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The dielectric properties of ionic crystals are discussed according to the various models
so far proposed. To test Szigeti's relation on compressibility, the problem of the most suit-
able formula to account for the second-neighbor and many-body interactions is carefully dis-
cussed. Two different models for many-body interactions are considered. It is found that re-
sults are quite sensitive to the models of many-body interactions. From the corrected values
of the Szigeti constant it is concluded that the shell model is good for some ionic crystals,
while for others the deformation-dipole model may be better.

I. INTRODUCTION

P*, Sap &+2 1

P p. t'o Eo+ 2 ~g
(2)

where Ze is the ionic charge, p, is the reduced
mass, gp is the volume of the unit cell, and rp is
the harmonic value of the nearest-neighbor separa-
tion. A is a correction factor for many-body and
second-neighbor non-Coulomb interactions. If non-
Coulomb interactions are central and confined to
nearest neighbors only, then A = 1. The right-hand
expressions in both the equations are dimensionless
quantities and can be calculated from the experi-
mental values of ap, etc. , provided that the correc-
tion factor A is known.

The predicted values of S& and S& are strongly
model dependent. It is for this reason that rela-

Recently, Lowndes and Martin' have made care-
ful measurement of the dielectric constants of a
large number of alkali halide crystals at low tem-
perature. They have compared the results of their
measurement with some of the existing models of
ionic crystals and have noted some discrepancies.
For the purpose of comparison they used the two
well-known Szigeti relations. The first of these
relations correlates the two dielectric constants
ep and E„with the long-wavelength transverse op-
tical frequency &p. The second relation correlates
Ep E', and p with P, the har monic compr essibil-
ity of the crystal. The two relations may be written
in the form

(~~o)"' »o o --
Ze &+2 4p

tions (1) and (2) may be used for critically testing
the validity of a particular model. If ions are as-
sumed to be polarizable by an electric field only
and interactions are confined to the second nearest
neighbors, then both S, and S2 are equal to unity.
The experimental values of S, are, however, less
than 1. The deviation can be explained either by
introducing an additional dipole moment for each
ion pair because of a redistribution of the charge
cloud due to overlap and due to the nonuniformity
of the Coulomb field of the nearest neighbors (de-
formation-dipole modelo) or by a shell model. '

The constant S2 is predicted to have a value equal
to unity in the deformation-dipole model. But the
shell model predicts Sz) 1. Lowndes and Martin, '
using a suitable estimate of the correction factor
A, found that the experimental values of S& are less
than 1 in all cases. This contradicts the prediction
of both the shell model and the deformation-dipole
model. Recently Roy, Basu, and Sengupta have
shown that the deformable-shell-model' calcula-
tions give fairly good values of &p with interaction
parameters which are consistent with the dielectric
and elastic data. This means that both the relations
(1) and (2) can be consistently explained on the basis
of the deformable-shell model.

On a critical examination of the correction factor
A used by Lowndes and Martin, ' we find that there
is an error in the formula in which the second-
neighbor interaction is accounted for. Moreover,
the many-body correction in A comes out with op-
posite sign if instead of the angle-dependent many-
body interaction one uses other forms, such as is
implied in the deformable-shell model~ or the
breathing-shell model. ' Again Lowndes and Mar-
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tin' use, instead of the harmonic values, the zero-
degree values of both the dielectric and elastic data.
For «p «and (dp this will not introduce any seri-
ous error. But for the elastic data the difference
is considerable both in C,p

—C«and in P.
In view of the above anomalies we propose to ex-

amine Szigeti's relation on compressibility more
carefully. In Sec. II we discuss the theory of long-
wavelength optical vibrations according to the sev-
eral models that have been suggested for the ionic
crystals, and calculate the predicted values of the
constant Sp. It is found that the (both-ions-polariz-
able- shell) model, def ormable-shell model, and
breathing-shell model all predict S~ to be greater
than unity.

The question of finding the most suitable formula
for the correction factor A is discussed in Sec. III.
It is found that the correction due to many-body in-
teraction can be carried out using experimental val-
ues of C&z —C44 and P, so that uncertainties due to
the differences in the estimates of overlap-potential
parameters can be eliminated. The sign of the cor-
rection term, however, depends on whether we are
using effectively angle-dependent many-body inter-
actions or not. The correction due to the second-
neighbor van der Waals and overlap interaction is
carried out by a formula which is insensitive to
small variations in the parameters of the overlap
potential. Calculated values of S~ are given in Sec.
IV and the results are compared with the predic-
tions of the different models.

II. LONG-WAVELENGTH OPTICAL VIBRATIONS
IN VARIOUS MODELS

The macroscopic theory of long-wavelength op-
tical vibrations of ionic crystals has been discussed
by Huang (see Born and Huang') in terms of the
three macroscopic quantities E, the electric field,
P, the polarization, and W= (p/vpp~p(x, -x ),
where x. -x is the change in the equilibrium sepa-
ration between the positive and the negative ions.
The basic equations are written in the form

~ t

W= b»W+ b»E,

get the values of S, and Sp predicted by the model.

A. Deformation-Dipole Model

p~ = 6'Up/K rp

where n is the number of nearest neighbors and K
is the isotropic spring constant per unit displace-
ment of an ion due to an interaction other than the
Coulomb interaction. For long-wavelength optical
vibrations, second neighbors do not contribute to
K. Neglecting the third and higher neighbors and
assuming only a central interaction P(r), we get

K= & n[P" (rp)+ (2/r, ) 4("(rp)] . (6)

To get an expression for Sz we write the cohesive
energy per unit cell

V= n 4 (r,}—o(Ze}'/r, ,

where o is the Madelung constant. Using Eq. (7),
we get

1 yp d U nyp „2
~„,=

g
0"(rr( ~ „('(rg() . —(6)

In the above we have used the equilibrium condition
SU/Srp=0. Since we have neglected both the many-
body and second-neighbor interaction, we have A=1
and

Sp=AP~/P=l .
B. Both-Ions-Polarizable- Shell Model

This model was proposed by Szigeti in connec-
tion with the dielectric properties of ionic crys-
tals. Later it was extended by Hardy and Karo
and Hardy' to the study of lattice dynamics. The
model assumes a distortion dipole moment m, (r)
between a pair of nearest neighbors separated by
a distance y. The dipole is measured positive from
negative to the positive ion. Without making any
further assumption about the nature of the interac-
tion between the ions, one gets (see Born and
HuangP}

n ~ 2
S, = ( ~ ',(r, le — ,(r, l)3Ze yp

P = b»W+ bga E .
The three constants b», b», and b can be ex-
pressed in terms of «p «and p Using these
relations, we can write

s=1 1+3 nb~a

(~g )1/p

Ze
(4)

Up 4mbm+3 A
g rp ((4dpb v3pp) +4n+b,p p

For any microscopic model, b», be, and p can be
expressed in terms of the parameters of the model,
and substituting these in the above equations, we

This model was first discussed by Dick and Over-
hauser, "who also included an exchange polariza-
tion of the charge cloud. We shall neglect the sec-
ond effect, which in essence is identical to a de-
formation-dipole model discussed above. Let M&,
u&, u&, —Y& e, and K, be the mass, the displace-
ment of the core from the equilibrium position, the
corresponding quantity for the shell, the shell
charge, and the core-shell spring constant of the
positive ion of charge Z&e=+Ze, and let the corre-
sponding quantities for the negative ion of charge
Zpe = —Ze be denoted by Mp, etc.; then using the
adiabatic condition, the basic equations of the sys-
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tern may be written
~ 0

M, u', = -K, (u', -u', )+ (Z, + Y,) e E„, ,

O=K, (u', -u~&) -K(u~ —u&) —Y, e E„, ,

P= —E [(Z, + Y, ) eu', —Y, eu', ],
U0 f =1,2

(10)

E,~f = E+3—g P,
i=1, 2,

In the above K has the same meaning as in Eq. (5).
Eliminating the shell variables and writing W= (p/
Vo)'~3 (uf -uz), we can transform Eq. (10) to the
form of Eq. (3) and thus obtain the values of 5«,
etc. Using the expression for P given by Eq. (8),
we get (taking A = 1)

KKg Ka ~Y ~Y

b Ka Kg

stants will remain valid.

D. Deformable-Shell Model

In this model proposed by Basu and Sengupta,
many-body interactions arising from the deform-
ability of the ion shells are considered. Here
many-body force constants are between the second
neighbors which become ineffective for long-wave-
length optical vibrations. Hence in this model also
the shell-model equations for optical vibrations re-
main valid and Szigeti relations are the same as in
Eq. (11).

In the last three models, however, it is well
known that many-body interactions are included.
Hence in these models, the correction factor A in
Eq. (2) will be different from that in shell model
where A includes only the second-neighbor interac-
tion. The evaluation of the correction factor for
different models is discussed in Sec. III.

S3= 1+—+— III. CORRECTION FACTOR FOR SECOND-NEIGHBOR
AND MANY-BODY INTERACTIONS

b = KKg+ KKg+ Kg Ka .
Usually Yz/Ka& F&/K, . Hence S, &1 and, since K,
K&, and K~ are all positive quantities, S~ & 1.
Lowndes and Martin' have remarked that refine-
ments of the shell model can make S~ less than unity.
Equation (11), however, shows that this is impossi-
ble, provided the definition of Sz is the same as in

Eq. (2).
In the Dick-Overhauser model" an exchange-

polarization effect leads to a deformation dipole be-
tween a pair of ions given by'~

m, (r) = ' ' —r'P(r),
f2+ 1J

(12)

where r& and r2 are the radii of the negative and
positive ions, respectively, and y is an empirical
constant whose value was taken to be 1.4 for Na,
K, and Rb halides by Dick and Overhauser. " Thus
in this model we shall have an additional term for
S~ in Eq. (11) similar to that given in Eq. (5), while
Sm is given by the same expression as in Eq. (11).

C. Breathing-Shell Model

In this model Schroder and Nusslein and Schro-
der introduce effectively many-body interactions'
by assuming a new degree of freedom, the so-called
breathing motion of the shell. The breathing motion
is coupled to the shell displacement through the
vector D (see Ref. I). But for long wavelengths, as
the wave vector q 0, D 0, showing that the
breathing motion is decoupled from the shell dis-
placements. In this limit, therefore, the shell dis-
placements are unaffected by breathing and the basic
equations for optical vibrations will be the same as
in the shell model and Eq. (11) for the Szigeti con-

Let us write the correction factor A =A,/Az,
where A& and A2 are defined by

P*' =A~ P*, P„=A~ P, (13)

1 1 r~
p+ pal 3 fit

Multiplying both sides by P*, we get

1 P*
1

r K
Ag P + O'U0

The correction factor Az will depend on both the
second-neighbor and many-body interactions. If
the contributions from the overlap and the van der
Waals interactions are represented by U„(r) and
U, (r) for the nearest and the next nearest neigh-
bors, respectively, the Madelung energy by U„(r),
and the many-body energy by U, (r) (r is the near-
est-neighbor distance), then we write for the co-

where P* and P are the experimental values of the
quantities, while P*' and P„are the values that
would result if many-body and second-neighbor in-
teractions are neglected. The correction to P~ is
essentially due to the correction in the spring con-
stant [see Eq. (5)]. Since the second-neighbor in-
teraction does not contribute to K, the correction
to P* arises solely from the contribution of many-
body interaction to the spring constant. This con-
tribution may be written in the form

K = —2(a, +2P,) for NaCl structure, (14)

where n, and P, are the axial and radial elements
of the nearest-neighbor force constant due to many-
body interactions (see Leibfried and Ludwig'4).

To get the correction factor A, , we write Eq. (5)
in the form
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hesive energy per unit cell

U(r) = U„+ U„,+ U~+ U o .
e2

C44=0. 348 ~ .
rp

(24)

The harmonic compressibility P is given by

1/P =DU(r) = D(U„+ U„,)+DU„+DU, ,
where

r2
3U p dr rp dr

(18)

The cohesive energy per unit cell is given by, '
neglecting contributions from the second neighbor,

U(r) = 6 P(r) —1.748 e /y+ 15A(r) . (25)

If we use the equilibrium condition to eliminate |II)'

from the expression for C«, we get

Using the equilibrium condition, we may write 6C„=~—1.278 ~+ o A(ro) .
o p ro

(24')

9 'Up 9'U p

Substituting in Eq. (18), we get

(20)
Using the above results, we get from Eqs. (16) and
(22) for NaCl structure

9 mb 9+ nnn nnn

(21)

—= 1 — Um~+ —
Umt, P

1 2 7 p
A 3 3 r 44 12
—=1+—1-—— (C —C )P~

1 0

1 5 p—= 1+— 1 —— (C44 —C|o) p
A2 3 rp

1 2
Unnn+ annrp ro

(26)

U', P . 22)

4 5u| = —~A(ro) I pi= A(r, ),
p

'
prp

where A(r)= [A(1)+A(2)]e "i', and A(1) and A(2)
are the parameters of the three-body interaction.
The complete expression for the elastic constants
are given by (for NaC1 structure)

e 6 5C||= —~ —1.569 ~+ o + o A(ro),
rp ro rp p ro p rp

(23)

e 22

C|o=0.348 ~+ o A(ro),
ro p ro

Even if we neglect the many-body part, Eq. (21)
differs from that given by Lowndes and Martin. '
The reason for the difference is in the definition of
P „which they have used. They define 1/P by
D(U„+ U„). But DU„contains a contribution from
the next nearest neighbor [Eq. (20)], and the defini-
tion is therefore wrong. In the evaluation of the
correction factor by Eq. (22), only the contribution
from the next nearest neighbors needs to be esti-
mated. The formula used in Ref. 1 requires, in
addition, the estimate of P „from the short-range-
interaction parameters. As the parameters are to
some extent uncertain, we have tried to make a
minimum use of them. Using Eqs. (16) and (22), we
can find the correction factor A for specific models
of many-body interaction.

The three-body interaction discussed by Sarkar
and Sengupta'6 depends only on the relative separa-
tion of the common nearest neighbors. If the over-
lap interaction is taken in the form P(r) = be
for Nacl structure the three-body force constants
for nearest neighbors are given by

Since p/ro «1 and p = p*, we get for the correc-
tion factor

A~ - - - 1 i 2A= =I (C„—C„)U —
IU

U' ~ —U',) U .
2 0 ro

(26')
The approximate expression (26 ) is valid only if
the correction terms are small compared to unity.
In some cases this condition is not fulfilled and the
exact expression for A should be used.

Simplifying Lowdin's expression for the lattice
energy, Lundqvist" has given an expression for a
three-body interaction which is proportional to the
square of the overlap integral between the nearest
neighbors. The contribution to the lattice energy
from this three-body interaction may be written in
the form

where e„ is the charge of the 0 ion, and the function
f depends on the overlap integral and vanishes un-
less l' k' and l" k are nearest neighbors. We have
neglected a small angle-dependent correction term
which was later added by Lundqvist. The nearest-
neighbor force constants from the above energy are
given by

2 Q 1 ii 3 5 e I 20o(g=2e' f"(ro)+ '
o f'(yo)+ o f(ro),

rp rp p

(28)
Q 1 I 1 4 e I 10 e@=2e o f (y'o) o f'(ro) o f(ro) .

rp rp rp

The elastic constants are given by

e2 e2C|i-—~ —1.278 ~ —1.496 ~fro rp rp
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2 e2
—l. 67 ~f ' —l l. 32 4

—f,
rp rp

in the form

1/P = —(C44 —Cu) . (32)

e e
Cqm ——0. 348 ~+ 2. 330 ~f ' ~ 4. 173 ~ f,ro ro ro

e2 e2
Cqq= 0. 348 ~+4. 173 ~f,ro ro

(29}

and the cohesive energy per unit cell is given by

e e
U(r) = 6$(r) —1.748 ——8. 976 —f (r) .r r (30)

Usirg the above results, we get from Eqs. (16) and

(22)
2—= 1p0, 499 ~ f p~ —0. 52(C~ —C~~) p*,

Az ro

2
—1+0 499~f P U +—U P

A2
' r 0 18ro '

ro

and

A~A= = 1+0.52 (C44 —Cqa) p~
A2

U I P/ P 31I
18rp

Comparing with Eq. (26'), we find that in this
model the many-body correction is about half of that
in the previous case. One difficulty with this model
is that the exact expression for A cannot be evalu-
ated from the experimental value of C« —8',2 along
because of the occurrence of the term with f". The
correction factor A, deduced here differs from that
given in Lundqvist, ' who gets C« —C~2 in place of
0. 52(C« —C,z) in Eq. (31). The difference seems
to be due to the fact that we have considered here
many-body corrections to K from nearest-neighbor
force constants only.

Basu and Roy 3 showed that the breathing-shell
model effectively includes both three-body and
four-body interactions. It is, however, not possible
to write the many-body contribution to the lattice
energy explicitly, since the effect occurs indirectly
because of the breathing motion of the ions. The
essential assumption of the breathing-shell model
is that the lattice energy depends on ionic radii.
The breathing motion is a new degree of freedom,
which allows for the change of ionic radii for
changes of ionic position. Usually the dependence
on ionic radius is assumed to come from the over-
lap interaction. "' The van der Waals interaction
also depends on ionic radii, through the polariza-
bilities of the ions. The significance of this de-
pendence in the breathing-shell model has, how-
ever, not been discussed. Neglecting this effect,
the expression for elastic constants are given by
Basu and Roy. " The contribution to the compres-
sibility from the breathing motion may be written

1/p" = 1/p ~ —(C44- Cga),

1/Ai = 1+ (C44 —C(2) . (s4}

In this model U, is independent of r and from Eq.
(22} we get

1 1 e 2
aaa+ aaa

2 ro ro
and

Aq 1 e 2
A =—= 1 —(C,4- C„)-

A 2 18r aaa r aaaU +—U
0 0

(34')
Comparing with Eq. (26 ), we find that the above

Since the breathing motion does not affect the
long-wavelength optical vibrations, we have A& = 1.
To get the factor A2 we cannot use Eq. (22}directly
as an explicit expression for the many-body contri-
bution to cohesive energy, U ~

= 0. Instead the re-
pulsive energy in U„(r) depends on ionic radii which
again owing to breathing motion are functions of r.
Thus in the term DU„ in Eq. (18}additional terms
will come as a result of differentiation of ionic radii
with respect to r. Using the adiabatic condition,
we get ultimately from these terms the contribution
to the compressibility due to breathing motion. Us-
ing Eq. (32), we get for the correction factor A
=Ay/A2 = 1/A2

1 - - - 1A=—= 1+ (C44 —Cga)P —
18 U„,+—U„, P .

2 r0 r0
(33)

Comparing with Eq. (26 ), we find that the many-
body correction for the breathing-shell model is the
same as that from the many-body model of Sarkar
and Sengupta. '

The three-body interaction in the exchange-charge
model of Dick and Overhauser is essentially the
same as that in Lundqvist's model. " In both, the
three-body interaction arises from an exchange ef-
fect and the difference arises from the different ap-
proximations used in the evaluation of the exchange
integrals. Hence the correction factor A will be of
the same form as in Eq. (31 ), except for some dif-
ference in the numerical coefficient of the second
term.

Lowndes and Martin' have considered the effect
of a purely angle-dependent many-body interaction
on the correction factor A. Such an interaction will
evidently not contribute to the compressibility, be-
cause in a compressive strain the angles are not
changed. But the contribution of this interaction to
the nearest-neighbor force constant influences the
optical vibration and contributes to A, . According
to the results given by Lowndes and Martin, ' we
get
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correction due to the many-body interaction is of

equal magnitude but of opposite sign. The reason
for this difference lies in the fact that in this model
no contribution from the many-body interaction
comes from A~. In fact, if we compare A& alone,
we find that both the models give the same sign.

Thus we find that the correction due to the many-

body interaction is the same as in the model of
Sarkar and Sengupta. In the model of Lundqvist
it is of the same sign but about half the magnitude.
For a purely angle-dependent interaction, ' on the
other hand, it has the opposite sign. For the pur-
pose of calculation we have used Eqs. (26 ) and (34 )

in exact form.
The results of the calculation of S2=A p "/p are

given in Table I. The parameters of the overlap
interaction are taken from Table X of Tosi. '7 The
dielectric data for the calculation of P ~ are taken
from Ref. 1. S2 is calculated using both the angle-
dependent many-body interaction and the many-body
interaction given in Ref. 16.

IV. DISCUSSION

The results given in Table I show that the value
of S2 is quite sensitive to the model of many-body
interaction assumed. In 8 of the 15 crystals con-
sidered, S& & 1 in one of the two models of many-
body interactions used. But for the remaining seven
crystals, S& is either nearly equal to 1 or less than
1 in both models. The estimates of next-nearest-
neighbor interactions are believed to be correct
within a few percent. To give an idea of the differ-
ences, we may note that our estimate for LiF, based
on Tosi's" Table X parameters, is-0. 17 for p/

P„. If Huggin's (see Born and Huangs) parameters,
which are very different from those of Toshi, are
used, the estimate is —0. 22. It may be mentioned
that according to the formula used by Lowndes and
Martin, ' the same correction term is —0. 35. This
large difference is partly due to the error in their
formula and partly due to the fact that they have used
calculated values of P„ in their estimates of the cor-
rection term. Uncertainties in the estimate of the
correction due to the many-body interaction, how-
ever, are much greater because of the difficulties
in the determination of the values of C44 —C». In
different sets of experimental results even the sign
of this difference may be reversed. Thus, for ex-
ample, C» —C44 for RbBr and RbI as given in Leib-
fried and Ludwig' are negative, while the values
that we have used, based on later experiments, are
positive. Even in these refined experiments, ac-
curacy of measurement for C» is not high and
therefore considerable errors in C44- C» are quite
possible. In view of these uncertainties it is doubt-
ful if a definite contradiction with the shell-model
prediction can be concluded from the values of S2
shown in Table I. Perhaps a more reasonable con-
clusion will be that the shell model is applicable for
some crystals while the deformation-dipole model
is better for the others.

When referring to the shell model, we have
throughout this paper implied the conventional shell
model which has been used in almost all the com-
parisons with experimental results. In this model
the overlap force is assumed to act entirely through
the shells. It is, however, possible to generalize
the shell model by assuming that the short-range

TABLE I. Columns 2-5 give the experimental data used: harmonic value of nearest-neighbor distance ro, compressi-
bility (P), and difference C44- C&2. Column 7 gives the values of the Szigeti constant S2, assuming angle-dependent many-
body interaction Qef. 1), and column 8 gives S2, if many-body interactions introduced by Sarkar and Sengupta (Ref. 16)
are used. Values of P* are calculated with the data given in Ref. 1. Column 6 gives the references of the elastic con-
stants for the crystals in the corresponding row.

Crystal
P

(10 cm /dyn)
p

Q

(10-"cm'/dyn)
~44 ~i2

(10 &2 dyn/cm2) Ref.

S, =AP*/3
From Eq. From Eq.

(34') (26')

LiF
Li Cl
LiBr
NaF
NaCl
NaBr
NaI
KF
KCl
KBr
KI
RbF
Rbcl
RbBr
RbI

1.990
2. 538
2.713
2.295
2.790
2. 951
3.198
2.637
3.108
3.258
3.484
2.788
3.239
3.408
3.625

0.960
2. 884
3.759
1.897
3.614
4.348
5.504
2. 772
4.785
5.577
7.559
3.145
4. 902
6. 154
7.519

1.147
3.406
4.634
1.825
3.757
4.727
6.414
2.812
4.835
5.629
6.943
3.393
5.338
6.352
7.669

—0.084
0.053
0.058
0.076
0.031
0.013
0.002
0.001
0.012
0.004
0.013

-0.035
-0.026
-0.003
—0.007

18
19
20
21
14
21
22
23
14
24
25
14
19
21
21

1.13
0.72
0.63
0.72
0.83
0.88
0.95
0.87
0.90
0.94
0.79
0.96
1.22
1.03
I.06

0.92
1.03
1.06
0.96
1.04
1.00
0.98
0.87
1.01
0.99
0.96
0.71
0.90
0.98
0.95
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overlap interaction between two ions acts through
core-core (D), shell-shell (S), and core-shell [E(12)
=E(21)=F] interactions. If we restrict ourselves
to nearest-neighbor interactions and the correspond-
ing spring constants are written K~, Ks, and K~,
respectively, then it can be shown that ~

K (Kg+Km+ 2K~)
Kllf, ~ K ) (K ~ K ) ~ Rzgllf K 2K ))

(88)
where

IK =Ks+Kg, K=K))+Ks+2Kg

and K& and K~ are the core-shell spring constants
of the individual ions.

It is easily seen that for the conventional shell
model K~=K+ =0 and K=K =K&, and Sa in Eq. (28)
reduces to the va.lue given in Eg. (11}. If we as-
sume Ks=K~=0, then K =0 and S&=1. In this case
the short-range polarization is completely neglected
and only the electrical polarizability is taken ac-
count of. If only K& is put equal to zero, i.e. , the
shell-shell interaction is neglected, then the model
takes account of the short-range polarization. But
Sz remains greater than 1. Thus the generalized
shell model in this approximation is similar but not
identical to the deformation-dipole model. As far
as the long-wavelength optical vibrations are con-
cerned, the essential difference between the two
models is that in the deformation-dipole model it is
assumed that the ionic spring constant K is not ef-
fectively changed by the development of deformation
dipole. In the shell model, on the other hand, this
spring constant is effectively reduced in magnitude.

As has been pointed out earlier, in our definition
of the constants S& and Sz all experimental quantities
refer to the harmonic values, so that no effect of
anharmonicity is included in the Szigeti constants.
In computing Sz values of Table I, we have used the
harmonic values of rp and P, but zero-degree values
of fp 6„, and ~p. The effect of zero-degree an-
harmonicity on these quantities is quite small. For
example, from the measurement of Lowndes and
Martin' we find that for NaC1, the difference between
the harmonic and the zero-degree value of &p is only
0. 8% and for KCI it is 0. 2%. The effect on ~0 can
be easily estimated from the change in the spring
constant K due to the difference in the harmonic and
zero-degree values of yp. It is found that for KF
the change in ~p is about 1/g. This is quite negligi-
ble compared to the effect we are discussing.

It is particularly interesting to note that in none
of the cases is Sz found to be definitely less than 1
in both the models of many-body interactions. The
worst case is that of KF, where S& =0. 87. This is
important in view of the fact that none of the models
of ionic crystals predicts a value of S~& 1. The
present analysis shows that it is not possible to ex-
plain the properties of all the crystals on a single
model and a single type of many-body interaction.
The nature of the model and the type of many-body
interaction will vary from crystal to crystal.
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