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If at low temperatures a voltage bias is applied to an insulator containing traps, it is shown
that the current flowing in the insulator is a non-steady-state dielectric-relaxation current
(DRC) which is always greater than the steady-state current. If the sample is held at low
temperatures, the DRC will prevail essentially indefinitely. However, if the temperature
of the sample is raised, then over some narrow interval of temperature, centered around a
temperature, say, T,, the insulator and hence the current through the system relax quickly
to the steady-state condition. Thus, at T,, the DRC-vs-temperature characteristic exhibits
a pronounced maximum. T, is related to the depth of the trapping level below the bottom of
the conduction band of the insulator, and the area under the DRC-vs-temperature character-

istic is directly proportional to the trapping density.

In the study of the electrical properties of thin-
film insulators, one of the usual measurements is
the activation energy of the conduction process.
This is obtained by first cooling the sample to low
temperatures and, with a constant-voltage bias on
the electrodes, subsequently observing the current
I as a function of increasing temperature 7. A
plot of InI vs T°! normally yields a straight line,
the slope of which is a measure of the activation
energy of the conduction process.! A second
method, which yields detailed information about
trapping levels in the insulator, is the thermally
stimulated conductivity (TSC) technique.? In this
case the insulator is cooled to low temperatures
and the solid is stimulated by ultraviolet light, or
other means, to excite (fill) some of the trapping
levels above the equilibrium Fermi level Ep with
electrons and those below Ep with holes. As the
solid is heated, usually at a constant rate of tem-
perature rise, pronounced peaks appear in the
current (the voltage bias is held constant) at certain
temperatures, which may be related to the energies
of the excited trapping levels. 2

Recently, several investigators3~® have reported
anomalous pronounced peaks in the current-vs-
temperature plots (see Fig. 1) when making con-
ventional activation-energy measurements on thin-
film insulators. These peaks may be observed if
the sample is cooled with its electrodes short
circuited®® or open circuited.® These peaks are
essentially identical to those occurring in TSC

measurements; yet the insulator is not optically
stimulated prior to heating the insulator. It is
the object of this paper to provide an explanation
for this anomaly.

The basic principle underlying the explanation
is that the current flowing in a highly resistive
medium, particularly one containing traps, is,
generally speaking, not a steady-state current
immediately after the voltage is applied at low tem-
perature. The current is, in fact, a dielectric-
relaxation current (DRC), since the time taken for
it to reach the steady-state value is determined by
the dielectric-relaxation time of the system, which
is a strong function of temperature. Furthermore,
when traps are present in the medium, they essen-
tially determine the dielectric-relaxation time of
the system.

Consider the metal-insulator-metal system
shown in Fig. 2(a). The insulator is assumed to
be amorphous and thus would be expected to have
acceptor- and donor-type traps distributed through-
out its band gap.” In order to simplify and ex-
pedite our arguments we assume that the distrib-
uted donor traps are lumped together to form a
single trap level of density N,, positioned at an
energy E; below the bottom of the conduction band.
As far as the conduction process to be described is
concerned, acceptor-type traps may be ignored.
However, these types of traps are of significance
when acting as compensation centers, since they
have a role in determining the position of the equi-
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FIG. 1. DRC curve obtained from a silicon nitride film
800 A thick. The sample was cooled to liquid-nitrogen
temperature with the electrodes short circuited, and then
heated atarateof 0. 2degrees per second with 4 V applied.
Thedotted curve is the theoretical DRC curve [see (6)] for a
discrete trapping level where E; =0.75 eV, Ny =10% cm™3,
and 3=0.2degrees per second. Thus, from a comparison of
the theoretical and experimental curves it will be apparent
that the experimental peak is due to a distribution of trap-
ping levels in the insulator, in which case the shape of the
characteristic is a direct reflection of the trapping dis-
tribution (Ref. 10). (The rising portion of the experimental
curve at temperatures beyond the DRC curve is the steady-
state current flowing in the sample.)

librium Fermi level. It is of little consequence
here what degree of compensation is present, but
we will assume for expediency that the density of
compensating centers is $N,. Hence the Fermi
level is pinned at the donor-type center at all
practical temperatures. ®® (It is assumed that the
free-carrier density is always much less than N,.)
Also, to expedite our explanation, we have assumed
that the work functions of the insulator, ¥;, and
electrodes, ¥,, are identical, so that when the
electrodes are applied to the insulator the con-
duction bands are flat throughout the length of the
insulator.!® Let us assume that the temperature
is sufficiently high so that at all voltage biases

the system reaches its steady-state condition [Fig.
2(c)] relatively quickly. Immediately after a volt-
age bias is applied to the system, the applied volt-
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age is distributed linearly throughout the insulator,
as shown in Fig. 2(b) and as evidenced by the
straight Fermi level. The current flowing across
the cathode is given by the modified Richardson-
Schottky!! expression

Izep.nFceﬁFg/Z/kT ) (1)

and the current in the insulator bulk outside the
space-charge region is given by the Frenkel-Poole
equation'?

1/2

I=eunF,e® s "/*T | (2)
where

n=N,e Et/*T

B=e(e/me€ K)1/?

N, is the effective density of states in the conduction
band, M is the electronic mobility, F, and F, are
the electric fields at the interface and in the bulk
respectively, and K is the high-frequency dielectric
constant of the insulator. Thus, since initially
F.=F,, the electronic current flowing into the
cathode is less than that flowing out at the anode; hence
a positive space-charge region is created in the
insulator adjacent to the cathode. As this space-
charge region grows, the field at the cathode, F,,
increases and the field outside the space-charge
region, F,, decreases, as shown in Fig. 2(c).

This relaxation process continues until the cur-
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FIG. 2. Energy diagram of idealized amorphous in-
sulator (a) under zero bias, (b) immediately after a volt-
age V is applied, and (c) with voltage bias applied and the
system in the steady-state condition.
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rent is constant throughout the system. When
this condition exists, the field at the cathode-in-
sulator interface is approximately fwice that in

the neutral region of the insulator, as will be ap-
parent from an inspection of (1) and (2). Also,

the steady-state width of the space-charge region
adjacent to the cathode is greater the greater the
voltage bias. However, this process cannot con-
tinue indefinitely, since at sufficiently high voltage
bias the barrier at the cathode-insulator interface
will become permeable to tunneling electrons. The
tunnel current increases much faster with in-
creasing field than does the Frenkel-Poole effect,
with the result that an electrode-limited-to-bulk-
limited transition occurs in the conduction pro-
cess. ® At the onset of this process, the space-
charge region becomes only very weakly dependent
on the applied voltage.

Next, consider what happens if the sample is
cooled to a low temperature T, without a voltage
bias on the electrodes and then, at the low temper-
ature, a fixed voltage bias is applied to the elec-
trodes. Normally at low temperature the emission
of charge from the traps will be negligible; thus
it will take the system an extremely long time to
relax to the steady state. The time ¢, for the in-
sulator to relax to the steady state is given ap-
proximately by

trzv-leEt/kT , (3)

where v is the attempt-to-escape frequency, % is
Boltzmann’s constant, and T is the temperature
(°K). Assuming T=100°K, E,=%eV, and y=10"
sec, then ¢,~10'® sec. Thus it takes the system
an inordinately long time to relax at low tempera-
tures. This means that when a voltage is applied
to the system it is dropped uniformly throughout
the solid [see Fig. 2(b)] and normally remains so
during the course of the time it takes to make an
I-V measurement. Now, if instead of holding the
sample at a constant low temperature it is heated
with a fixed voltage applied and at a constant rate,
B degrees per second, that is,

T=Bt+T,, (4)

the trap level will become an effective emitter of
electrons at a temperature T,, given by®

BE,/kT%=ype Bt/ ¥Tm (5)

As a result, around this temperature the dielectric
begins to relax quickly from the non-steady-state
[depicted in Fig. 2(b)] to the steady state [shown

in Fig. 2(c)], during which process the charge with-
in the insulator is redistributed as required by
steady-state conditions. The charge released in
forming the space-charge region is typically 1010~
10'% electrons per square centimeter of device

area, the great majority of which escapes from the
system in a matter of seconds. Hence the current
flowing in the external circuit associated with.charge
redistribution is much larger than, and superposed
on, the current supplied fromthe cathode, and

it ceases when the charge redistribution within the
insulator ceases. Thus the DRC-vs-temperature
characteristic exhibits a maximum. The maximum
occurs at a temperature T,, given by (5). In this
case, however, it is noted that, contrary to con-
ventional thermally stimulated currents, the
sample is not stimulated at the start of the heating
process. It can be shown® that if the insulator
contains only a single discrete trap, the current

at constant voltage is given by (see Fig. 1)

. kT®
-5 3o, ) ©

where X is the space-charge-region width. Further-
more, the area A under the curve is related to

the charge @ released from the insulator (charge
contained in the space-charge region) as follows:

JiT2 1aT=B ['2 1at-BQ=A , (7)
1 1

where Ty and T, are the temperatures corresponding
to the beginning and end of the process'* and 2
and ¢, are the times corresponding to T; and T,.

It will be noted that if a voltage bias is applied
before the sample is cooled to low temperature
and then the sample temperature raised with the
same voltage bias applied, there will be no ob-
servable DRC maximum, since the sample will be
essentially in its steady-state condition at all times
during the experiment®® [see Fig. 2(c)]. It will
also be apparent that the greater the applied volt-
age bias, the greater is the area under DRC curve;
also the area under the curve is proportional to
B. Finally, the depth of the trap below the bottom
of the conduction band, as determined from (5),
must be independent of B and the applied voltage
if our premise is correct. All of these points have
indeed been experimentally confirmed.

A complete treatment of dielectric-relaxation
effects and associated phenomena in insulators
containing distributed traps and blocking contacts
will be given elsewhere.

*Work supported by Defence Research Board of Canada,
Grant No. 9512-33, and National Research Council of
Canada.
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The exact solution to the one~-dimensional Schrddinger equation which describes the motion
of a particle scattering off a finite set of 6-function potentials of arbitrary stvengths and posi-
tions is found, The behavior of the T matrix both on and off the energy shell is also precisely

given. Localization of states is discussed.

I. INTRODUCTION

Recently a great deal of work! has been done on
the problem of understanding the electronic states
of a system in which the atomic scattering sites
are randomly located. The importance of these
studies in the field of semiconductor physics is well
known. The mathematical difficulties involved in
this problem have made it necessary to look into
its one-dimensional version®* in hopes of getting
some insight into the important features, so that
extraneous complexities can be avoided in the three-
dimensional case.

Even with its simplifications the one-dimensional
case has not proven to be trivial in nature and the
work in this area has needed to be put on a firmer
basis. In this paper we hope we have done this by
providing an exact solution to the Schrodinger equa-
tion for an electron moving in one dimension in the
presence of a set of §-function potentials of arbi-
trary strengths and positions. The solution which
we present has the feature that a clear delineation
is made between terms that are made small due to
incoherence effects, in the case of a random dis-
tribution of scattering sites, and those that are not.
This feature of our solution makes it useful for an

understanding of how wave functions grow inside

the chain of scattering sites and thus it is applicable
to the study of the all-important problem of local-
ization.

In Sec. II we present our solution to the integral
form of the Schrodinger equation. In Sec. III we
recognize the fact that to obtain the wave function
we did not have to completely invert the matrix M
[defined by (2.5)]; we complete this task and show
that the Fredholm determinant, i.e., det)M, has,
for positive energy, a magnitude greater than unity.
With this inverse of M, we obtain, as well, the T
matrix both on and off the energy shell and briefly
discuss its connection with the evaluation of trans-
port properties and the density of states in a spec-
imen. Section IV is devoted to a discussion of
some aspects of the problem of localization. We
point out in that section that for positive energies,
where |detM| =1, there can, for a finite chain
of scattering sites, be no states which vanish at
+o0; thus no precisely localized states exist. For
a finite chain, localization at positive energies is
always, formally, only approximate.

In Appendix A, we discuss other forms of the
solution found in Sec. II, while in Appendix B, we
make the connection between our results and the



