
PHOTOCONDUC TIVITY DUE TO EXCITONIC -ENERGY. . .

J. E. Eby, K. J. Teegarden, and D. B. Dutton, Phys.
Bev. 116, 1099 (1959).

H. B. DeVore, Phys. Rev. 102, 86 (1956).
6F. Urbach, Phys. Rev. 92, 1324 (1953).
'D. L. Dexter, Nuovo Cimento 7, 245 (1958).

W. Martienssen, Phys. Chem. Solids 2, 257 (1957).
~G. R. Huggett and K. Teegarden, Phys. Rev. 141, 797

(1966).
M. Sydor, Phys. Rev. 163, 873 (1967).

~~M. Sydor, Phys. Rev. 183„846 (1969).

PHYSICAL BEVIE% B VOLUME 5, NUMBER 2 15 JA NUAB Y 1972

Noncollinear Attenuation of Transverse Acoustic Waves in A1203$

R. C. Purdom*
Department of Physics, Purdue University, Lafayette, Indiana 47907

and Department of Physics and Mathematics, Kentucky +'esleyan College, Oavensboro, Kentucky 42301

and

E. W. Prohofsky
DePartment of Physics, Purdue University, Lafayette, Indiana 47907

(Received 28 July 1971)

For transverse waves propagated along an even-fold axis, the phonon-phonon coupling
parameters are zero for collinear interactions. This necessitates a consideration of the
angular dependence of the coupling parameter. The angle at which these parameters peak
affects the minimum energy deficit possible on interactions. A calculation including both the
angular dependence of the coupling parameters and the uncertainty of phonon energy due to
thermal-phonon lifetimes is done for the case of A1203 along the a axis. The calculated attenu-
ation fits the experimentally observed attenuation.

I. INTRODUCTION

The agreement of theoretical calculations of
ultrasonic attenuation in insulators at low temper-
atures with experimental observation has greatly
improved since the uncertainty in energy of the
thermal phonons has been included. '2 This un-
certainty in energy arises because of the extremely
short lifetime of thermal phonons due to their in-
teractions with other thermal phonons and/or de-
fects. The uncertainty in energy allows processes
to occur which are not included in the Golden Rule
calculation of Landau and Rumer. '

Although these non-energy- conserving processes
are reduced in probability over strictly conserving
processes, in many materials no conserving pro-
cesses are possible, and in addition there are so
many such nonconserving processes possible that
their total effect on the attenuation can be the
greater. In such cases one can get attenuation con-
siderably different than that predicted by Landau
and Burner.

In this paper, we consider the measurements by
de Klerk of the attenuation along an even-fold axis
in Al&03. He has found the attenuation to have a
T, T', and T' temperature dependence for the
longitudinal, fast transverse, and slow transverse
waves, respectively, at lowest temperatures. The
first two of these dependences are clearly in dis-

agreement with the predictions of the Landau-
Rumer theory. We will consider the attenuation of
the transverse waves in detail in Secs. III and IV.

The equation for calculating the three-phonon
interaction in the presence of finite lifetimes de-
veloped by Simons~ replaces the energy-conserving
6 function by

(sinnt/0) = J "e ' t "sinn dt/0 ) e 't 'dt

1+037'

Here v is the thermal-phonon lifetime and 0 is the
energy deficit

where co2 is the frequency of the final thermal
phonon, co, the frequency of initial thermal phonon,
and v the frequency of the acoustic wave. The
integral in the numerator allows for the decay of
the coherent state (through other channels) and re
duces the interaction considered. The denominator
corrects for the fact that the thermal phonons are
not depopulated by the thermalizing collisions. It
essentially normalizes the population of the thermal
phonons to their equilibrium value. The range of
validity ot Eq. (1) has been investigated by Leggett
and ter Haar. '

One can consider Eq. (2) to be a weighting func-
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tion for the transition probability due to energy-
conservation effects. This function is shown in
Fig. 1. Processes in which energy is strictly
conserved would be those at Q= 0. Processes
which do not strictly conserve energy but are
allowed within the uncertainty principle fall within
the central maximum. The width of this maximum
is controlled by the denominator ot Eq. (2). The
half-width occurs for Q7 = 1. This width is there-
fore 7 ' and these processes are quasiallowed in
the usual sense of the uncertainty relation. There
is also a finite probability for interactions to occur
for very large energy defects Qv. & 1, although this
probability falls off as Q . For the sake of clarity
in the following discussion, we will refer to these
three types of processes: allowed, quasiallowed
(i.e. , those in the central maximum), and unal-
lowed (i. e. , those out on the tail oi' the probability
distribution).

The total attenuation comes from integrating
over all possible processes which contribute. This
includes integrating Eq. (2) over energy or Q. This
function is normalized to unity just as the 6 func-
tion is for 7. =~, as in the Landau-Rumer case.
If all Q processes are allowed by the dispersion
relations of the material, one should get the same
answer as Landau and Rumer and a T dependence.
This can be understood physically in the following
way. The largest contribution to the integral of
Eq. (2) comes from the central maximum. For
finite lifetime the probability of each process is
reduced by v due to the competition of thermal
processes. However, the quasiallowed processes
extend over a range in Q of v ' due to lifetime
broadening of the levels. These two effects tend
to cancel leaving the area of the maximum roughly
cons tant.

In some solids the dispersion relations may be
such that no processes exist in which the energy
can be conserved. Also, it may be that the coupling
parameter for energy-conserving processes may
be zero. In either case, no energy-conserving
processes can occur. This would make other
factors in the scattering integrals zero for some
range of values of Q near Q=0. A first approxi-
mation of the effect of these selection rules would
be to exclude regions in the integral over Q of Eq.
(2). Consider excluding all I QI & Qo, where Qo is
the smallest energy defect for which collisions
are possible. If QpT«1 i.e. , falls well within
the central maximum, many quasiallowed processes
can occur. Since the allowed and quasiallowed
processes for Q7 «1 have the same probability
(the curve of Fig. 1 is relatively flat at Q= 0), the
exclusion of the small region in the central maxi-
mum does not alter the total attenuation very much.

On the other hand, if Qov»1, the entire central
maximum is excluded and only processes on the

probability tail can take place. In this region Eq.
(2) can be approximated by

(sinQt/Q) = 1/mQ r (4)

p 7
I+n~z~

I'IG. 1. Probability of a particular transition as a
function of its energy deficit for two thermal-phonon life-
times. The shorter lifetime curve is lower and broader.
The area under the curves is conserved. The dashed
line at deficit 0= Qo is a particular interaction which is on
the probability tail for long lifetimes but is in the central
maximum for short lifetimes.

and the integral will be proportional to 1/Q07.
For Qov «1 the result is very close to the Landau-

Rumer result which assumes energy conservation,
and the temperature dependence in normal materials
should go as T . For Qg «1 the extra factor 7. '
appears, and in the final result for the attenuation,
temperature dependence should go as T (1/7) ~ T,
neglecting any temperature dependence of Qo. For
Qp= 1 the attenuation is from unallowed transitions
as well as from some quasiallowed transitions,
and the temperature dependence of this mixed case
should be between the two limits of T and T'.

In view of the above arguments, the measure-
ments by de Klerk on Alz03 along the a axis is
particularly striking; see Fig. 2. The slow trans-
verse wave is seen to go as T for all temperatures,
the fast transverse wave as T7 for lowest tempera-
tures, and the longitudinal wave as T for lowest
temperatures. At higher temperatures all seem to
vary as T . This spans the range expected on the
basis of the above discussion. The shift of the
fast transverse and longitudinal waves to T de-
pendence at higher temperatures can be explained
on the basis of a decrease in Q07 at higher temper-
atures. As v. decreases, the central maximum in-
creases; see Fig. 1. An energy deficit Qo which is
outside or on the edge of the central maximum will
be well inside the central maximum at higher T
and the quasiallowed processes will dominate.

II. DISPERSION RELATIONS AND ENERGY DEFICIT IN Al 0

The energy deficit
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FIG. 2. Attenuation along the a axis in A1203 from
Ref. 4 (reprinted with permission).

~=co, —~, —co (5)

can be approximated where the energy of the acous-

0- 7& Q3 ~h
' k —(d = (d ( p C OS 0 —l),

p
ath

~pa

where &~(d,„ is the gradient in k space of the thermal
phonons, v«„ the thermal group velocity, v„ the
acoustic phase velocity, and k the acoustic-phonon
wave vector. The angle ~ is essentially the angle
between the acoustic phonon and the direction of
the thermal phonons as k«k„k~ and k, +k=k2.
The assumption has been made that (d, and ~3 lie
on the same phonon branch as ~«~„~2.

For the longitudinal wave in A1~03, v„ is by far
the largest velocity in the crystal, and since cos0
~1,

('Ugth~vya) cos0 & 1

and 0 is always large. The thermal-phonon life-
times have been measured to be proportional to
T ' by von Gutfeld and Nethercot. One then ex-
pects a large temperature dependence for inter-
actions with any branch, and certainly a T depen-
dence for attenuation dominated by interactions
with fast or slow transverse thermal phonons. 7

This situation is shown schematically for isotropic-
phonon velocities in part (a) of Fig. 3.

In the case of the fast transverse wave one would
normally expect that energy-conserving transitions
could occur in which the two thermal phonons are
longitudinal. In this case P would be greater than
1.

This would give rise to standard Landau-Burner
attenuation and a T dependence would be expected.
A calculation of this mechanism for the attenuation
turns out; to be too small to explain de Klerk's
results. The reason is that the longitudinal branch
in A1203 is much higher in energy than the other
acoustic modes. Thus the k vector is small for
those thermally activated phonons. The small k

vector implies a small density of states, and few
phonons of this branch are available for interaction.
The energy-conserving process then does not dom-
inate the attenuation.

Another possibility is interaction with fast trans-
verse waves. The dispersion is not great and for
a fast transverse wave scattering off a fast trans-
verse thermal phonon the crucial parameter P = 1.
The deficit Q can be zero for ~=0, i.e. , all the
phonons involved are collinear. This case corre-
sponds to part (h) of Fig. 3. For the interaction
of fast transverse with slow transverse thermal
phonons, P &1 and the energy deficit would be very
large reducing the strength of this interaction.
This, as in the longitudinal case, would correspond
to part (c) of Fig. 3.
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(a) (b) (c)

FIG. 3. Two-dimensional plot to determine energy and
momentum conservation for an acoustic and two thermal
phonons. The smaller circle is the constant energy sur-
face co& (i.e. , all k~ such that cu = cu&). The large circle
is the constant energy surface ~2 chosen such that ~&
= co~+ cu, where cu2 is the final thermal, co~ the initial ther-
mal, and ~ the acoustic phonon energy. The center of
the small circle is displaced from the center of the large
circle by k, the acoustic-phonon wave vector. Therefore
an intersection of co& and co2 guarantees the simultaneous
satisfying of u~+ m= cu2 and k~+k =k2. Parts (a), (b),
and (c) represent cases where the ratios of P (thermal-
group to acoustic-phase velocities) are P &1, P=1, and

P &1, respectively.

III. ANGULAR DEPENDENCE OF THE THIRD-ORDER
ELASTIC CONSTANTS FOR TRANSVERSE WAVES

We use the third-order elastic constants recently
measured for Alz03 by Hankey and Schuele' to

In A1203, however, along the a axis, the coupling
constant is zero for -collinear transverse waves.
Thus no processes for ~=0, or therefore Q=O,
occur. In Sec. III it is shown that the coupling
constant peaks for an angle ~ of about 45'. As
seen in (b) of Fig. 3 this causes a nonzero Qo. For
the particular values of 7 in A120, at the appro-
priate temperatures, the scattering at ~= 45' has
Ape'= 1 and the detailed calculation in Sec. IV fits
the T7 dependence observed. If ~= 0' scattering
were allowed then Qpv'«1. A similar case of col-
linear scattering has been calculated by Maris
and the result is a T' temperature dependence. If
the third-order elastic constant has peaked at ~=
90' the value of Qov would have been greater [see
part (b), Fig. 3], and the temperature dependence
would be TQ. Shirene has calculated the ultrasonic
attenuation for such a large-angle noncollinear
scattering case.

The slow transverse wave has low phase velocity
and can conserve energy in collisions with thermal
phonons from both the fast transverse and longi-
tudinal branches. Such collisions are diagrammed
in part (a) of Fig. 3. The lower v,„of the fast
transverse waves compared to the longitudinal
waves gives rise to a greater density of states for
the thermally activated phonons. This gives rise,
as shown in Sec. IV, to a e,„' dependence. The
ratio of longitudinal to fast transverse phonons in
A1~03 along the a axis is 3 . This greatly favors
damping by the fast transverse wave.

= 2(C486+ 3C,4) sin8 cos8

= —2. 2&&10' sin8cos8 dyne/cm~ (9)

We calculate the approximate coupling parameter
for the interaction of fast transverse phonons with

~ ~ ~

k& in the x& —x~ plane by assuming that c is also
in the x, —x~ plane and perpendicular to k, . This
coupling parameter is given by Eq. (10):

+f t y f g f g (xf xa plane of A120~)

= 2(C2«- C,«) sin8 cos8 (cos 8 —sin 8)

= l. 3&& 10'3 sin8 cos8 (cos 8 —sin~8) dyne/cma

(1o)
The square of the coupling parameters enters

into the attenuation, and in Fig. 4 we plot the square
of Eq. (9) (dotted line) and the square of Eq. (10)
(solid line).

To calculate the attenuation one must integrate
not only over symmetry directions but over all
directions about the a axis. This was handled by
assuming a simplified form for the coupling coef-
ficient.

This form is considered independent of angle cp

and was used in the actual calculation of See. IV.
This form is

A„, , =A.„,„,(noncollinear) sin8 cos8

The best value of A.„,., from a fit of the experi-
mental data is &„,., = 8. 3X 10 dyne/cm . Equa-
tion (ll) squared with this value is plotted as the
dashed line in Fig. 4.

To see how the various equations for coupling
constant effect the attenuation, we plot the squares
of Eqs. (9)-(11)weighted by the probability of
transition due to energy deficit, Eq. (2), as a
function of cos8 in Fig. 5. Expression (9) cor-
responds to the dotted line, expression (10) to the
solid line, and expression (11) to the dashed line.
The energy-deficit weighting function used a value
of ~v= 50 which is appropriate to the case of
A1203 at the temperatures of de Klerk's experi-

make an approximate calculation of the true coupling
parameter.

The normal coordinate system notation for A1~03
is that the a axis is designated as the x, direction,
the trigonal c axis as the x3 direction, and the axis
perpendicular to the x& —xs plane as the xa direction.
A fast transverse wave propagating in the a or x&

direction would be polarized in the x~ direction.
We calculate the approximate coupling parameter

for the interaction of fast transverse phonons with
k, in the x, —x3 plane by assuming &» the polariza-
tion vector, is always in the xz direction, and the
parameter obtained is"

f.t. ,g.g ..f.g. (&y —x, plane of A1~0s)



&s.t.+~.t -~, „(x,—xs plane of Al 02 3

=2C4,6+ C44) sin8 cos8

= —5. 6~10' sin~sin cos8 dyne/cm2.

/

/

I

l

I

(12)

For k, and Z& in the x, —x 1

dicular to k~, the a
is

e approximate couplining parameter

ATTENUATION QF TRANNSVERSE ACOUS

I I I I I I I I I

N S TIC WAVE S 621

I

z I

o~
o

I
'l

I

+8.t.+f.t «f t, (x& —xa plane of Al 02 3

= 2C,& (sin 8 cos 8) —4C= 2C
' —,24 (sin 8 cos8)

&&(cos'8 —sin'8)

= —2. 0~10' sin0cos~

x(sin 8 —0. 54cos 8cos 8) dyne/cm (13)

para

A., t ~ +g t „g t =3.6&10 dyne cm.2

Again this is simplif' die to the sa
se case with a fitted

e
meter:

V
I.O .9 .8 .7 .6 .5.4 .3.2 .I 0—cos 8

FIG. 4. Angular dg dependance of the s
ing parameter for va '

e square of the cou-

r }1

r various mod
approximate model ' r ca-

culations. The dotted line i
ized in th

e x —x icu ar to the

IV. NONCOLLINEAR AATTENUATION OF
NSVERSE WAVES

The expression for th
as 1given by Landau a d R

or the attenuation ofo ultrasound
u an Rumer af

ermal phonon states is

4 341+
Q=

32& pv

x k&dk& sin~d~dy (14)

ment. The lifetime wa t
dNth t

was taken fr

As can be seen the a
the

n e assumed value

y etry planes and

po
1'

e ore be a fair extra ol
er or all values of

two planes. This 'nf
o y between the

gis inference is fu

eter with functional d
one were to use a ccoupling param-

the resultant tern
ependence of 0

mperature de en
as in Eq. (10)

pendence would b th
or Eq. (11). The m

scale with the choice
e in Ref. 10.b 1 ltd

e ependence for a s'
ig. 3 is dete

e weighted con lin
e-

can be seen in Fi
p ing parameter. It

n ig. 5 that all the f
samt.. region in cos0

e forms peak in the
n cos and merel diff

The same calculat
y i fer in magnitude.

trransverse wave. A
u a ion can be ma de for the slow

~ ~

ve. A slow transve
iree tion is olpo

Therefore th

op ng t p
, is always in the x directc ion is given

2.8
2,6-

o 2.4Z

2+2

~2.0-
LIJi l.8-

o

o l.2y
+ 1.0)I
CO

oo .4-
.2

l.0 0.9 0.8 0.7 0.6 0.5

FIG

—cos 8
. 5. Relative co

funct'
ontribution to th

c ion of angle for the
e attenuation as a

mode
r e different cou li

th
e s. The dashed 1ine is the a

p ing parameter

fo
e later calculat' in

pproximation used '

g- ash short-dash line is

to t . representat'
2 p p p icu ar

in the cal.culat ion.
ive value cu7. =50 was used



E. W ~ PROHOF SKYR. C. URDOM AND

&2 (noncollinear d cose)d+x 1'(~7(1 pcos )jff
expression (Then evaluati g

have for the
the integ» o

first andwefinite Powers
secpnd terms,

622

nt pne
' t lnt, o accpun,r unCertaln y

pf
o

g function
T take the energy

' b the Lorentzlst replace the
(11) and (2) into 14),'2' 2 Substituting Eqs.Eq. 2

we get

4.34m'@
n =

12p p3v3v',

.„... )

( ) I ,. ( , )

,„~„r,(i —s)l'))4 »1+ ~77

2 +
P3 P(d ~P

pml»t esredic e~ t d attenua, tlo
hanism In A 2al Landau-Rum

. to the f»t
er mec an'the norma

tudinal velocitythe ratio
. approxlmae y 3.

, d ta

- .f the lpngiu '"
transverse v

fitted to de K e
e]pcity ls a

lerk's da„41)can b '
8x10'

Expr s
noncollineaby 'using &I~ ~'+

2dyne/

Fast Transvers e Waves

aves interac g ith fastFor fast transve»
1 temperatureerma Ptransverse th

d hase velocity yav arethe group veloc y ~ . these velpcltles
cjt v h

is P=1 ~ratlp Of

energy COn-

about equal.
uld be close to epllislo» "

lth iso-
Therefore, co

6 In a splid wl0 —p' in Eq. 6 ~serving at
'ties this impliesc phpnon veloc

(17)q(6= 0)

(18) reducesIn this limit, Eq

, -1)I'~tte„unction «&
l
~~(8olhnear At ten&a

e expand» the ex-teness& w

-cpnserved liml
11 fpr comPle

.
t In this case,npn-energytreme

(18) hecomes

arctan(1 —8)~ I(arctan(1+ 8)"~
k~T

1 —
2

347l@co+ g»t

60p v vj.

~2 (none oilu4 34m g+tn = —

Bpp vvq

(18)(
PsT

2 ln(2~r) —
8

X

nsverse waves interacting wl
rse thermal phonons, v,~

In this 1 it Eq.lm

, , (noncollinear)34& 8'(L)& 8 g +g g f g n
6p@3 10

e behavior4 q temperatur~One sees the P
'on in par enthes

ex ected T
Fordried by the exp

heat-Pulse melues of ~ "
ld»d Nethercpt, 'men s by von Gutfel

h' ls shown inlerk. T ls ibe fit to e

t.-f.t.e value of A, , „,„,
8. Ox 10 dyne /cmwhic ih is shown is 8. Ox

T sverse Wavesf Slow Transve

E

Q)

I
Z'
O

.02—D
Z'
LLII-
I~

O
~Z .oiO-

i-,008—

~006—

,004-

.2
Al~ 03
X AXIS.IO- FAST
TRANSyERSE

~08" WAyES

(I QHz).06-

T and is identical'
n varies as T, an i

the
p

coup lng
fas

't . The(1 v,p honon velocity.

I i I i l~002
60 80 10020 40

TEMPERATURE —K

attenuation solid' on of calculated
Klerk for

pFIG.
imental values

a axis.
line an

hse ~ave in Al2 3the fast transverse w



NONCOLLINEAR ATTENUATION OF TRANSVERSE ACOUSTIC WAVES. . . 623

4. 34m RA, , „... (noncollinear) 0 T
~5 )

This limit (as expected) has a simple T /t temper-
ature dependence.

V. CONCLUSION

The attenuation of transverse waves along the a
axis in A130, can be explained by taking into account
two related factors. These are the lifetime of
thermal phonons and the angular dependence of the
coupling parameter. For the fast transverse wave
the attenuation is dominated by interactions with
thermal phonons of the same branch. The fact that
the coupling parameter is zero for collinear inter-
actions causes the allowed transitions to be zero.
The attenuation was then dominated at lowest tem-
perature by quasiallowed transitions and this ex-

plains the T' temperature dependence, i.e. , lies
between the T and T limits for allowed and un-
allowed processes.

The slow transverse wave is dominated by allowed
processes with the fast transverse thermal phonons
and has the expected T dependence. The longitu-
dinal wave is probably dominated by unallowed pro-
cesses and has T dependence.

This method can also be applied to the attenua-
tion of transverse waves along any even-fold sym-
metry direction. For example, the measurements
in the (110) direction LiF by de Klerk and Klemens, '2

or the slow transverse waves in X-cut quartz by
Lewis and Patterson, 's or the (110) direction in
InAs measured by Keck and Sladek. ~ All these
cases show temperature dependences somewhat
like that of A1~0,.
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Mixed-Mode Excitons in the Photoluminescence of Zinc Oxide-Reabsorption and Exciton
Diffusion
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The photoluminescence of mixed-mode excitons in ZnO at 77 'K has been measured normal
to the surface at various angles of the wave vector with respect to the c axis. It is shown that
the mixed-mode A (n =1) exciton-emission band is strongly influenced by reabsorption, and
the exciton diffusion length is estimated to be 0.20 JM. The damping was found to be independent
of the angle and~as determined to be approximately 51 = 2. 8 meV.

I. INTRODUCTION

The existence of mixed-mode excitons in the
photoluminescence of uniaxial crystals has been
previously verified. 2'3 If the emission polarized

with the electric field R in a plane containing both
the photon propagation vector k and the c axis is
measured with k near k & c, as shown in Fig. 1(a),
a narrow emission band is observed near the longi-
tudinal exciton energy. As the angle between k and


