization corrections
obtained for &= 0. 87 are shown in Fig. 6 and column
two of Table VIII. Subtracting the polarization cor-
rection gave column three of Table VIII (labeled
SCP). Once again energies are close to the APW
values and in the range of experimental values.
The only major change for energy differences oc-
curred for the X,'-X& transition.

A little reflection upon Table VIII will suggest
the following question, Why bother with the labor
and expense of a self-consistent calculation if a
variation of the non-self-consistent bands via the
exchange parameter o.' will produce nearly the
same results?

One answer is that additional experimental infor-
mation may point out important differences. An

example of this is the photoemission edge of LiF,
which determines the energy of the top of the valence
band relative to the vacuum level. The experiments
of Duckett and Metzger ' indicate a value of 10-12
eV. If polarization corrections for the valence
band are made, the value obtained in the self-con-
sistent band calculation falls in this range, but the
non-self- consistent results do not. The non-self-
consistent APW photoemission edge is far off be-
cause of adjustment of V(0) in the muffin-tin poten-
tial.

. Another reason for obtaining self-consistent en-
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TABLE VIII. Optical transitions. Comparison of several different calculations with experiment. NSC means non-self-
consistent; SC means self-consistent; SCP means SC with polarization corrections. All units are eV.

r&, -r&
L3'

x,'-x,'
L3 Lg
xg xg

Photoemission
v, (0oo)
y, (111)
v, (200)

NSC
n=0. 75

13.7
16.6
18.7
20.7
25. 9

8.8
—5.88

l. 60
3.95

18.4
21.5
22. 8
25.0
28.1

12.2
—6.49

1.40
3.57

SCP
~=0.87

13.7
16.8
18.1
20.3
23.4

10.3

NSC
APW

13.6
16.4
18.5
20.2
22. 9

& 14
15.6
17.8
20. 8
23.9

Experimental~
B

13.6
14.3
17.4
21.7
23.0

10—12

13.5
16.0
18.0
21.5

Experimental data as interpreted in Bef. 18. Column A is Bef. 28, B is Bef. 29, and C is Bef. 30.
~Reference 31.

ergy levels is to obtain better wave functions.
These are needed for the computation of any elec-
tronic property, such as the charge density or x-
ray form factors, The last three rows of Table
VIII show Fourier coefficients of the electronic
Coulomb potential. Differences in V(000) account
for half the difference in photoemission edges for
the calculations in the first two columns. Nhile
differences in these Fourier coefficients are not

large, they are of the order of 10/o or greater.
Since the Fourier coefficients may be related to
x-ray form factors via Eq. (8), an experimental
resolution could be made in favor of one or the
other calculations. The self- consistent values
most likely would be the better of the two sets,
otherwise the "magic" of an atomic superposition
must be explained.

Matrix elements for an optical-properties calcu-
lation will also depend upon the wave functions, and

any such calculation is really not legitimate until
the problem has been done self-consistently. This
consideration will be discussed in a future publi-
cation.

VI. CONCLUSION

A method of performing self-consistent LCAO
ba~d-structure calculations has been presented
here. The method was found to be quite efficient
once data handling problems were resolved. The
SCLCAO method works rapidly because of the small
secular determinant and the formalism which ex-
presses iterated-Hamiltonian matrix elements in
terms of integrals which need to be computed at
the first stage of calculation only. In SCI.CACAO

calculations the majority of computer time 's spent

evaluating integrals if the Brillouin-zone grid is
not too large (- 89 points). The time required to
obtain self-consistency by the present technique
represented only about 5/o of the total time for LiF.

Accuracy of the SCLCAO energy bands of LiF
was estimated by investigating five types of con-
vergence involved in the calculation. By using
Gaussian basis functions, large Brillouin-zone
samplings (89 points), and convergence factors
when computing iterated charge densities, it was
possible to obtain an over-all accuracy in energy
levels of better than 0. 01 Ry for the lowest con-
duction band, and considerably less than 0. 01 Ry
for valence bands. These studies suggest that
previous self- consistent band- structure calcula-
tions reported in the literature contain errors
which may be as large as 1 eV. A notable excep-
tion to this is found in Ref. 13, which these authors
regard as a remarkable paper.

The self-consistent LiF energy bands obtained
here were compared with previous work, both ex-
perimental and theoretical. By properly adjusting
the X&exchange potential it was possible to obtain
agreement with theoretical calculations of Page
and Hygh as well as with their interpretation of the
optical data. ihile an adjusted non-self-consis-
tent band structure agreed with optical data, only
the adjusted self-consistent energy bands agreed
with both optical and photoemission data. The im-
portance of using self-consistent energy bands in
the calculation of optical properties was stressed.
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Calculations using the semiempirical self-consistent-field procedure known as complete
neglect of differential overlap (CNDO) have been made on a collection of lithium and fluorine
atoms in an attempt to generate a model of the U center. The system consists of 27 atoms
arranged in a fcc lattice. The central fluorine atom is replaced by a hydrogen atom, simu-
lating the U center. Calculation of the CNDO eigenvalue spectrum for this "molecular" mod-
el shows that the essential features of this defect are represented very well and that the value
obtained for the U-band excitation energy compares well with empirical and other theoretical
data.

I. INTRODUCTION

In a previous study' I investigated the feasibility
of utilizing a very simple "molecular" semiempir-
ical self-consistent-field (SCF) procedure for the
calculation of the electronic structure of ionic crys-
tals. Pilot calculations on LiF using the complete
neglect of differential overlap (CNDQ) method gave
very encouraging results for the bandwidths and
band gaps generated from model systems containing
up to 18 atoms. Later calculations have extended
the size of the model system to 27 atoms, with a
consequent increase in the accuracy of the descrip-
tion of the band structure.

The applicability of the CNDQ procedure to the
calculation of the electronic structure of solids has
been supported by the recent work of Andrd et al.

in their comparative study of extended Hiickel,
CNDO, and ab initio calculations of the band struc-
tures of polyene and polyethylene. As these authors
point out, the results of semiempirical calculations
must be treated with some reserve, however, the
relative band characteristics are described rea-
sonably well by the CNDO method when compared to
ab initio calculations. This is particularly true in
the region around the Fermi level, which is where
our interest lies in the current calculations. Since
ab initio calculations on the systems being investi-
gated here are not feasible at the present time, and
in the light of previous experience, we feel that the
use of the CNDO approximation in this case is jus-
tif iabl. e.

In this work we have studied one of the simplest
defects in the alkali halides —that of the U center.


