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A recent calculation of Mills indicating large deviations from Mathiessen's rule is shown to
be in error because of the neglect of terms of the game order in perturbation theory which re-
move the reported divergency and leave only very small corrections to the Boltzmann equation.
In addition, it is suggested that the experimental basis for these large deviations may have a
different explanation.

In a recent Letter Mills' has presented a resis-
tivity calculation based on the Boltzmann equation
in which the scattering probability is carried to
fourth order (second order in the impurity poten-
tial, second order in the phonon coupling). The re-
sults show that there are substantial deviations from
Mathiessen's rule and seem to support the conjec-
ture of Caplin and Rizzuto~ that these deviations
are caused by a breakdown in wave-vector conser-
vation due to the presence of the impurities. On the
other hand, the results are in disagreement with
previous resistivity calculations and thus are rather
suggestive that there may be something fundamental-
ly wrong with all the usual treatments which employ
the Kubo formalis~ and ensemble-averaged Green's
functions. Indeed, in response to the calculation of
Mills, several authors have again shown that the
Green's-function formalism does not lead to these
large effects.

We show below that the Mills calculation does not
in fact negate the usual Kubo-formula calculations
of the resistivity. What has happened is that in his
perturbation calculation Mills neglected certain
other terms of the same order, and when all these
contributions are considered together the calculation
again reduces to the usual Green's-function approach
and yields a very small correction to the lowest-
order resistivity. In what follows we illustrate the
cancellation that occurs between the various terms
and then establish the connection between this ap-

proach and the usual Green's-function approach.
We conclude with a comment on the experimental
situation.

To illustrate the cancellation that occurs we will
consider only one of the two processes discussed
by Mills and, furthermore, we will restrict our-
selves initially to the much simpler calculation of
the single-particle decay rate rather than the con-
ductivity. The amp&. itude for the process shown in
Fig. 1(a) is
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where V». and g, are the impurity and phonon ma-
trix elements. The single-electron decay rate is
then given by
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FIG. 1. Amplitudes that contribute in the same order
(second order in both electron-phonon coupling and im-
purity potential) to the scattering probability. The solid
lines represent electrons, the wavy lines represent pho-
nons, and the dashed lines terminated (or interrupted) by
a cross are impurity interactions.
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The angular brackets () indicate an ensemble aver-
age over impurity positions which we have taken
after squaring the matrix element. We have not in-
cluded the thermalmccupation factors in (1) since
they play no role in the following argument. The
important point, as Mills observed, is that this ex-
pression is divergent because of the structure of
the energy denominator; that is, the poles in

I E& —&&. + ill lie on opposite sides of the real axis.
This term, however, is not the only process that

contributes to second order in V and second order
in g to the single-particle decay rate. ~ The lowest-
order amplitude V~ ~ ~ [Fig. 1(b)] has a higher-order
correction also shown in Fig. 1(b). The amplitude
corresponding to this correction is
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and the interference of this with the lowest-order
amplitude leads to a correction to the decay rate
given by

(2)
Now this probability is also divergent, but if we
combine this with the previous decay rate we get a
finite answer. Schematically,
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where we have dropped all the common factors and
defined
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Now 6(x) has the representation

so that we can rewrite (3) as

2' A BA (4)

We note that the poles arising from the energy
denominator are now on the same side of the real
axis. If we integrate this expression over q and k,
we get a very small correction since the density-
of-states factors multiplying the energy denominato~
are smooth functions of energy.

There is a very direct connection between this
approach and the usual Green's-function method.
In the Green's-function approach the single-particle
decay rate is obtained from the imaginary part of

the self-energy, which in our example is the self-
energy shown in Fig. 2(a) and is given by

a E-4g ~
q COq

where only the term resulting from the same process
considered above has been written down. Except
for the thermal-occupation factors the expression
for the decay rate given earlier [Eq. (4)] is just
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so that the perturbation calculation does give the
same results as the Green's-function approach,
i.e. , a negligible correction.

The averaging over impurity positions deserves
some comment. In both approaches the ensemble
averaging was performed in the final stage of the
calculation, that is, in the expressions for the phys-
ical quantities of interest. It was for this reason
that we could compare the results of the two calcula-
tions and expect agreement. Note also that the
averaging procedure has in fact played no role in
either creating or resolving the divergence difficul-
ties.

Although we have shown only that higher-order
corrections to the single-particle decay rate are
small, it seems plausible that the corrections to the
resistivity are also small. This would certainly be
the case if we were to use just the corrected matrix
element in the ordinary Boltzmann equation. How-
ever, because of the semiclassical derivation of the
Boltzmann equation one cannot be certain that this
procedure does not neglect other equally important
higher-order terms. If is therefore advisable to
return to a first-principles calculation based on the
Kubo formula in which the conductivity is written in
terms of a current-current correlation function.

The current-current correlation function can be
rewritten in terms of a two-particle Green's func-
tion, and again to make things tractable one performs
an ensemble average over impurity positions. In a
diagrammatic expansion a typical term would look
as shown in Fig. 2(b). Note that the impurity aver-

(b)

FIG. 2. (a) A self-energy contribution to the single-
particle lifetime. (b) A particular "bubble" contribution
to the conductivity.



5002 B. G. NIC KE L AND J. W. WI L KINS

aging leads not only to self-energy corrections but
also to an effective particle-particle scattering am-
plitude. A calculation that keeps only the lowest-
order interaction terms in both the irreducible self-
energy of the single-particle Green's function and
the irreducible particle-particle scattering amplitude
yields the ordinary Boltzmann equation with first-
order matrix elements. In establishing this equiva-
lence we note that two things enter in a rather es-
sential way. First, the approximate momentum in-
dependence of the self-energy enables us to use the
Boltzmann equation with "particles" simply replaced
by quasiparticles. " Second, it is important to
treat the single-particle self-energy corrections and
the particle-particle interactions consistently. For
example, the neglect of the particle-particle inter-
action would lead to a conductivity proportional to a
single-particle lifetime, rather than the transport
lifetime 7„. On the other hand, the neglect of self-
energy corrections would lead to a divergency of
Mills's type since now the poles would lie on oppo-
site sides of, and infinitesimally close to, the real
axis.

The correction terms to these lowest-order re-
sults are of essentially three types. First, those

terms involving multiple scattering off a single im-
purity site can be taken into account by simply re-
placing the potential matrix element by a t matrix.
Those terms involving renormalizations of internal
lines such as the example we discussed above are
small. Finally, those involving crossed interaction
lines are also very small because of the restrictions
on the internal momentum sums. '

We conclude with a comment on the experimental
situation. Caplin and Rizzuto point out that the
simple model used by Dugdale and Basinsky" to ac-
count for the effect of an anisotropic conduction-
electron relaxation rate on the resistivity does not
adequately describe the concentration and tempera-
ture dependence of the resistivity at low tempera-
ture. However, a preliminary analysis of the data'
indicates that another simple model, ' involving
umklapp processes, can give a reasonable interpre-
tation of the experimental results. Thus until such
a time when solutions of the Boltzmann equation in
a multiband metal such as aluminum are available
to decide the validity of these and other model cal-
culations, the conclusion of Caplin and Rizzuto-
that an anisotropic relaxation time cannot account
for the experimental data —is unwarranted.
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