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If at low temperatures a voltage bias is applied to an insulator containing traps, it is shown
that the current flowing in the insulator is a non-steady-state dielectric-relaxation current
(DRC) which is always greater than the steady-state current. If the sample is held at low
temperatures, the DRC will prevail essentially indefinitely. However, if the temperature
of the sample is raised, then over some narrow interval of temperature, centered around a
temperature, say, T~, the insulator and hence the current through the system relax quickly
to the steady-state condition. Thus, at T~, the DRC-vs-temperature characteristic exhibits
a pronounced maximum. T~ is related to the depth of the trapping level below the bottom of
the conduction band of the insulator, and the area under the DRC-vs-temperature character-
istic is directly proportional to the trapping density.

In the study of the electrical properties of thin-
film insulators, one of the usual measurements is
the activation energy of the conduction process.
This is obtained by first cooling the sample to low
temperatures and, with a constant-voltage bias on
the electrodes, subsequently observing the current
I as a function of increasing temperature T. A
plot of lnI vs T ' normally yields a straight line,
the slope of which is a measure of the activation
energy of the conduction process. ' A second
method, which yields detailed information about
trapping levels in the insulator, is the thermally
stimulated conductivity (TSC) technique. In this
case the insulator is cooled to low temperatures
and the solid is stimulated by ultraviolet light, or
other means, to excite (fill) some of the trapping
levels above the equilibrium Fermi level && with
electrons and those below && with holes. As the
solid is heated, usually at a constant rate of tem-
perature rise, pronounced peaks appear in the
current (the voltage bias is held constant) at certain
temperatures, which may be related to the energies
of the excited trapping levels.

Recently, several investigators have reported
anomalous pronounced peaks in the current-vs-
temperature plots (see Fig. I) when making con-
ventional activation-energy measurements on thin-
film insulators. These peaks may be observed if
the sample is cooled with its electrodes short
circuited ' or open circuited. These peaks are
essentially identical to those occurring in TSC

measurements; yet the insulator is not optically
stimulated prior to heating the insulator. It is
the object of this paper to provide an explanation
for this anomaly.

The basic principle underlying the explanation
is that the current flowing in a highly resistive
medium, particularly one containing traps, is,
generally speaking, not a steady-state current
immediately after the voltage is applied at low tem-
perature. The current is, in fact, adielectric-
relaxation current (DRC), since the time taken for
it to reach the steady-state value is determined by
the dielectric-relaxation time of the system, which
is a strong function of temperature. Furthermore,
when traps are present in the medium, they essen-
tially determine the dielectric-relaxation time of
the system.

Consider the metal-insulator-metal system
shown in Fig. 2(a). The insulator is assumed to
be amorphous and thus would be expected to have
acceptor- and donor-type traps distributed through-
out its band gap. 7 In order to simplify and ex-
pedite our arguments we assume that the dist»b-
uted donor traps are lumped together to form a
single trap level of density N, , positioned at an
energy E, below the bottom of the conduction band.
As far as the conduction process to be described is
concerned, acceptor-type traps may be ignored.
However, these types of traps are of significance
when acting as compensation centers, since they
have a role in determining the position of the equi-
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T=Bt+ To, (4)

the trap level will become an effective emitter of
electrons at a temperature T given by

BE,/kT2 = v & ~'~ ~rm (5)

As a result, around this temperature the dielectric
begins to relax quickly from the non-steady-state
[depicted in Fig. 2(b)] to the steady state [shown

rent is constant throughout the system. %'hen

this condition exists, the field at the cathode-in-
sulator interface is approximately thrice that in

the neutral region of the insulator, as will be ap-
parent from an inspection of (1) and (2). Also,
the steady-state width of the space-charge region
adjacent to the cathode is greater the greater the
voltage bias. However, this process cannot con-
tinue indefinitely, since at sufficiently high voltage
bias the barrier at the cathode-insulator interface
will become permeable to tunneling electrons. The
tunnel current increases much faster with in-
creasing field than does the Frenkel-Poole effect,
with the result that an electrode-limited-to-bulk-
limited transition occurs in the conduction pro-
cess. " At the onset of this process, the space-
charge region becomes only very weakly dependent
on the applied voltage.

Next, consider what happens if the sample is
cooled to a low temperature TD &without a voltage
bias on the electrodes and then, at the low temper-
ature, a fixed voltage bias is applied to the elec-
trodes. Normally at low temperature the emission
of charge from the traps will be negligible; thus
it will take the system an extremely long time to
relax to the steady state. The time t„ for the in-
sulator to relax to the steady state is given ap-
proximately by

-1 e@g /kTr-
where v is the attempt-to-escape frequency, k is
Boltzmann's constant, and T is the temperature
('K). Assuming T=100 K, E, = —,'eV, and v=10"
sec, then t„=10' sec. Thus it takes the system
an inordinately long time to relax at low tempera-
tures. This means that when a voltage is applied
to the system it is dropped uniformly throughout
the solid [see Fig. 2(b)] and normally remains so
during the course of the time it takes to make an
I-V measurement. Now, if instead of holding the

sample at a constant low temperature it is heated
with a fixed voltage applied and at a constant rate,
B degrees per second, that is,

in Fig. 2(c)], during which process the charge with-
in the insulator is redistributed as required by
steady-state conditions. The charge released in
forming the space-charge region is typically 10'—
10' electrons per square centimeter of device
area, the great majority of which escapes from the

system in a matter of seconds. Hence the current
flowing in the external circuit associatedwith-charge
redistribution is much larger than, and superposed
on, the current supplied fromthe cathode, and

it ceases when the charge redistribution within the

insulator ceases. Thus the DRC-vs-temperature
characteristic exhibits a maximum. The maximum
occurs at a temperature T given by (5). In this
case, however, it is noted that, contrary to con-
ventional thermally stimulated currents, the

sample is not stimulated at the start of the heating
process. It can be shown that if the insulator
contains only a single discrete trap, the current
at constant voltage is given by (see Fig. 1)

e~ X, kT2
I(T) = ——' exp—

4 t„B(E,+kT)t„

where & is the space-charge-region width. Further-
more, the area A under the curve is related to
the charge Q released from the insulator (charge
contained in the space-charge region) as follows:

1 2 IdT=Bj 2 Idt=BQ=A (7)
Tl

where Tj and Ta are the temperatures corresponding
to the beginning and end of the process' and t,
and t~ are the times corresponding to Ty and T2.

It will be noted that if a voltage bias is applied
before the sample is cooled to low temperature
and then the sample temperature raised with the
same voltage bias applied, there will be no ob-
servable DRC maximum, since the sample will be
essentially in its steady-state condition at all times
during the experiment" [see Fig. 2(c)]. It will
also be apparent that the greater the applied volt-
age bias, the greater is the area under DRC curve;
also the area under the curve is proportional to
B. Finally, the depth of the trap below the bottom
of the conduction band, as determined from (5),
must be independent of B and the applied voltage
if our premise is correct. All of these points have
indeed been experimentally confirmed.

A complete treatment of dielectric-relaxation
effects and associated phenomena in insulators
containing distributed traps and blocking contacts
will be given elsewhere.

*Work supported by Defence Research Board of Canada,
Grant No. 9512-33, and National Research Council of
C anada.
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The exact solution to the one-dimensional Schrodinger equation which describes the motion
of a particle scattering off a finite set of 6-function potentials of axbit~ary strengths and posi-
tions is found. The behavior of the T matrix both on and off the energy shell is also precisely
given. Localization of states is discussed.

I. INTRODUCTION

Recently a great deal of work' has been done on
the problem of understanding the electronic states
of a system in which the atomic scattering sites
are randomly located. The importance of these
studies in the field of semiconductor physics is well
known. The mathematical difficulties involved in
this problem have made it necessary to look into
its one-dimensional version in hopes of getting
some insight into the important features, so that
extraneous complexities can be avoided in the three-
dimensional case.

Even with its simplifications the one-dimensional
case has not proven to be trivial in nature and the
work in this area has needed to be put on a firmer
basis. In this paper we hope we have done this by
providing an exact solution to the Schrodinger equa-
tion for an electron moving in one dimension in the
presence of a set of 5-function potentials of arbi-
trary strengths and positions. The solution which
we present has the feature that a clear delineation
is made between terms that are made small due to
incoherence effects, in the case of a random dis-
tribution of scattering sites, and those that are not.
This feature of our solution makes it useful for an

understanding of how wave functions grow inside
the chain of scattering sites and thus it is applicable
to the study of the all-important problem of local-
ization.

In Sec. 0 we present our solution to the integral
form of the Schrodinger equation. In Sec. III we
recognize the fact that to obtain the wave function
we did not have to completely invert the matrix M
[defined by (2. 5)]; we complete this task and show
that the Fredholm determinant, i.e. , detM, has,
for positive energy, a magnitude greater than unity.
With this inverse of M, we obtain, as well, the T
matrix both on and off the energy shell and briefly
discuss its connection with the evaluation of trans-
port properties and the density of states in a spec-
imen. Section IV is devoted to a discussion of
some aspects of the problem of localization. We
point out in that section that for positive energies,
where IdetMl —1, there can, for a finite chain
of scattering sites, be no states which vanish at
+ ~; thus no precisely localized states exist. For
a finite chain, localization at positive energies is
always, formally, only approximate.

In Appendix A, we discuss other forms of the
solution found in Sec. II, while in Appendix B, we
make the connection between our results and the


