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Exponential absorption edges + =He """"0 have been observed in both ionic (Urbach's rule:
g =o/&AT*) and covalent materials. Arguments are given to show that a unified theory of ex-
ponential absorption edges must (i) rely on electric microfields as the cause, (ii) include ex-
citon effects and the final-state interaction between the electron and the hole, and (iii) ascribe
Urbach's rule to the relative, internal motion of the exciton. An approximate calculation has
been made in which the nonuniform microfields are replaced by a statistical distribution of
uniform microfields; this calculation is a generalization to physically relevant intermediate-
strength fields of previous strong- and weak-field theories of Redfield and Dexter. In contrast
with the other microfield models, which obtain the exponential spectral shape by averaging
over microfield distributions, the present theory obtains a quantitatively exponential edge as
an inherent feature. The temperature dependences of the edges in various materials follow
qualitatively from the nature of the microfield sources. The specific temperature depen-
dence of Urbach's rule in ionic crystals is obtained from this model, with supplementary ar-
guments to account for nonuniformity of the fields.

I. INTRODUCTION

The empirical characterization of the funda-
mental optical-absorption edge known as Urbach's
rule was first enunciated in 1953 to describe the
observations in AgBr. ' As reported then, the
absorption coefficient a varied with temperature
T and photon energy k&u (in the spectral range of
the edge) a.s

o, = A exp [o (8(o K(u 0)/ks &), -
where kB is Boltzmann's constant; 5 is Planck's
constant divided by 2m; and A., &p, and 0 are
fitting parameters. Subsequent measurements
have led many others to a slightly modified version
of this rule in absorption edges of an extensive
number of ionic materials for photon energies as
much as 1 eV below the first absorption peak.
The chief modification which has occurred has been
the replacement of the temperature T by an ef-
fective temperature T* such that, in ionic crystals,

T* = (an, /2l, ) cot (an, /zk, v'),
whel e kQp is the energy of an optical phonon. We
note that T* and T differ significantly only at low
temperatures. Aside from this, the only other
alteration to the use of Eq. (I) for ionic crystals
has been an occasional indication that o, A, and
mp may be temperature dependent.

In semiconductors (both crystalline and amor-
phous), exponential absorption edges have often
been observed, but the effective Urbach "temper-

ature" is not given by Eq. (2). The exponential
behavior as a function of photon energy might be
termed a "spectral Urbach's rule, " since

Z(h co-h cup)

w1th g, A, and cop being fitting parameters whose
temperature dependences may vary even from
sample to sample of the same material. While
the logarithmic slope o(ksT*) ' of the absorption
edge in ionic crystals has been correlated with the
optical-phonon frequency Qo (through T") and the
electron —optical-phonon coupling constant (through
o), ' the slope g in covalent semiconductors has
been shown to be dependent on the concentration
and state of electrical charge of impurities. 7'

Also, in contrast with the 0. 1-1-eV-wide Urbach
tails in ionic crystals, the impurity-induced ex-
ponential edges of semiconductors extend over
spectral ranges of only tens of meV.

In. addition to the exponential edges observed in
alkali halides, '3 II-IV compounds, ' III-V semi-
conductors &4 organics, '~ and amorphous systems ie

extrinsic absorption bands in ionic materials some-
times exhibit exponential tails. The spectral
Urbach rule is so universally obeyed that we be-
lieve a single physical mechanism must be the
cause of all the exponential absorption edges. '~'

Most previous theories of exponential edges do
not pretend to explain the data in a unified manner.
For example, theories of Urbach's rule in alkali
halides have been based primarily on configuration
coordinate models "9 2 [in which the configuration
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coordinates generally have some specific (e.g. ,
parabolic) shape]. Various phonon-sideband and
polaron models have been used to explain the
phonon-induced edge shapes in II-VI and some
III-V semiconductors. In contrast, the im-
purity-related tails in covalent semiconductors
have traditionally been described in terms of den-
sities of states for random potentials or Franz-
Keldysh effects. Of the many previous theories,
only four seem to offer a potentially unifying mech-
anism: Dexter's original def ormation-potential
theory, "Redfield's internal Franz-Keldysh
model, ' Dexter's Stark-shifted exciton mecha-
nism, and the one-electron density-of-states
theories. The first of these ' led to a nonex-
ponential edge shape and has been abandoned by
Dexter in favor of his more recent Stark-shift
model. '

As we shall see in Sec. II, none of the previous
theories is capable of explaining the essential
physics of exponential edges in a quantitatively
accurate and unified manner. Nevertheless, the
primary conclusion of the present work is that
there exists at least one unified mechanism for
causing exponential edges (a preliminary report of
this work has appeared'7). The physical model is
the electric field ionization of the exciton (i.e. ,
the electron tunnels through the Coulomb barrier
away from the hole). This unified mechanism,
which builds upon the electric field theories of
Redfield and Dexter, ' is general, but the sources
of electric fields may be optical phonons, im-
purities, or other imperfections.

In Sec. II, we establish criteria for a unified
theory and discuss the relationship of previous
theories to these criteria; Sec. III discusses the
qualitative physics of the present field-ionization
model (which satisfies the criteria of Sec. II). To
illustrate the model, calculations of quantitatively
exponential edges are presented in Sec. IV, using
a uniform-microfield approximation (we are un-
able to solve the general problem of nonuniform
microfields accurately). Section V is devoted to
a discussion of the consequences of the theory and
an analysis of the difficulties of the uniform-micro-
field approximation; the work is summarized in
Sec. VI. Short reviews of the relevant experiments
and theories may be found in Appendices A and B;
Appendix C contains a derivation of the electric
field distribution for LO phonons.

II. CRITERIA FOR UNIFIED THEORY

A. Role of Microfields

The first challenge of any unified theory of ex-
ponential absorption edges is to resolve the ap-
parent conflict in the evidence that the Urbach
edge is caused by optical phonons in most ionic

solids '"but by impurities in covalent semi-
conductors. ' The mere existence of impurity-
related exponential tails indicates that a unified
theory cannot depend exclusively on the kinetic
energy of the phonons and the lattice dynamics.
Therefore, those existing theories which ascribe
Urbach's rule to polaron and phonon-sideband
effects, ' ' or configuration coordinates"
cannot be general as they stand. These arguments
do not mean that we reject phonons as the dominant
agent in shaping the absorption edges of ionic
solids —the evidence for the dominance of phonons
is overwhelming. Rather, they emphasize the
need for a mechanism by which the phonons par-
ticipate in ionic materials and which is consistent
with the results in semiconductors.

Such a unifying mechanism is available in the
electric microfield model originally proposed by
Redfield' and subsequently developed by Dexter. "
The importance of the electric microfields is
strongly supported by the experiments of Dixon
and Ellis on InAs and of Redfield and Afromo-
witz ' on GaAs, which show that the exponential
edges in nearly covalent semiconductors are re-
lated to the concentrations and electrical charges
of impurities. ' (The root-mean-square elec-
tric fields in the materials showing impurity-
caused Urbach tails are typically 10 —10' V/cm. )
In ionic crystals, the slopes of the spectral Urbach
rule have been correlated with the strength of the
polaron coupling, indicating that the LO phonons
are responsible for the great breadth of those ab-
sorption edges. ' The enormous electric fields
associated with the longitudinal optical phonons in
strong-coupling materials (-107 V/cm near room
temperature, see Table I)4' are consistent with
the notion that electric fields are primarily re-
sponsible for Urbach's rule.

In addition to the impurity fields in III-V and
IV semiconductors and the LO-phonon fields in
alkali halides and II-VI compounds, there are
electric fields in elemental materials such as Se
and Te because of the presence of more than two
atoms per unit cell, in amorphous systems be-
cause of impurities and disorder, ' ' and in acous-
toelectric experiments because of piezoelectric
interactions. If a unified mechanism of exponen-
tial absorption edges exists, it must be due to the
electrostatic interactions between the excited-state
electron-hole pair and these various (nonuniform)
electric fields.

For the ionic solids, this treatment of the

lattice vibrations in terms of their microfields
must be recognized as a classical picutre of lat-
tice dynamics. This is justified by noting that
any theoretical description of a phonon-induced
exPonential edge demands an infinite number of
phonons participating. ' Every many-phonon con-
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figuration is equivalent to a classical state which
can be adequately represented —for LO phonons-
by its classical electric field pattern. The em-
phasis on the microfield representation, however,
is primarily to show the unifying feature common
to all of the materials concerned.

8. Exciton Effects

Once it has been recognized that the microfields
must be generally responsible for exponential
edges, it is necessary to determine how they af-
fect the absorption edge shape —do they perturb
primarily the motion of the electron, the hole, or
both? And to what extent are the final-state Cou-
lomb interaction and the correlations in the po-
sitions of the electron and the hole important'?
Recent calculations of optical absorption in a
uniform electric field show that the Coulomb scat-
tering between the electron and the hole enhances
the optical absorption in the tail, relative to the
one-electron Franz-Keldysh ' absorption, by
several orders of magnitude. '0 Therefore, the
role of the Coulomb interaction between the elec-
tron and the hole cannot be overlooked in any
quantitative treatment of Urbach's rule. So Red-
field's theory, which acknowledged the qualita-
tive importance of the final-state electron-hole
interaction, is incomplete because it neglects
exciton effects.

Other results of these uniform-field calcula-
tions' ' are that, for strong fields E (i.e. , strong
enough to shift the exciton energy by an amount
equal to the binding energy) (i) perturbation theory
diverges badly, (ii) the Stark shift is no longer
quadratic, and (iii) the Stark broadening is much
larger than the Stark shift. Thus Dexter's Stark-
shift theory —which relies on perturbation
theory, neglects Stark broadening and relies on
the quadratic nature of the Stark shift even for
strong fields —must also be improved upon.

It should also be noted that neither of the pre-
vious microfield theories obtains an accurately
exponential spectral shape as an inherent feature.
They achieve the exponential shape by suitable
averaging techniques.

Finally the one-electron density-of-states models
are eliminated from consideration because they
neglect not only the exciton effects but also the
important field-induced correlations in the positions
of the electron and the hole.

C. Relative Motion

relative motions of the exciton rather than the
separate motions of the electron and the hole. The
question of whether the microfields cause an Ur-
bach tail by perturbing the center-of-mass or the
relative motion appears to have been decided by
Schnatterly's experiments in KI. Those measure-
ments' of circular dichroism lead to the conclu-
sion that either the hole-phonon interaction is not
responsible for the Urbach tail or else the lattice
distortions of noncubic symmetry contribute less
than 7%%u~ to the Urbach tail. We consider the latter
alternative to be highly improbable. Therefore,
since the center of mass of the exciton in KI is
very nearly at the position of the hole, we infer
that the relative motion of electron and hole —and

not the center-of-mass motion —is responsible for
Urbach's rule. This last conclusion has far-
reaching consequences because it imposes severe
limitations on many of the well-accepted theories.

III. FIELD-IONIZATION MODEL: PHYSICS

In Sec. II, we argued that none of the previous
theories provided a quantitative unified explanation
of exponential absorption edges. In this section
we shall present a unified theory of exponential
absorption edges which is consistent with the
criteria of Sec. II and capable of explaining both
Urbach's rule in alkali halides and the impurity-
related edges in semiconductors. The treatment
of the absorption edge will be given in terms of
the Elliott theory of optical absorption by Wan-
nier excitons. ' The Elliott theory assumes the
validity of the effective-mass approximation ' and

expresses the optical absorption coefficient in
terms of the wave function U(r) of the internal
(relative) motion of the hydrogenic exciton; here
r is the position vector of the electron relative to
the hole. The absorption coefficient is proportional
to the probability that the electron and the hole
are in the same unit cell I U(0) I' times the den-
sity of relative-motion states per unit energy

Here E = (h&u —E„,), where &u and E„,are the

photon angular frequency and the energy gap, re-

spectivelyy.

In the presence of a nonuniform electrostatic
potential V,(r; R, ), the exciton wave function
U(r) solves the effective-mass equation

Since the electron-hole interactions are impor-
tant for uniform fields, any general theory of ex-
ponential edges caused by nonuniform microfields
should also be formulated in an exciton framework.
To treat the electron-hole interaction, it is ap-
propriate to consider the center-of-mass and the

Here p is the reduced effective mass of electron
and hole (assumed scalar) and e)) is the static di-
electric constant. V, (r; R, ) is the potential en-

ergy associated with the microfieMs in the erys-
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tal'6; the "R,. " is included to remind us that, in
general, V, depends parametrically on the co-
ordinate of the center of mass of the exciton. But
general theoretical arguments, '7 as well as Schnat-
terly's data'3 cited in Sec. IIC, indicate that
the center-of-mass motion primarily affects the
shift of the absorption edge and is not an essential
feature of Urbach's rule. Taking the center-of-
mass wave function to be a plane wave, we hence-
forth suppress the "R, " as the argument of the
electrostatic potential V, . The potential V,(r) is
responsible for the Urbach edge by its tendency to
ionize the exciton.

The physical reason for the exponential shape
is demonstrated in Fig. 1(a), where the wave func-
tion and the potential energy for internal exciton
motion are sketched, assuming a typical electro-
static potential distribution in the vicinity of the
exciton. The essential feature is that an electron
initially localized in a quasibound state near the
hole can eventually tunnel out to the potential
trough created by the potential fluctuations. In
addition, the nonuniform potential creates new
states at lower energies than in the field-free case.
If V were constant, there would be no states be-
low the 1s exciton; but in the presence of a quasi-
static electric field' ' the final-state electron can
be in a low-energy state with part of its wave func-
tion free (i.e. , in the potential trough outside of the
Coulomb well) and part of its wave function local-
ized near the hole. If the outer potential trough is
sufficiently wide and deep, the stationary-state
wave function' will have almost all of its amplitude
in the trough, and will have exPo~entially small
amplitude near the hole (i. e. , In I U(0) IC- E). (We
may also view this as a nonstationary-state prob-
lem in which an electron initially localized in the
trough tries to tunnel into the hole with exponentially
small tunneling probability. ) This exponentially
small amplitude for U(0) is what leads, via the
Elliott formula (4), to the exponential absorption
edge of Urbach's rule.

It should be emphasized that the exponential
shape is a general consequence of the field-ioniza-

tion model and is independent of the details of the
source of the microfield.

IV. UNIFORM MICROFIELD APPROXIMATION

A feature of this model is that the problem of
understanding absorption edges is separated into
two parts: (i) the evaluation of the optical absorp-
tion by excitons in a prescribed (nonuniform) elec-
tric field, and (ii) the (statistical) determination
of the microfield distribution. The optical ab-
sorption in an electric field is the component of
the problem which is universal; the sources of the
microfields are not universal and may be LO
phonons, impurities, defects, or other phonons
with accompanying electric fields. In order to
calculate absorption tails and Urbach's rule, we
need to (i) solve the Schrodinger equation (5) for
a given disorder potential V„(ii) calculate the
absorption according to the Elliott theory [Eq.
(4)], and (iii) perform an average of the calculated
absorption coefficient over the ensemble of all
possible electrostatic potential distributions V,(r).

As a simple approximation to this procedure,
we (i) replace the electrostatic potential V, (r) by
an ensemble of uniform-field potentials, ' —ep ~ r;
(ii) use existing procedures to calculate the optical
absorption by excitons in a uniform electric field;
and then (iii) multiply the uniform-field absorption
coefficient by the probability P(F) that there is a
field of magnitude I' in the solid —and sum over
all fjejds62;

( o(Z)) = f, P(F)o(E;F)dF

This uniform-microfield approximation is the
same as the approximations used by Redfield34
and Dexter'; the calculations are different from
theirs only in that we use the exact result" [Eqs.
(4) and (5)] for the uniform-field absorption coef-
ficient o.(E, F), while they use approximations
valid only in the strong- and weak-field limits,
respectively. It turns out (see Table I) that the
microfields occurring in ionic solids or heavily
doped covalent semiconductors are generally of
intermediate strength.

V(z) ———

U{z)

0.0

V(i) f/ 0.0

U(z) ii

0.0

(b)

FIG. 1. Sketch of potential energy
V(&) (dashed line) and wave function
U(z) (solid line) as a function of po-
sition z along a typical direction.
Here we have V(z) = —e /&0 Iz I + V~ (z),
(a) for a typical electrostatic poten-
tial distribution V~(z); (b) for the uni-
form-field approximation V~(z)=- eI'z. Note that the model re-
produces all the important quali-
tative aspects of the wave function in-
cluding the excitonic exponential en-
hancement in the Coulomb well.



TOWARD A UNIFIED THEORY OF URBACH'S RULE. . . 599

The probability P(F) depends on the details of
the source of the microfields. For an alkali
halide, P(F) depends primarily on the electron-
optical-phonon coupling constant and the tempera-
ture; in a covalent semiconductor it depends pri-
marily on the number and spatial distribution of
ionized impurities. If the distribution of fields
is Gaussian, then we have

P(F) (2s (F2)) 3/24sFae-3& /2&F

where (F ) =F, ,' is the mean-square field in the
solid. This is essentially the case for compen-
sated semiconductors and for LO phonons in
ionic solids. ' In the latter materials we have
(see Appendix C)

Fa) = @~ale coth I~o I~ksT (co ) . (83~&* 2k~T 3~~o~-

(0 2

lQ

Z 0-+0
I-
CL
K
O~ IQ5
Kl

lQ

V)
CV

O
w )0

Here q, is the polaron cutoff, normally of order
i//a~, where a/ is the lattice constant, T* is the
effective temperature [see Eq. (2)], ks is Boltz-
mann's constant, and &o and E„are the static and
optical dielectric constants, respectively.

The replacement of the actual potential V, [Fig.
1(a)] by a, uniform field [Fig. 1(b)] is, of course,
the most drastic simplification of the calculation
and will be discussed below. It amounts to creating
an infinitely deep and wide trough into which the
electron can tunnel, and allows for a continuum of
states throughout the previously forbidden region
of the spectrum below the 1s exciton. Thus we
should anticipate that those predictions of the uni-
form-microfield approximation which depend
critically on the polaron cutoff wave vector q, may
be incorrect. Still the approximation contains the
essential features of the real problem —namely,
it accounts for the tunneling of the electron away
from the hole (i.e. , field ionization of the exciton)
and introduces a continuum of states below the
perfect-solid absorption threshold. In addition,
the uniform-microfield approximation acknowledges
a fact overlooked by density-of-states models:
The electron and the hole are created in the same
electrostatic environment and, as a consequence„
their motions are highly correlated.

The optical absorption by excitons in a uniform
field has been shown to have an edge with the ex-
ponential spectral dependence of Urbaeh's rule:

~~ ec (h (a) h 4u o ) / F

where C is a constant. " There remains only the
question of whether an exponential edge remains
after field averaging via Eq. (6). In fact, the
spectral Urbach rule does survive the averaging
process as shown in Fig. 2, at least over the ex-
perimentally relevant region of the spectrum. The
fact that the exponential form Eq. (9) persists after

)0-8

)0-9
-2.7 -2.5 -2.0 -15

('5QJ EgQp) / R

—I.2

FIG. 2. Semilogarithmic plot of averaged theoretical
optical absorption (l I/(0) ) S(E)) as a function of E
= (S(d-E~)/R for various values of (reduced) root-mean-
square field strength f = I e l E~a/8 and for energies
somewhat below the zero-field exciton (F. =- 1.0). Units
are a =1=8 where a and B are the radius and the binding
energy of the unperturbed 1s exciton, respectively. In
alkali halides, the center of the exciton line is normally
broadened by acoustic phonons, so that the exponential
edge is seen only for E&—1.5. Note that the lines are
straight over several decades of absorption and there-
fore exhibit Urbach behavior.

Fa, ,= (Fs)~ ksT*(q, a)a(eo —e„)/E„ (1O)

averaging is an important feature of the present
theory since it indicates that the exponential shape
is insensitive to the details of the microfield dis-
tribution. Thus the tunneling model presented here
can explain the spectral portion of Urbaeh's rule
in alkali halides, as well as the impurity-induced
exponential edges in covalent materials.

The temperature dependences of the exponential
edges in various materials also follows simply and

generally from the nature of the microfield sources.
Thus the present theory is consistent with the ex-
perimental fact that the impurity-related edge
shapes in GaAs remain exponential but their log-
arithmic slopes vary as the microfield intensities
change with temperature (viz. , as the impurities
become more or less ionized).

The temperature dependence in Urbach's rule for
ionic crystals can be deduced from Eq. (8) which
notes the proportionality
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logarithmic slopes of the measured spectral Ur-
bach edges should not be strictly proportional to
(T*) ', but should show slight deviations from the
predicted Urbach behaviorM; or (iii) the tunneling
model of Urbach's rule is incorrect, and no theory
of exponential absorption edges is universal. We
believe that the source of the difficulty lies with
the uniform-field model and the choice of polaron
cutoff. As we see in Fig. 4, the calculated ab-
sorption varies nearly as

&~ C(leo-II ado)] E~s

in consequence of the constant-cutoff approximation
rather than as e '"" ""o' ~m8. Hence the constant-C(I1 e-he )/E2

cutoff theory demands a logarithmic Urbach slope
which varies at (T") '~~ instead of the experimental-
ly determined (T*) ' dependence.

Basically, the reason for the failure of the con-
stant-cutoff model to obtain an Urbach tempera-
ture dependence is ascribable to the arbitrary
choice of the cutoff q, -a '. In fact, this choice
can be improved upon. First, the field should be
quasiuniform over a tunneling distance, not just

I
0-9

IOO 200 300 f
0.2 0.16 0.I2 O. IO 0.08

I
0-2 I

0.06
I

FIG. 3. Semilogarithmic plot of averaged theoretical
optical absorption below the edge as a function of (f)

for various values of E. If q~3 is independent of T* [s e
Kq. (10)J, then these lines must be straight for the tem-
perature dependence of Urbach's rule in alkali halides to
be adequately described by the present theory.

The ratio (eo —c„)/c„gives just the (weak) de-
pendence of the Urbach exponent on the polaron
coupling constant as noted by Toyozowa. ' Since
q, is the polaron cutoff and a is the 1s exciton
radius, it is appropriate to choose (q,a) to be less
than or equal to unity. This choice automatically
excludes electric fields due to Lo phonons of
wavelength shorter than an exciton radius; i.e. ,
it ensures that only nearly uniform fields are in-
cluded. The calculated temperature dependence
of the absorption edge shape is also contained in
Eq. (10) since the averaged absorption [Eq. (6)]
will depend on F, , If the polaron cutoff is taken
to be independent of 7* (a choice which we believe
to be physically incorrect), then the model would
predict an absorption which is not proportional to
exp[C(R~ —h&uo)/E, ,], the form necessary to ob-
tain Urbach's temperature dependence exp[C(K+
—hero)@AT*]. That is, a semilogarithmic plot of
absorption vs F, , should yield straight lines,
but as we see in Fig. 3 the lines are not quite
straight. It follows that either (i) the polaron cut-
off is not independent of F, , and Z'*; or (ii) the
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FIG. 4. Semilogarithmic plot of averaged theoretical
optical absorption below the edge as a function off for
various values of E. The straightness of these lines in-
dicates that the present theory with q~ proportional to
T* is able to describe the temperature dependence of
Urbach's rule in alkali halides.
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over an exciton radius (i.e. , field ionization must
be possible); and second, the potential trough [see
Fig. 1(a)] must be deep enough and wide enough for
a bound state to exist in it. Both of these re-
quirements have the qualitative effect of giving a
temperature dependence which is more nearly the
Urbach dependence. Note that both the field
strength and the depth of the trough in Fig. 1(a)
will be proportional to (T*)'/ „ the uniform-field
constant-cutoff approximation omits the second
factor of (T*)' and therefore obtains an incor-
rect Urbach temperature dependence. %e have
not tried to formulate a quantitative theory of the
cutoff, because a uniform-field theory which de-
pends in detail on the short-wavelength cutoff of
the fields is not a very satisfactory theory in the
first place. Still, we believe that me understand
the qualitative physics of the Urbach temperature
dependence: As the temperature is increased,
the shorter-wavelength optical phonons become
more important.

The increasing importance of the short-wave-
length phonons with temperature can be seen by
the following three qualitative arguments. First,
consider an electron of energy F- well below the
1s exciton level in Fig. 1. Furthermore, suppose
that the electrostatic potential in that figure is
approximated by a single Fourier component of the
potential plus the electron-hole interaction. If
this component has a long wavelength (q= 0), the
trough in Fig. 1(a) will be deep (V,~ q ) and wide—
permitting the electron to tunnel into it easily. In
contrast, a short-wavelength potential mill create
a narrow trough which may not be deep enough to
permit the tunneling. Now as the temperature is
increased, the potential trough will get deeper asT*'; thus as P" increases, the short-wavelength
phonons will eventually give rise to a sufficiently
deep potential to induce tunneling.

Second, a semiquantitative understanding of this
effect folloms from this dimensional analysis of

q, as a function of temperature. Consider the
limitations the uncertainty principle puts on the
choice of q, . To fit into a trough of wavelength

q, ', the electron must have

q, - ~P„/k- [(2m*/a')(E —V)]"' . (12)

Noting tha, t the amplitude of the fluctuations in the
electrostatic potential V [see Eq. (16) in Appendix
C] is proportional to (T~q,)', we find [ignoring
E in Eq. (12)] that we have

(q, a)~- keT~ 4@0/~Re*,

where 8 is the binding energy of the 1s exciton. If
this argument mere quantitatively, and not just
qualitatively, correct E, , would be proportional to
T" [see Eq. (10)] and we would predict the correct
Urbach rule relationship [Eq. (11)]

e(E-Eo)/ RENT (14)

A third„more quantitative, may to look at this
same problem of the requirement that the potential
valley be capable of supporting a quantum-mechani*. -
cal bound state is to consider the following model of
a typical nonuniform-field fluctuation

OO

and [zf &q, '

otherwise.

The lowest-energy bound state of this potential
occurs for q, such that

a, Z
qc +

2f 1/ 3 + 2' qc

Here f = le I F,a/R, and a, is the first zero of
the Airy function. Dimensionally (neglect the
second term) we see that8~

CC ~rms ~

Since q, is proportional to the root-mean-square
field strength, we find from Eq. (10) that E, ,
cc k~T*, giving the exact Urbach rule relationship.
Thus three different qualitative arguments lead
us to the result for Urbach's rule

~( ) A a(a (u-n «&o)/a&r
9

with cr a constant which may depend on &~.
In summary, the tunneling theory quantitatively

predicts the spectral dependence of Urbach's
rule, but, in the uniform-microfield approximation,
the model can predict the proper temperature
dependence only qualitatively, because the detailed
temperature variation is somewhat sensitive to
the shorter-wavelength phonons and the details
of the polaron cutoff.

V. CONSEQUENCES AND DIFFICULTIES

In this section me indicate the problems with the
present theory and sketch general lines along which
experimenters might try to test this and other
theories.

One of the real difficulties with this model is its
inability to cope quantitatively with phonons of
very short mavelength. Since each phonon gives
rise to an electric field of the same magnitude,
and the number of phonon states is highest near
the Brillouin-zone boundary, we must be prepared
to argue for the omission of phonons with q such
that q, &q&qo,», . In fact, me shall argue that if
the short-mavelength phonons do contribute sig-
nificantly to Urbach's rule, then they do so in a
manner similar to that of the long-wavelength
phonons. Thus the uniform-field model presents
a qualitatively correct picture of exponential ab-
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sorption edges; however, a more quantitative
treatment will require generalization of the model
to include the effects of the nonuniform fields
associated with short-wavelength potential fluctua-
tions. First, we note that the electron-phonon
interaction is proportional to q

' (see Appendix C),
thus weakening the influence of all short-wave-
length modes. Second, note that in alkali halides
the exciton radius is nearly equal to a lattice con-
stant. Therefore q, and qD, „~ are of the same
order of magnitude, and a significant fraction of
the phonons have wave vectors less than q, . Third,
short-wave phonons by their very nature, tend to
average to zero over the distances of interest.
Fourth, even though a particular short-wavelength
potential hump may tend to reduce the rate of
tunneling in a given direction (by increasing the
size of the potential mountain), it does not change
the qualitative picture of tunneling which is mostly
determined by the longer-wavelength components
of the field. Furthermore, the short-wavelength
potential valleys will tend to increase the tunneling
rate exponentially, more than compensating for
the effects of the short-wavelength humps. Finally,
in tunneling through the potential mountain from
the hole, the electron will (statistically) go through
the mountain at its narrowest point, and then travel
through valleys of the potential around subsequent
mountains (see Fig. 5). Note that the hole can
always minimize its energy by residing in a region
of the crystal where the electrostatic potential
repels the electron, and the electron, by virtue
of its lighter mass, finds it easier to tunnel through
the potential mountain. Even if the closest valley
into which the electron tunnels does not have

enough action (b gbP, ) in the tunneling (g) direction,
the electron can still tunnel if the potential valley
can provide enough additional phase space in the
other directions (&x&y&P„bP,) to support a bound
state (nxhybzbP„bP, nP, ~ h3). Therefore, what is
probably important is "How far must the electron
tunnel to the nearest valley~" —and this distance
will be generally shortened by the high-q phonons. -

Hence, the short-wavelength phonons, if they have
an effect, will not qualitatively change the results
of the model calculation presented here. These
arguments do make it clear, however, that a com-
plete understanding of the Urbach tunneling will
come only after an understanding of three-dimen-
sional potential fluctuations and random potential
problems.

One aspect of the absorption edge which does not
lend itself to treatment by the classical field ap-
proach is the low-temperature behavior of the edge.
It is noteworthy that, contrary to the prevailing
opinion, the exponential spectral variation does
not continue at low temperatures in any ionic
materials except possibly for the alkali halides.
That is, Eqs. (l) and (2) do not apply in that tem-
perature range. This has been shown clearly in
II-VI compounds by the work of Thomas et al. 2'

and by Marple. It is true for the silver halides, "
Sr TiO3, and SnOz. In all of these materials,
the absorption edge at low temperatures develops
structure that is clearly related to phonons, even
though some have direct energy gaps. It should be
emphasized that this low-temperature structure
is related to the dynamics of the lattice and is a
quantum effect.

A theory for such behavior in the II-VI com-

FIG. 5. Plot of the potential
energy of the electron as a function
of position in two dimensions. Note
that the electron's wave function is
large in the attractive Coulomb well
of the hole and then tunnels out of
the mountain, distortingon the valleys
so that it finds enough phase space
to permit the existence of a quantum
state at that energy.
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pounds was advanced initially by Thomas, Hop-
field, and Power ' and developed subsequently by
Segall. 3 These theories invoke phonon absorption
sidebands on the direct exciton transitions and

Segall believes that increasing temperature causes
such sidebands to broaden in such a way that their
envelope forms the exponential edge of Urbach's
rule. Segall's mechanism seems to differ from
the one proposed here in two important respects:
(i) It specifically requires the quantum dynamics
of the lattice vibrations and therefore seems in-
capable of explaining impurity-related exponential
edges in other materials, and (ii) it seems to ob-
tain the exponential edge by having the phonons
perturb the energy of the exciton center of mass.
If Segall's interpretation of Marple's measure-
ments on the Urbach edge of CdTe is correct, and
if the conclusions drawn here from the experi-
ments of Schnatterly on KI and of Redfield and
Afromowitz on GaAs are likewise valid, then it
is likely that there is no universal mechanism
underlying Urbach's rule in alkali halides, II-VI,
and III-V compounds. It is important to emphasize
the difference between Segall's interpretation of
Marple's absorption edge ~ in CdTe and ours: For
Segall, the (broadened) phonon sidebands at low
temperature become increasingly broad as tem-
perature increases, forming the Urbach tail. For
us the phonon sidebands and Urbach's edge coexist
at low temperatures, with the exponential edge
almost completely frozen out and the phonon side-
bands (ideally) almost without width. As tempera-
ture is increased the exponential edge becomes
relatively more important, causing the sidebands
to broaden and eventually disappear. For Segall,
the sidebands become the Urbach tail when broad-
ened at high temperatures; for us the "broadening"
is the Urbach rule and the low-temperature phonon-
sideband behavior is a separate quantum-dynamical
effect.

The present model assumes that the microfields
perturb only the internal, relative motion of the
exciton. Although this assumption seems to be
amply justified by Schnatterly's experiment in KI,
its validity has not been demonstrated in any other
system. Therefore, it is possible that in some
nonconducting solid the exponential absorption
edges may be due to the electric field perturbed
motion of the exciton center of mass. 7' Since the
exciton has zero total charge, the center-of-mass
motion does not couple to a uniform electrostatic
field but does interact with the higher multipoles
of the field distribution associated with short-wave-
length potential fluctuations. (Contrast this with
the relative motion which interacts strongly with
a uniform field and the long-wavelength potential
fluctuations. ) This interaction between the center
of mass and the short-wavelength microfields may

serve to (statistically) shrink the average effective
band gap. Therefore, a general theory of Ur-
bach's rule based on the interaction of (primarily)
short-wavelength electrostatic potential fluctuations
is possible, although such a theory would have
several features in common with the original
Dexter deformation-potential theory. ' However,
such a theory probably would give a Gaussian
edge rather than the observed exponential edge of
Urbach's rule.

In spite of the abilities of the present theory to
explain a broad range of experimental data, the
claim that it can describe all exponential edges
must be justified or disproved by experiments.
In addition to testing the hypotheses in Sec. II and
determining their validity in ionic and covalent
materials, experimental studies of exponential
edges should determine the relative importance
of long- and short-wavelength potential fluctuations
and of center of mass and internal exciton motions.

For example, the importance of long- vs short-
wavelength phonons in ionic materials might be
determined by overpopulating the phonons of a
given wavelength and observing the changes in the
edge shape. A nonequilibrium distribution of polar
optical phonons of long wavelength can be obtained
by first creating large numbers of free-electron—
hole pairs (by the absorption of laser light) and
then letting the free electrons and holes decay via
multiple-phonon emission. Thus the electron-
phonon interaction, which varies as q, will favor
the q = 0 long-wavelength phonons.

The question of center-of-mass vs internal ex-
citon motion being responsible for exponential
edges should be amenable to an experimental an-
swer. For example, some probes such as uniform
electric fields couple only to the internal relative
motion of the exciton, while others (e. g. , stresses
and deformations) interact primarily with the
center of mass. Therefore, modulation spectro-
scopic studies of absorption edges should yield
valuable information about Urbach's rule: If the
exponential edge is due to electric field ionization
of the exciton, an additional electric field should
further broaden the edge without appreciably
shifting the peak; if the Urbach tail is a center-of-
mass effect, a pure center-of-mass probe should
shift the edge and the peak rigidly to lower energy.

In addition to these experiments, efforts should
be made to test the various theories and to answer
more completely a number of fundamental questions.
A clear demonstration that there can be no unified
theory of exponential edges would certainly upset
the present theory. Such a demonstration might
show the importance of different mechanisms in
different materials or the general importance of
center-of-mass effects, quantum phenomena,
acoustic phonons, ionic masses, or energy shif ts
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rather than broadenings. Experimenters might
try to learn more about the ultimate fate of the
electron-hole pair and the relationships among
photoconductivity, radiative recombination, "and

optical absorption. In addition, more should be
known about extrinsic edges, absorption edges
related to deformation potentials and piezoelectric
interactions, 47 line shapes in layered (two-dimen-
sional) materials, s the effects of large central cell
corrections on exponential edges, and surface
effects.

VI. SUMMARY

In summary, we find that Urbach's rule and ex-
ponential absorption edges can be understood as
due to electric-field-induced ionization of the ex-
citon. The source of the ionizing electric field may
be LOphonons, impurities, or piezoelectric pho-
nons; the exponential shape of the edge as a func-
tion of photon energy is insensitive to the details
of the microfield distribution. The proposed
mechanism ascribes an exponential spectral de-
pendence to the broadening of the lowest exciton
state, which is caused by tunneling of the electron
away from the hole. The microfields primarily
affect the relative, intermal motion of the exciton,

The formulation in terms of microfields permits
a unified theory of exponential absorption edges
and allows a separation of the calculation of the
edge shape into two parts: (i) the calculation of op-
tical absorption in an electric field and (ii) the de-
termination of the classical microfield distribution
appropriate for the particular source of field.

The theory presented here succeeds in obtaining
the exponential spectral dependence of Urbach's
rule, and it is able to qualitatively predict the tem-
perature dependence of optical-absorption edge
shapes in alkali halides. We believe that the cor-
rect physics of Urbach's rule is in hand, but a de-
tailed understanding of the temperature dependence
in alkali halides awaits a model which includes the
effects of nonuniform fields.

Note added in proof. A number of papers on ex-
ponential absorption edges have appeared recently.
These include work by Robinson and Bosacchi on an
exactly solvable polaron, model, ' papers by Toyo-
zawa and co-workers on an acoustic-phonon mech-
anism for self-trapping the exciton (Ref. 88, which
includes comments on the present work, which are
considered in Ref. 89), a review of the exponential
edge problem, ' discussions of absorption edge
shapes in amorphous semiconductors, ' and an ef-
fective-impurity model calculation of the absorption
edge shape as a functional of the densities of band-
tail states. '2 This last calculation lends further
support to the idea that the internal motion of the
electron-hole pair plays a more important role in

shaping the edge than the center-of-mass motion.
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APPENDIX A: EXPERIMENTAL OBSERVATIONS OF
URBACH'S RULE

The most important, and least recognized, aspect
of the many published reports on exponential ab-
sorption edges is that observations of the full TJr-

bach rule [Eqs. (1) or (2)] are very rare. General
usage of this title has often distorted it to refer
simply to an exponential sPectral dependence of a
on F-, without reference to the temperature depen-
dence. A second type of undifferentiated observa-
tion is the quantitatively correct spectral behavior
together with only a qualitatively appropriate tem-
perature dependence (i.e. , steeper slope at lower
temperature) which is not established as exponen-
tial in temperature.

Furthermore, careful examination of the litera-
ture shows that even the spectral Urbach rule does
not apply at low temperatures (~ 100 K) for any
ionic solids other than the alkali halides. For
example, the silver halides, in which this rule
was first discovered, ' are now known to be indirect
gap materials and their absorption edges have
structure at low temperatures associated with
phonon assistance. ' A similar type of transition
from an Urbach-like rule above 200 K to phonon-
related structure at low temperatures is also seen
in Sr TiO, . '2

The related ferroelectrics BaTi03 and KTaO3
are examples of the second type of almost-Urbach
behavior. Their exponential spectral dependence
has been found to be associated with the unusual
temperature dependence

T+=T+ To

[where this T* is the same as that in Eq. (2) and

To is a constant ].9~

The largest class of materials in which some
sort of Urbach rule is observed is the class of
II-VI compound semiconductors. " In none of these,
however, is the Urbach temperature dependence
quantitatively shown. Also, the low- temperature
spectra have structure in them even though they
are generally direct-gap materials. '

The most detailed studies of Urbach's rule have
been in the alkali halides. To our knowledge, the

only quantitative demonstration of the Urbach tem-
perature dependence (other than the original crude
one) has been in KI by Martienssen and Haupt
(working in Martienssen's laboratory). ' The more
detailed measurements and interpretation later by
Mahr using KI in KCl suggest that the extent of the
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fit of the Martienssen-Haupt results to the Urbach
formula may have been exaggerated. Mahr's work
showed that the exponential spectral dependence
does not really set in until n drops about two orders
of magnitude below the peak value. Above this,
the spectral dependence is Gaussian.

As for the covalent materials, the reported re-
sults were still more confused until the dominance
of impurities and their electrical charges were
demonstrated for the III-V compounds. ~ Se seems
to be a special case because the temperature de-
pendence seems intrinsic. As mentioned in the
text, however, it has optical phonons with a first-
order electrical charge; and we therefore group
it with the ionic materials.

Very heavy dopings in Ge (- 0. 2%) have been
observed to transform the absorption edge from
the phonon-assisted spectrum to an exponential
shape. It seems widely believed that the den-
sity-of-states band tails caused by doping of semi-
conductors are solely responsible for the exponen-
tial absorption edges. ' But the spatial separation
of the electron and hole causes the transition
matrix element to be exponentially small for
transitions between band tail states; this matrix
element effect is at least as important as the pure
density-of-states effect. '

Amorphous semiconductors typically show a
spectral Urbach rule which is quite broad. ' Here,
too, no well-defined temperature dependence is
found and there is still much uncertainty about
the relationship of the shape of the edge and the
disordered state. Tauc has recently proposed
an explanation of such edges based on a viewpoint
similar to that used by Redfield and Afromowitz
for doped covalent crystalline materials.

APPENDIX 8: RELATIONSHIP OF PREVIOUS
THEORIES TO PRESENT WORK

but fail to display the dependence of the configura-
tion coordinate on the internal motion of the ex-
citon. The extent to which the various configura-
tion coordinates are mostly electric-field-like
(rather than "elastic"-like38) must be determined
in each individual case. However, absorption by
a self-trapped hole with an electron orbiting about
it can be viewed as a configuration-coordinate
mechanism somewhat analogous to the model pro-
posed in Sec. II. The final-state hole settles
partly in each of two potential troughs, tunneling
from one side to the other; the electron orbits
about this hydrogen molecular-ion-like V~ center. 95

In this case, the electrostatic field associated with
the ions creates the potential troughs; neither the
hole nor the electron is localized; the hole tunnels
relative to the electron (not vice versa); and (in
contrast with the general theory of Sec. III) the
light-mass electron occupies a delocalized orbit
about the self-trapped hole.

Of the microfield models from which the present
work arises, Redfield's neglects the Coulomb
interaction between the electron and the hole by
using the Franz-Keldysh form of the uniform-field
absorption, which has an asymptotic form varying
exponentially as the —,

' (rather than I) power of
photon energy

Here we use

E= (h~ E„,)/R, a-=h'ega, e',
R=e /2&oa, f= IeIFa/R, g=E/f

Dexter's Stark-shift, in the hydrogenic exciton
approximation, gives an absorption

os, cc w
' 6(5& —E, +R+ ~~ f R)

The previous theories fall into five general
categories: (i) Dexter's deformation-potential
theory, (ii) configuration coordinate models, '
(iii) electric microfield theories, ' (iv) polaron
and phonon-sideband theories, ' and (v) density-
of-states theories. 3'

Dexter's original deformation-potential theory"
obtains an edge shape which is approximately
Gaussian and results from non-electric-field-like
antiparallel displacements of valence- and con-
duction-band edges. In this model, exciton effects
are neglected and the Urbach tail arises primarily
from perturbations of the center-of-mass energy
of the electron-hole pair. Thus the deformation-
potential model is in direct opposition to the pres-
ent model.

The configuration-coordinate theories depend on
the dynamics of the lattice, implicitly include ex-
citon effects, and rely on short-wavelength phonons,

Thus, in contrast with the present model which
obtains an exact exponential shape from excitonic
absorption in the presence of a field, ' the pre-
vious microfield models had to rely on the field-
averaging process to obtain the exponential shape.
Furthermore, for a given average field, Redfield
and Dexter predict a much sharper edge than the
present theory does. Comceptually, the Franz-
Keldysh effect is a photon-assisted interband tun-
neling while the Stark shift results from polari-
zation of the exciton. The present work unites
these two different physical pictures by noting
that the Franz-Keldysh effect may also be viewed
as the field ionization of an exciton with zero
binding energy, while polarization of the exciton
is the weak-field limit of field ionization.

Dexter's calculation differs from the computa-
tion of Sec. IV in one other respect: He goes be-
yond the hydrogenic-exciton approximation and
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allows a general shape I.(E) for the zero-field ex-
citon line. Such line shapes are generally due to
acoustic-phonon scattering and can be incorporated
into the present theory by replacing n(E, F) in Eq.
(6) by its broadened value

~ f ~(E It -x)1.-(x)dx .

In order to emphasize the fact that the exponential
edge does not arise from any averaging process,
we have not broadened the spectrum in Fig. 2 the

way Dexter does. Such broadening, if it were
Gaussian, would flatten the absorption near the
peak while preserving the exponential tail.

Theories of exponential edges inpure, nearly
covalent semiconductors have been advanced using
(virtual) indirect transitions at the zone center
and (real) phonon absorption sidebands. ' ' Both
these mechanisms seem to require phonon dynam-

ics, and the indirect transition model not only is
insensitive to the electric fields of the phonons,
but also seems to invoke perturbations primarily
of the center of mass. Neither model is capable
of evaluating the many-phonon limit. Still, the
phonons generally do generate electric fields and

these theories may have more in common with
the present theory than is apparent at first exam-
ination. For example, the trough in Fig. 1(a)
could be created by many phonons opening an op-
tical-absorption channel many phonon energies
below the zero-phonon line.

Mahano' and Dunn' have calculated the density
of states for an interacting electron-phonon system
and find an exponential dependence. Dunn's cal-
culation, while avoiding many of the approxima-
tions of Mahan's, took constant electron-phonon
coupling (i.e. , deformation potential) instead of
optical-phonon coupling (which varies as q ');
therefore his results suggest that any electron-
phonon interaction will give an exponential edge.
While both these theories give the appearance
that they depend on phonon dynamics, the ex-
ponential edge shape does not depend on the ionic
mass. We believe that these polaron theories are
quite similar in spirit to the theory presented here,
that they can be extended to include exponential
edges associated with electrostatic microfields,
and that those theories make approximations to
the electron's self-energy which are essentially
equivalent to assuming a wave function of the
type sketched in Fig. 1(a) (but with exciton effects
omitted). While the Coulomb interaction between
the electron and the hole is not included in either
Mahan's or Dunn's theories, those authors do a
rather good job of accounting for all the phonons
(not just the lorrg-wavelength ones). It is especial-
ly noteworthy that in Dunn's calculation, the
imaginary part of the polaron self-energy near
threshold seems to be somewhat less sensitive to

short-wavelength phonons than the real part. This
is in general accord with our result that the ex-
citon line broadening is dominated by the long-
wavelength fields while the line shift is more de-
pendent on shor t-wavelength potential fluctuations.

The theoretical work on exponential edges in
heavily doped semiconductors has followed quite
different lines, with most of the effort devoted to
understanding the density of states for various
random potentials. Thus, this density-of -states
work is similar to the calculations of Mahan" and
Dunn, but fails to explicitly point out the impor-
tance of electric fields and electron-hole correla-
tions.

APPENDIX C: MICROFIELD DISTRIBUTION FOR
LO PHONONS

The evaluation of the probability P(F) begins with
the Frohlich Hamiltonian for the electron-phonon
interaction X„

1 22ri@flo g q
(

i6 r re -ii r
)

a

(C4)

First we wish to determine the probability P,(F,')
that a particular component of the field, say the z
component, has a value between F,' and F,'+ dF,'.
This can be done by constructing the characteristic
function of the distribution P, (u) and Fourier trans-
forming. ' The nth moment of the distribution is

f (F,')"P, (F,') dF,'= Tr(jooF,"), (C5)

where po is the density matrix for the canonical en-
semble. The characteristic function is

&t', (u)= Tr(poe'" '), (C6)

which leads to a simple expression for I',

P,(F,')= (2ri) ' f Q, ( ) u'e" 'du . (CV)

The evaluation of Tr(poe'" ')is a straightforward
problem solved by Bloch and ava;ilable in Messiah's
book) .

(Cl)

where V is the crystal volume and, for optical-pho-
non coupling, we have

(C2)

where AGO is the optical-phonon energy, m* is the
electron effective mass, and & is the polaron cou-
pling constant

(m*e'i3I 'n )'"
Q= 0 (C

where e* can be expressed in terms of the static
and optical dielectric constants eo and e„as c*
= (e

' —eo') '. The electric field operator is
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Q, (u) = Z 'Tr(exp[- PhQpg, - (aw;+ —,')] P (E~) (2v(E2 ))-1/2 -&1/2)Fg2/&Fz & (C13)

where

&&exp[iu 5;y;,a-+ y;*,al] j, (C8)

P= (kp T) ',

The probability P(F) that there is a field of magni-
tude I is

F(E)= f f f F,(E.')F,(E,')E.(E.')

y„,= (2))AQp/e*t/) (q,/ ~&l
~

)e"'
Z= Tr(exp[- PAQpg- (a;a;+ 2)]j .

Algebraic manipulations reduce E&l. (C8) to

(C9)
&&5(F (E-' +E' +F' ) )dF„'dF'dE,'

(2 (E2))-3/24~F28 -3F /2&F2&

Evaluating (F ) we find

(C14)

&t) (u)=g-[1 —exp(- P@Qp)]Tr(exp( PkQ-pa a )--
&&exp[iu(y;, a;+ y;*,a,'-)]j . (C10)

Straightforward manipulation of exponential opera-
tors yields

(F ) = (kQpq, /3)/e*) coth(zPIfQp), (C15)

where q, is the polaron cutoff wave vector and may
be taken to be a Brillouin-zone radius (i. e. , Debye
wave vector) Ex. pressing (F ) in terms of the ef-
fective temperature T* of E&l. (2), we obtain

where

(u ) e -& 1/2» (C11)
(F') = (2q', k 2 T*/3 e))*) . (C16)

(E,)= Tr(ppF, )=2; ~y;, ~

coth2PkQp= —', (F ) .

(C12)
Fourier transformation gives

Defining (f)= e (F ) &2 /R, where a and R are the2

exciton radius and rydberg, we find

(f2) = (~)/)(q, a) (k 2 T*/R) [(ep- e„)/e„] . (C1V)
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Photoconductivity Due to Excitonic-Energy Transfer to Crystalline Defects
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The internal photoconductivity spectrum of single crystals of NaI was investigated over a
wide range of temperatures. A photocurrent threshold was observed which is believed to be
due to the onset of band-to-band transitions. Aside from this threshold, a photoconductivity
band appeared on the low-energy side of the first fundamental absorption band. The existence
of this response is attributed to the ionization of traps via an exciton interaction.

I. INTRODUCTION II. EXPERIMENTAL PROCEDURE

Early work on the intrinsic photoconductivity of
single crystals of KI, KBr, and KCl by Kuwabara
and Aoyagi' indicated that, aside from photocurrents
due to band-to-band transitions, a photoconductivity
response appeared on the low-energy tail of the first
fundamental absorption band. They attributed this
response either to an absorption related to the pres-
ence of an impurity or to impurity ionization via an
exciton energy transfer. Their results favored the
latter mechanism. At the same time, Nakai and
Teegarden reported results on the photoconductivity
of RbI and KI single crystals. Once again, aside
from band-to-band related photocurrents, an addi-
tional band was observed on the low-energy tail of
the corresponding fundamental absorption spectrum.
The authors postulated the photoproduction and de-
struction of color centers as being responsible for
this band, and they indicated the E center as a pos-
sible candidate. In this paper, we present the re-
sults of our photoconductivity studies of NaI and
RbI in the corresponding spectral region.

Single crystals, obtained from the Harshaw Chem-
ical Co. , were cleaved in a dry box. These crys-
tals, typically of 1.0-mm thickness, were then
mounted onto the sample holder, a diagram of which
can be seen in Fig. 1. The sample holder was at-
tached to the end of a —,

' -in. stainless-steel tube
which was then inserted into the sample chamber of
an Andonian exchange-gas cryostat. Because of the
design of the cryostat, it was necessary for the sig-
nal to travel a distance of -3 ft before the photocur-
rent detection system could be connected. Because
of the electrical noise involved due to the generation
of microphonics, a —,'-in. -brass rod was used as the
signal "wire. " This rod, which was held in place
by Teflon spacers within the stainless-steel tube,
was found to effectively reduce the microphonics.

Photocurrents were detected by a Keithley model
No. 640 electrometer with the input shunted by
10' Q. An electric potential of 800 V was supplied
by a combination of dry-cell batteries. Data were
acquired by first recording a background current.


