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A method closely related to the classical augmented-plane-wave (APW) method is developed
which treats in a nearly exact way the Hartree-Fock exchange in the case of crystals having
deeply bound and filled valence bands. Band-structure calculations have been performed for
solid neon and argon. The main conclusions of Lipari and Fowler for argon are confirmed:
a too large gap which proves the influence of correlation in these insulators, large valence
bands, and change in the shift between conduction bands without significant modification of their
internal structure. Yet, we note that we found a smaller separation between s and d bands than
Lipari and Fowler. The value of the Hartree-Fock energy gap is physically related to the ex-
perimental one in terms of the correlation energies involved in a transition from a localized
valence state to an extended conduction state. Using atomic correlation values for the valence
state and previous results for the polarization in solid rare gases, a good qualitative agree-
ment is found.

I. INTRODUCTION

Different band-structure calculations on solid
neon and argon have been performed during the last
ten years paralleling the progress in experimental
measurements. Knox and Bassani, ' using a per-
turbation approximation to the orthogonalized-plane-
wave (OPW) method, and two years later Mattheiss,
using the augmented-plane-wave (APW) method,
have given the dispersion curves E(k) for argon.
These authors introduced the exchange potential by
means of Slater's free-electron approximation.
Their results were in qualitative agreement with
experiment, though there were important quantita-
tive differences.

The band structures of Ne, Ar, Kr, and Xe can
also be found in a paper by Rossler. ' The calcula-
tion for Ar up to Xe was based on the relativistic
formulation of the Green's-function method, but was
nonrelativistic for neon. The exchange was also
taken into account by an approximate local potential,
and the constant potential outside the "muffin tin"
was chosen to obtain the experimental value of the
gap between conduction and valence bands. The
general features of the band structure of Ar were
similar to those found in previous calculations.

The problem of the band structure of Ar has been
recently considered by Lipari and Fowler. Two

types of new OPW calculations were made: a
Hartree-Fock (HF) calculation with the exchange
potential treated in a nearly exact manner, and a
calculation where the correlations were included by
a rather complicated procedure. The only agree-
ment between the HF calculation and the previous
results was the internal structure of the bands.
But the energy gap found by Lipari and Fowler is
much larger than previously calculated gaps and
experimental gaps. Similarly, the separation be-
tween s and d bands is larger in the HF case, and
the valence band is wider. Finally, the second cal-
culation of Lipari and Fowler proved that the influ-
ence of correlations is very strong.

Thus the situation is that the gap, as calculated
by Knox and Bassani and then by Mattheiss with
statistical exchange, is in better agreement with
experiment than the nearly exact HF gap of Lipari
and Fowler. To explain this fact, we note that the
comparison between the optical gap and difference
of eigenvalues calculated in a statistical exchange
potential is incorrect since, in this case, Koop-
mans's theorem fails. Slater' has pointed out that
Koopmans's corrections are certainly significant
when the optical transition occurs from an atomic-
like localized state to an extended crystal state.
It can be expected that a calculation with Kohn and
Sham's statistical exchange and Koopman's correc-
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tion would give a larger gap than previous values
obtained in Hefs. 1 and 2. Furthermore, it may be
assumed that the statistical approximation to ex-
change acts as though it included correla, tion ef-
fects. For all these reasons, we think, as do
Lipari and Fowler, that it is important to solve the
HF equations as exactly as possible. Only from
these results will it be possible, by adding ad-
equate correlation corrections, to interpret experi-
mental measurements.

In Sec. 0, we describe a method, closely related
to the well-known APW method, to treat the HF
equations in solid rare gases. We give the results
for neon and argon and compare them with those of
Lipari and Fowler in Sec. III. Correlation effects
are discussed in Sec. IV, in relation to the inter-
pretation of the experimental gap.

II. METHOD TO SOLVE HF EQUATIONS
IN SOLID RARE GASES

The physical background of the method is that,
in solid rare gases, the highest occupied levels are
tight enough to have a very pronounced atomiclike
character. So a good Coulomb crystal potential can
be obtained from Bloch sums built from atomiclike
wave functions. This potential is then introduced
in the equations of a band-structure-calculation
method: We have chosen the APW method. The ap-
proximation used for the exchange terms is very
similar: All the wave functions appearing in these
terms are taken as Bloch sums of atomielike orbit-
als, except the wave function of the state we are
calculating which is an expansion in APW.

As a first step, we set up the atomielike orbitals
p„,„used to construct the Bloch sums Q„,„;:

q„,„(r)= P„,(r) Y', (r"),

„,„,,(r)=,~z
~e'"'" y„, (r —X,).
a

We assume that there is no mixing of the quantum
numbers n and l between one occupied band and
another. N is the number of unit cells in the crys-
tal and X, a translation vector of the direct lattice.
The orbitals q„, are normalized in a sphere of
radius S~ of same volume 0 as the unit cell
(Wigner-Seitz sphere). The resulting density at
radius S~ is assumed to be negligible; thus orbitals
located on different lattice sites do not overlap.
The variational principle, applied to the total ener-
gy obtained from these wave functions, gives the
system of coupled equations:

" +U(r)+ p
—E„, P„,= Z ZC (lO, f'0)l(l+1)

2f

x P„, (r) „- P„., (r')P„,(r')r' dr', (2)
0 +0'

with

U(r)= ——+ —Z P2, (r') r" dr',
0 t'& nlm

System (2) is exactly the system of HF equations for
a complete-shell atom, with a single difference on
the integration volume which is limited here to a
sphere of radius S~.

We now have the atomiclike orbitals needed to
calculate the crystal "muffin-tin potential" and the
exchange integrals. The Coulomb part V(r) of the
potential to be used in the band-structure calcula-
tions is equal to the potential U(r) [resulting from
the self-consistent solution of (2)] inside the APW
sphere surrounding each atom. Outside the APW
sphere, the crystal potential is constant and equal
to the mean value of the potential U(r). The radius
S& of the APW spheres is chosen as usual, so that
they just touch at the cell boundaries:

V= U(r), 0& r& S~

se
V= Vp= g p U(r)dr~ S~ & r,0 —

p vS„)

The total charge included in each APW sphere is
approximately zero, so VD is very small.

The second step of the method is the more refined
description of the electronic states we want to cal-
culate in the valence and conduction bands. The
wave functions g& are expanded in APW's f& of wave
vectors k, +K~, where k; is the reduced wave vector
and K~ is a vector of the reciprocal lattice. Inside
the APW sphere, one has

—Z 5(m. , m, ) I g,*,(r, ) g;(r, ) — g,*. (r,)

x y, (r,)dr, dr, ,

where &(m, , m, ,) = 1 if the spins of electrons j and
j' are parallel, and zero otherwise. The summa-

gq=ZC~~ f~~=K d'„, R', (r) Yf (r),
p (3)

d(„=Z 4v i Z~(~ k, +K~~ Sg) q, Y~(&g +lpf).
P

The radial part of the APW for state j and angular
momentum X is R~)„, and J„ is the spherical Bessel
function of the same momentum. Outside the
sphere, the APW f~~ reduces to a plane wave:

~ j ~ i (fg+Rp) ~ r»-e
The main problem we are dealing with is the

treatment of the exchange energy for the state j,
which is
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tion is on all the occupied states. We said above
that our approximation to calculate such an integral
will be to replace the exact functions (j., by the
Bloch functions (tt„t„;.. The exchange integral be-
comes

Ej»= — Z 5(m. ..m, ) t (tt„t„;(rt) (j(rt) —P~(rR)

x p„t„;(rR)dr, dr, . (4)

The integral on the whole crystal can be broken up

into integrals over unit cells by the change of coor-
dinates

r&= p~+ X„r,= p, +X„
and the use of the translational properties of the
wave functions,

1Ej Q 5(m m ) Q e-t(ttt-Rj) ~ (Rn-Xb) I

X g . si 0 sg ~' nlm
nlm, i ab

x(p1)gj ')
I g —X I

~j(p' yntm(PR)dp, dpR.
~&2+ c b

The integration is now to be performed over the
unit cell surrounding the origin. As all the occupied
bands are filled, the sum

Z 5(m . m ) e t"t (xn ttbt'-
Si P Sg

E»= —ZZ Z t
1

c (f0, l'0)))( P„t(p,) (Ctj(p, )

L

Vt' (P1) yt' (PR) + nt(PR) 4' (PR) P1 PR &

P&

and then the expansion (3) of the function gj,

E» = -p p Qc (l0, l'0)d, ',. ~ d,.m'
~

It P„,(p, ) 8't. (p, )
nl l'm' L

L
X g~1 Qnt (PR) f~ t' (P2) Pl dP1 PRR dP2 '

A

This formula shows that the exchange operator in-
duces coupling between crystal states of the same
angular momentum only.

The exchange energy (5) is added to the kinetic
and Coulomb energies in the state j; the variational
principle is then applied, together with the normal-
ization condition, and the following equations are
obtained:

(a) When the radial parts of the expansion '(3) are
varied,

"+V(r) —V(t+ —E; R t(1.t)= QQ c (&0, f'0)f(l+ 1)
2 n'l' L

L
L', 1 &'t(p ) f'. 1 (P') P"dp' (6).

JsA P&

vanishes unless X,= Xb, in this case, its value is
N. The exchange energy reduces to

r
E»= —+ (jtntm (Pt) 4 j(pt) 4j (PR)

nlm J~ g ~j.a

Wntm (PR) dp, dp, .

As the functions y„, are deeply bound, the region
outside the APW sphere in the cell is expected to
give a very small contribution to E~. We shall ne-
glect it and calculate the integral over the volume
of the APW sphere only.

Recalling that the shells e, l are closed, we have

2l+ 1
'Pntm(pl) 'Pntm(PR) = Pnt(pt) Pnl(PR) gt (p1 ~ PR)t

4m

where t, is the Legendre polynomial of order /.
This result, together with the usual expansion of

],/pf 2 gives the following expression for E»'

21+1 tt - p,'E»= —Q Pnl(p1) (j(pt) p L+1 yt(P1 p2)
4m P&

x +L(P1 P2)pnl(P2) 4j (P2) P1 P2'

Using the well-known expansion of a product of
Legendr e polynomials,

They show that expansion (3) is a solution of the
one-electron equation inside the APW sphere.

(b) Unchanged APW equations are obtained when

the coefficients d', are varied. The matrix ele-
ments are identical to those given in Refs. 6 and 7,
the only difference being that the radial parts needed
to calculate the logarithmic derivatives must be
solutions of Eq. (6) instead of the original homo-

geneous equation with local exchange potential. It
can easily be shown that different states of the same
reduced wave vector remain orthogonal. .

To summarize this section, we shall say that
when the occupied bands of a crystal are filled and

tightly bound, a nearly exact treatment of the HF

exchange, but without iterations toward self-con-
sistency, can be performed using the APW scheme.
Later we plan to apply this method to ionic crystals
as well.

III. PRACTICAL ASPECTS OF METHOD AND

RESULTS FOR Ne AND Ar

The method is expected to work for all the solid
rare gases, but we have decided to restrict our
calculations to neon and argon to avoid a relativistic
treatment. Both lattices are fcc with constants
a= 8. 542 (a. u. ) for neon and a= 10.03 (a. u. ) for
argon.

The preliminary work has been to compute the
self-consistent solution of (2) which gives the atom-
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State

1S
2s
2P
3S
3P

Neon

—65. 526 1
—3.84750
—1.689 23

Argon

—237. 179
—24. 604 1
—19.102 8
—2. 52642
—1.158 16

iclike wave functions needed to calculate the Coul-
omb potential and the exchange terms. Table I
shows the results for the eigenvalues E„,of these
equations, expressed in rydbergs, and with the
origin chosen so that the Coulomb potential U(x)
vanishes at r= S~. The boundary condition used for
the integration was an exponential decay at radius
S~. Our assumption of a very small density at this
radius was satisfied: The value of the ratio (maxi-
mum density/density at radius Ss) was found to
equal 153 for the 2P state in neon and 34 for the 3P
state in argon.

The muffin-tin Coulomb potential was then com-
puted. The constant potential outside the APW
sphere is very small in both cases: Vo= —0. 00014
Hy in neon and Vo= —0. 00048 Ry in argon.

To carry out the APW calculations of the elec-
tronic crystal states, the logarithmic derivatives

TABLE I. Zigenvalues for the core atomiclike wave func-
tions (By).

of the radial parts 8', must be computed. Equation
(6), involving only one radial part, is solved
by iteration. For the low angular momenta
(l = 0, 1,2), a relative precision of 10 ~ on the loga-
rithmic derivatives was not obtained with less than
ten iterations. For the higher values of l, the con-
vergence was faster and four iterations were suffi-
cient.

The results obtained for the valence and conduc-
tion bands are shown in Table II. One-electron en-
ergies are given in rydbergs for points of high sym-
metry F, X, L, K. The values are relative to a
zero potential outside the APW spheres. Concern-
ing the convergence properties, our secular deter-
minant is similar to the classical APW determinant.
It was checked that the given eigenvalues converged
with an expansion in orbital quantum number up to
l = 10. The eigenvalues at points I'„(valence band),
I; and I'z, (conduction bands) for increasing dimen-
sions of the basis set are shown in Table III. The
greatest error due to lack of convergence could be
2x10 Ry on the levels of Table II.

We come now to the discussion of the results (see
Figs. 1 and 2). Wefirstnotethatthe 2PbandinNe
and the 3P band in Ar have the same internal struc-
ture. For these valence bands, the bandwidth is
0. 036 Ry (0. 495 eV) in Ne and 0. 089 Ry (1.212 eV)
in Ar. We cannot compare our value in Ne with the
result of Rossler, 3whodid notgive any number. Mat-

TABLE II. Energies of high-symmetry states in neon and argon (values in By).

State 2P bands
Neon

Conduc tion bands 3P band
Argon

Conduc tion bands

X3

X4'

L2

L3

L3

—1-. 6720

—1.7058

—1.6844

—l.7084

—1.6911

—1.6916

—l. 6987

-1,6805

0.1961

l.6056

1.5294

1.8223

0.6755

l.0210

0.7479

1.3111

0.6431

0.5821

1.4119

1.8053

0.6984

0.7899

1.3368

1.6902

1.4969

l.4033

—1.1164

—1.1997

—1.1491

—l. 2053

—l. 1285

—1.1672

—1.1839

—1.1393

0.2448

1.1292

0.8563

1.0777

l.3398

0.4346

0.5822

0.7488

1.1107

0.4768

0.5963

0.8111

1.4438

0.4957

l. 2063

0.7051

0.9631

1.4092

l.3560

1.0805

1.2412

0.6035 l. 0372
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TABLE III. Convergence of the eigenvalues at I')„ I"(, and 1"p5 when t'he dimension of the basis set (first column) in-
creases.

Dimen-
sion

15
27
51

r, (s)

0.19612
0.19610
0.196 10

Neon

ri5(p)
—1.670 96
—1.671 91
—1.671 99

1.52962
l. 52939
1.52938

r((s)

0. 244 86
0.244 81
0. 244 81

Argon
r&,(p)

—l. 11369
—1.11614
—1.11635

0.85870
0.85633
0.856 20

theiss, using the APW method with Slater exchange,
found a twice-narrower 3P bandwidth of 0. 044 Ry
(0. 598 eV) in Ar: It can be reasonably expected that
the HF exchange should give a larger valence band
than the statistical exchange. Lipari and Fowler
also found a wide valence band of approximately 3 eV,
which is much larger than ours. This important
discrepancy between two HF calculations needs an
explanation; we shall discuss it later.

According to the previous curves of Bossier, us-
ing Green's-function method and statistical ex-
change, the HF conduction bands in solid Ne look
like nearly free-electron bands. But there is no
more than this qualitative agreement with our re-
sults: The ordering of the levels at point I' is dif-
ferent, and so is the relative location of the various
states at points K and X.

Lipari and Fowler have extensively discussed
their HF results on argon in relation to the results

of Mattheiss. As they did, we first conclude that,
both in Ne and Ar, a HF exchange gives a much
larger gap between conduction and valence bands
than the experimental one. This result confirms
the great influence of correlations in solid rare
gases. For Ne, we found a gap of 1.868 By
(25.41 eV) and for Ar 1.381 By (18.52 eV). In both
cases, these values are larger than the binding en-
ergy of the highest electron in the corresponding
free atom. Following the comparison with Lipari
and Fowler's results, it can be seen that the order
of the levels is the same in both cases, except at
point l, where we found I'» lower than l ~.

Bossier, discussing the paper of Lipari and
Fowler, questioned their value for the gap. He
thought that this gap should be larger since the
poor convergence of the upper valence band had
not been taken into account. Looking at our value
of 18.5 eV, in place of 17.2 eV from Lipari and
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FIG. 1. Neon HF band structure, energies in rydbergs.
Note the change in scale between the valence and conduction
bands. Calculations were carried out at points r, X, L,
and K. The connecting lines represent reasonable guesses
to the actual shapes of the bands.

FIG. 2. Argon HF band structure, energies in rydbergs.
Note the change in scale between the valence and conduc-
tion bands. Calculations were carried out at points I', k,
L, and K. The connecting lines represent reasonable
guesses to the actual shapes of the bands.
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Fowler, we agree with this point of view. Such an
argument could also explain the discrepancy in the
3p bandwidth. We must now remember that we
have neglected the contribution of the region outside
the APW spheres to exchange. An order of magni-
tude of this contribution can be obtained by the fol-
lowing calculation. The excited I', state is ap-
proximated, as in the cellular method, by an atomic-
like wave function of S symmetry with the right
number of modes, which is a solution of the HF
equations in the core potential U(r) and has a zero
derivative at radius S~ of the Wigner-Seitz sphere.
The wave function for the highest valence state
is the function p„, (r) defined in (1) (with l = 1, n
= 2 for neon and n = 3 for argon). From these wave
functions, the HF exchange energies Evr(S„) for the
valence state and Ex(S„) for the conduction state
can be calculated inside a volume restricted to the
APW sphere. The corresponding quantities E~~(S~)
and Exc(S~) are evaluated inside the Wigner-Seitz
cell of radius S~. The HF exchange contribution
to the gap will be aEx(S„)= E„(S„)—Ex~(S„) if the
exchange is taken into account inside the APW
sphere only, and AEz(Se) = Ex(S~) —Ez(S~) for the
whole cell. The difference 6E» = AEx(S~) —b,Ex(S„)
gives an evaluation of the error made in our treat-
ment of the exchange. We found the following nu-
merical values: 6Ex = —0.015 eV for neon and
0.035 eV for argon. We conclude that the contri-
bution of the region outside the APW sphere to ex-
change is quite negligible and does not affect our
values of the gaps.

Rossler also suggested that the separation of s
and d conduction bands given by I ipari and Fowler
is too large by several eV. Our results agree with
this assumption. For instance, their separation
I2, —I', is 10.27eV, but we find 8. 32 eV.

Nevertheless, the conclusion to this section is
that the main features of our HF calculation for
argon confirm the study of Lipari and Fowler and
can be extended to neon.

IV. CORRELATION EFFECTS AND COMPARISON WITH
EXPERIMENT

The HF gap F-c, =I', —I'„, as obtained with the
method which has been described in previous sec-
tions, is compared with the experimental gap E~ '
(Boursey et al. for neon, and Batchelder et al.
for argon). The HF value is too large by 4. 0 eV
for neon and 4. 4 eV for argon.

Fowler has studied the relation between the ob-
served optical spectrum and the corresponding HF
energy-band calculation in insulators. ' We re-
sume and complete this analysis here.

The exact gap is given by the crystal-energy in-
crement when one electron jumps from the highest
valence state, where one hole appears, to the low-
est conduction state. The exciton levels are not

taken into account here. The free-electron wave
function extends over the whole crystal and conse-
quently the electron-hole interaction energy is zero.
The crystal electrons are polarized in an indepen-
dent way from the hole and from the free electron;
so, the corresponding correlation energies can be
added. Let us denote the polarization energy for
the electron by Z, and the one for the holeby Z„. Both
are negative. The gap is the sum of the exact en-
ergies, which are I,+Z, for the electron and
—F»+Z„ for the hole:

&a = Fi —Fj.5+Ze+Za .
Z, and Z„have been calculated by Fowler, using
the Mott-Littleton approximation. '

Applying the
Franck-Condom principle, the lattice polarization
is neglected. The resulting error, 2ZFC, on Z,
+ Z„ is certainly very small. According to Fowler,
one has —0. 2 eV& 2Z~c &0.

Fowler also neglects the electronic polarization
inside the cell where the hole or the free electron
is located. This approximation is not justified,
and we shall see that the corresponding self-energy
~Z, +~Z„ is of the same order of magnitude as the
correction given by Fowler.

The Mott-Littleton classical theory is based on
the calculation of Z, and Z„by an electrostatic po-
tential. The validity of such an approximation
has been discussed by Fowler. ' It is assumed that
an electrical charge + e is located at the center of
a cell and polarizes the atoms in neighboring cells.
The energies Z, and Z„are equal and have the
common value Z«,

ZML = —e (1 —1/Ko)(1/2R),

where the value of R depends on the lattice (nearly
—,'a). Ko is the optical dielectric constant of the
crystal. It was never measured, but was calculated
by Fowler' from the atomic polarizability, using
the Clausius-Mossoti formula. The values obtained
by Fowler, as reported in Table IV, are —0. 68
eV for neon and —1.10 eV for argon.

The previous polarization correction does not
include the electronic correlations between the ad-
ditional particle (electron or hole) and the electrons
in the same cell. Because of the importance of the
exchange forces, very different values for the elec-
tron and hole can be expected. The contribution
AZ„ to the hole self-energy can be estimated with
good accuracy by a semiempirical method. A
rare-gas solid is bound by van der Waals forces.
Wave functions located at different sites do not
overlap appreciably; their atomic character is
very strong and their modification going from the
gas to the solid is slight. The difference between
the hole correlation energies in the gas and in the
solid is small. —AZ„ is then nearly equal to the
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TABLE IV. Correlation corrections to the HF gap and

comparison with experiment. (All values expressed in eV. )

EHF
G

2 ~ML

~I
gobs

G

Neon

25. 41

—1.36

—1.58

—l.05

Argon

18.52

—2. 20L

—0.32

14. 16

—1.84

Reference 10.
"Reference 8.

'Reference 9.

Z, = EG —EG —2ZML DZa
obs HF (9)

The hZ, was found to be —1.05 eV in neon and
—1.84 in argon.

These values seem rather large. In fact, the
order of magnitude is quite correct. A rough first-
principles calculation using the results of Calla-
way, '~ and a crude scaling law, give very similar
numerical results.

~Z, can be calculated with the help of the polar-
* ization potential concept. ' ' The optical-spectrum
properties of the system resulting from the addi-
tion of an electron to an atom in its ground state can
be explained by an optical potential. ' For the low

energies, this potential can be written as V„F
+ V~ . V„F is the HF potential and V~ a real and lo-

correlation energy of the highest electron in the
free atom. (The electron energy is defined as the
difference between the atom energy and the Ne' or
Ar' ion energy. ) Let h be the HF energy eigen-
value of the least-bound electron in the free atom,
and I be the experimental ionization energy. The
correlation energy is then I- I 8 I and our approxi-
mation is

(8)

The HF ionization energies IS I are calculated
assuming frozen wave functions, and are given by
the HF eigenvalues (Koopmans's theorem) We.
have used a standard nonrelativistic HF computer
program. The results are 23. 14 eV for the neon

2p state and 16.08 for the argon 3p state; the cor-
responding experimental results are 21.56 eV for
the neon 2p state and 15.76 eV for the 3p
argon state. The corresponding ~Z„are reported
in Table IV. It can be seen that AZ„ is not negli-
gible and must be added to 2Z«, the only contribu-
tion which was taken into account by Fowler.

A simple evaluation of ~Z„ the correlation ener-
gy of the free electron "in the same cell, " is not
possible. But its value can be obtained as a result
of the previous analysis, using the experimental
gap value and the formula

cal polarization potential which is slowly varying
with the energy. V~ is ellual to —o/2r (a.u. ) when
the electron and atom are far away. n is the atomic
polarizability. For small values of x, the deter-
mination of V~ is very difficult.

The polarization potentials of neon and argon have
not been computed. Assuming that V~ is known,

hZ, can be calculated by the first-order perturba-
tion formula

(10)

A first-principles calculation of the polarization po-
tential has been made by Callaway for the ions
Na' (isoelectronic with Ne) and K' (isoelectronic
with Ar). The resulting», [average value accord-
ing to formula (10) on the lowest valence state in
bcc metallic sodium and potassium] are given in
Table D of Ref. 12. Let us assume that in a given
isoelectronic sequence, V~ is proportional to the
polarizability and that the integral (10) is propor-
tional to the mean el ctronic density in a cell.
[We use here the fa.ct that I V~(~) I decreases rapidly
outside a radius smaller than the cell radius. "]
We then have the crude scaling law

V~= —2n/(r'+—Xr3)' (a.u. ),

~2 [1 ~(I/gl/3)]1/2 (a u )
(12)

& must be considered as an adjustable parameter;
~=1 corresponds to the Thomas-Fermi approxi-
mation. The parameter X could be determined by
comparing the diffusion cross section, calculated
using V~, with the experimental one. This work
was not done. We used (10) to determine the pa-
rameter X which gives AZ, the values of Table IV.
The following values were found: X=1.6 in neon
and 1.7 in argon. This very good agreement sug-
gests that the use of (12) is justified. It would be
interesting to see if the study of the diffusion
e (Ne) and e (Ar) leads to the same values of X.

n (Ne) Q(Na)», (Ne) = (,) ( )
AZ, (Na)

and a similar formula for argon. 0 is the atomic
volume.

According to Callaway the respective values of
hZ, are 0. 264 eV (Na) and 0. 81 eV (K). The polar-
izability ratios are, respectively, 2. 6 and 1.25.
(We use the ionic polarizabilities implied in the
asymptotic forms of Callaway's V~.12)

The crude formula (11) gives then —1.09 eV for
neon (our value given in Table IV is —1.05) and
—1.75 eV for argon (—1.84 in Table IV). The
agreement is quite satisfactory.

Mittleman has proposed the following formula,
corresponding to a statistical approximation:
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V. CONCLUSION

For solids with filled and low-lying valence
bands, the HF band structure can be calculated in
a simple and a nearly exact way, using the APW
scheme. The assumption of a negligible contribu-
tion of the region outside the APW spheres to ex-
change has been justified. The method, applied to
neon and argon, gives results which are in good
agreement with previous calculations of Lipari
and Fowler on argon.

The HF gap is larger than the experimental op-

tical gap by several eV, suggesting a very strong
influence of the correlations. A satisfactory treat-
ment of these correlations is obtained in a semi-
empirical manner: The Mott-Littleton approxima-
tion gives an evaluation of the interaction of one
charge in one cell with all the other cells; the cor-
relation energy for the valence hole is calculated
using atomic results. It is shown that a polariza-
tion potential is adequate to take into account the
correlation energy of the free electron in the same
cell.

'R. S. Knox and F. Bassani, Phys. Rev. 124, 652
(1961).

L. F. Matheiss, Phys. Rev. 133, 184 (1964).
3U. Rossler, Phys. Status Solidi 42, 345 (1970).
~N. O. I ipari and W. B. Fow1,er, Phys. Rev. B 2, 3354

(1970).
~J. C. Slater and J. H. Wood, Intern. J. Quantum

Chem. 3, 3 (1971).
J. C. Slater, Phys. Rev. 51, 151 (1937).

7T. L. Loucks, Augmented Plane 8'ave Method (Benja-
min, New York, 1967).

'E. Boursey, J. Y. Roncin, and H. Damany, Phys.
Rev. Letters 25, 1279 (1970).

~D. N. Batchelder, D. L. Losee, and R. O. Simmons,
Phys. Rev. 162, 767 (1967).

W. B. Fowler, Phys. Rev. 151, 657 (1966).
~~N. F. Mott and M. J. Littleton, Trans. Faraday Soc.

34, 485 (1938).
J. Callaway, Phys. Rev. 106, 868 (1957).

3M. H. Mittleman, Advances in Theoretical Physics
(Academic, New York, 1965), Vol. I, p. 283.

PHYSICAL REVIE W B VOLUME 5, NUMBER 2 15 JANUAR Y 1972

Quantum Theory of a Basic Light-Matter Interaction

W. C. Tait
3M Company, St ~ Paul, Minnesota 55101

(Received 26 April 1971)

Quantum field-theoretical methods are applied to the problem of determining how the exciton-
lattice interaction affects the dispersion of an electromagnetic field associated with the exciton-
radiation interaction. An exact solution for the retarded Green's function of the radiation field
is calculated for a quantum model consisting of three interacting boson fields —photon, exciton,
and phonon. The classical Green's function of a damped-harmonic-oscillator model of a dielec-
tric is shown to be a special case of this quantum Green's function. Two sets of dispersion
relations are derived; one set has well-defined energy, the other has well-defined momentum.
Results of the theory clearly suggest that the exciton-lattice interaction is capable of literally
damping out the "polariton" effects associated with the exciton-radiation interaction in the field
solutions with well-defined energy. A Poynting theorem based on the classical model is also
derived which includes effects of both spatial dispersion and damping.

I. INTRODUCTION

The quantum theory of light-matter interactions
in semiconductors and dielectrics has been ap-
proached from two different directions. One group'
has studied the electron-lattice interaction and has
shown how it produces damping of excited electron-
ic states (excitons). Another group has studied
the electron-radiation interaction and has shown
how it produces dispersion of the radiation field.
Neither of these groups has dealt rigorously with
both the electron-lattice (H.„) and electron-radia-
tion (H,„) interactions simultaneously.

These interactions will be given equal attention
in the present paper. Quantum-mechanical results
are derived which have a form closely resembling
results based on a classical damped-harmonic-
oscillator model of a dielectric.

A brief discussion of this classical model is given
in Sec. II. A generalization of Poynting's theorem
is derived which includes effects of both spatial
dispersion and damping. From this an energy ve-
locity is defined which determines the speed at
which energy (electromagneticlike and/or matter-
like) propagates through a classical dielectric.

A quantum field-theoretical model consisting of


