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Self-consistent results for energy levels, populations, and charge distributions are given for
n-type inversion layers on p-type silicon. Quantum effects are taken into account in the
effective-mass approximation, and the envelope wave function is assumed to vanish at the sur-
face. Approximate analytic results are given for some special cases. Numerical results are
given for representative surface orientations, bulk acceptor concentrations, inversion-layer
electron concentrations, and temperatures.

I. INTRODUCTION

External electric fields or charges can change
the properties of semiconductor surfaces signifi-
cantly, and the consequences of such changes have
been systematically explored for many years. '~
More recently there has been considerable work
on the quantum effects that arise whenband bending
confines the carriers to a narrow surface channel.
Some of these effects have been described else-
where. ' In this paper we give the results of
numerical self-consistent calculations for the en-
ergy levels and subband populations of n-type in-
version layers on p-type Si. %e use the notation
of Stern and Howard'; readers are referred to that
paper for an introduction to n-type inversion
layers.

The first numerical self-consistent calculations
for inversion layers were made by Howard. ' Self-
consistent results have also been obtained by
Maeda~ and by Stern. Self-consistent solutions
for accumulation layers were discussed by Duke, 9

and have been studied in detail by Appelbaum and
Baraff ' '"

Our calculation is based on three major approxi-
mations. We assume (i) that the effective-mass
approximation is valid, so that we can neglect the
periodic potential and use the effective masses
and the dielectric constant of the perfect crystal;
and (ii) that the envelope wave function vanishes
at the surface. Neither approximation is likely
to be valid at high surface electric fields, for
which the calculated wave functions can extend
10 A or less into the semiconductor. The third
major approximation (iii) is that we can neglect
surface states and can replace the effect of any
charges in the oxide or insulator adjacent to the
semiconductor by an equivalent electric field.
This approximation is reasonably well justified for
the interface between silicon and silicon oxide
when it is appropriately treated. i~ Estimates of
the errors that result from use of the effective-
mass approximation have been made by Howard. '

Section II gives the equations to be solved, and
Sec. III gives some approximate results and com-
pares them with the corresponding self-consistent
results. In Sec. IV we briefly describe the numer-
ical calculation, and in Sec. V we give numerical
results for representative surface orientations,
bulk-carrier concentrations, temperatures, and
inversion-layer carrier concentrations. Section
VI discusses the relation of the calculated results
to experiment and includes an estimate of the
changes in the calculated energies that result from
relaxation of the condition that the envelope wave
function vanish at the surface. Two appendixes
describe depletion-layer edge effects and give
integrals of powers of z times the square of the
Airy function.

II. EQUATIONS

The band bending at a semiconductor surface
can be characterized by an electrostatic potential
P(z}. In the effective-mass approximation, the
electronic wave function for the zth subband is the
product of the Bloch function at the bottom of the
conduction band and an envelope function'

y ( ~ z) t (z)&f8s&lk&x+Qz&

where k, and kz are measured relative to the band
edge, 8 depends on k, and kz,

' and t, (z) is the solu-
tion of

d~f] 2~
d

'z+ z [E,+eP(z)it', (z)=0. (2)

We are interested in the bound solutions of (2), so
we require that t, (~)=0. In addition, we require
that t';(z) vanish at the surface, where z=0. This
should be a good approximation for the Si-SiOz
interface, for which the potential barrier for elec-
trons is approximately 3 eV,"until we reach elec-
tric fields strong enough to confine the electrons
within 1 nm or less." An estimate of the error
arising from this approximation is given in Sec. VI.

Each eigenvalue E, found from the solution of
(2) is the bottom of a continuum of levels called
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TABLE I. Parameters used in the calculation. a

Surface (100) (»0)
Valleys
Degeneracy
Normal mass
Longitudinal

masses

Conductivity
massb

Density-of-
states mass
per valleyb

Lower Higher Lower Higher Alln„2 4 4 2 6
m2 0.916 0.190 0.315 Q. 190 0.258

mj 0.190
m2 0.190

0.190 0. 190 0.190 0. 190
0.916 0.553 0.916 0.674

ms '1 ' 15 0' 283 0'315 0' 296

m& 0.190 0.417 0.324 0.417 0.358

Dielectric constant
Permi ttivity C~=K~tp

11.7
1.04xIQ 1 F/m

Fermi level in the bulk, for N&-AD=10 m . See Eq. (9).

T (K) 0 77 300
E -E (ev) l. 12 1.11 0.88

All effective masses are in units of the free-electron
mass; they are based on the conduction-band masses
m&=0. 190m and m& =0.916m given by J. C. Hensel, H.
Hasegawa, and M. Nakayama [Phys. Rev. 138 A225
(1965)]. See also, Table I of Ref. 5.

b
ms mi m2/ (mi+m2); mfl = (mi m2)

a subband, with energy levels given by

E, (k) =E(+ 5 iP, /2m, + 5 kz/2~,

where m, and ma are the principal effective masses
for motion parallel to the surface, which can be
obtained in a straightforward way from the bulk

masses. ' Values for these quantities and for the
mass m for motion perpendicular to the surface,
used in (2), are given in Table I for the surface
orientations used in this paper.

There can be as many as three values of m, for
a given surface orientation because the conduction
band of Si has six valleys along the (100) directions
of the Brillouin zone. In the effective-mass ap-
proximation, the valleys are degenerate in pairs,
but the degeneracy is found to be lifted in magneto-
conductance experiments at high magnetic fields. '
The origin of that splitting has not yet been ex-
plained.

The valleys which present the highest mass for
motion perpendicular to the surface have the low-
est kinetic energy and the lowest energy levels.
We label the subbands arising from these valleys
with indices 0, 1, 2, . . .. The (ill) surfaces have

only one ladder of subbands, since all the valleys
have the same orientation with respect to the sur-
face. The {100)and (110) surfaces have a second
ladder of subbands, which we label 0, 1,2, ....
For a general surface orientation, those subbands
which arise from the smallest value of ~ are
labelled 0, 1, 2, ~ ~ ~ in this notation.

The potential P(z) which appears in (2) is the
solution of Poisson's equation"

d ~(t) [.p.„()--Zeel())/ z., (4)

where g„ is the dielectric constant of the semi-
conductor, N, is the carrier concentration in the

ith subband, given by '

N, = (n„, m„KT/v"')~p[(Ez —E&)/KT1,

pp„,(z) = 0, Z &Zff

where z„ is the depletion-layer thickness, given by

z'= [2zsc zo~ p/e(N„—Np)]

Here P„ is the effective band bending from the bulk
to the surface, apart from the contribution of the
inversion layer itself; its value is given below.

The boundary conditions for Eq. (4) are that
dP/dz vanish for large z and that its value at the
surface be —E„where

F,= e(N„,+ No, »)/z, zp,.

Np„, = z, (N„—Ne) is the number of charges per
unit area in the depletion layer and N„,=gN, is the
total number of charges per unit area in the in-
version layer. Note that the electric field just
outside the semiconductor is larger than the field
just inside by a factor z /z, , where z„, is the
dielectric constant of the insulator. We have
specified dP/dz at the boundaries, so P itself is
uncertain by a constant. We sometimes choose jt'

to vanish in the bulk, but the energy levels ob-
tained from the solution of (2) assume that P van-
ishes at the surface.

The assumption that the depletion charge is con-
stant for a distance z„ from the surface and then
goes abruptly to zero fails in the transition region
from depletion to bulk, in which the field decays
to zero exponentially with a characteristic distance
given by the bulk screening length. " In Appendix
A, we discuss the correction to the depletion-layer
charge, and therefore to z, =N„„/(N„—Ne), which
arises from this effect. When the correction to P„
is taken tobe KT/e, thebandbe-ndingwhich enters
in (7) is

P, =[(E,—Er), +Ez KT)/e+ P„-e-N„, z„/z„zo,
(0)

where the first term is the energy difference be-
tween the bottom of the conduction band in the bulk
and the Fermi level, E„ is the Fermi energy
relative to the nominal conduction-band edge at
the surface, and z„ is the average penetration
of the inversion-layer charge from the surface.
The substrate bias p, b is the voltage difference

Eo(x) = In(1+ e*), n„, and mz are the valley degen-
eracy and the density-of-states effective mass per
valley, given in Table I, and E~ is the Fermi en-
ergy. pp„, (z) is the charge density of the depletion
layer, which we take to be

pp„, (z) = —e(N„—N'), 0&z &z'
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between the source and drain electrodes, which

are diffused into the surface to make electrical
contact to the inversion layer, ' and the bulk; it
is normally equal to zero. The last term in Eq.
(9) is the potential drop across the inversion
layer. Figure 1 shows some of the quantities
which enter in Eq. (9}. Values of E, —Ez in the
bulk are given in Table I for several values of T
for N„—ND=10 ' m '.

III. APPROXIMATE RESULTS

A. Triangular Potential

Because of the way in which the Schrodinger
equation (2} and Poisson's equation (4}are coupled
it is necessary in general to solve these equations
numerically to obtain self-consistent results. We
can, however, find approximate results for some
simple limiting cases.

The simplest approximation is to replace the
potential P(z) in (2) by —F~ for z & 0 and by an
infinite barrier for z & 0. This is sometimes
called the triangular-potential approximation. It
leads to the Airy equation with solutions'

Ep=ff'b /Sm, + (3e /z„epb)

b= bp+ &b,

bp= (12m, e N"/z~epk )' ',
&b = —4N„/3N*;

(14)

~ [Np, p, +
Pp N„,—(2/b) (N„—ND)] (13)

when the potential P vanishes at z = 0. The term
involving N„, gives the interaction of the inver-
sion-layer charge density with itself; the correct
choice of b minimizes the total energy of the sys-
tem, in which the coefficient &~ is replaced by, z.
The last term in (13) arises from the curvature
of the potential of the depletion charge density;
it will be small in Si, for which the inversion
layer is generally much thinner than the depletion
layer. We can therefore treat this term as a
small perturbation.

The average distance the charge density as-
sociated with the variational wave function (12}
penetrates into the semiconductor is found from
(11) to be zp= 3/b. We therefore find the following
variational results:

E, = (h /2m, )' ' [—', z eF, (i+ -')] (lob)

g, (z) =Ai ((2mpeF, /h' )'/P [z —(E, /eF, )]), (10a) Zp = Zpp+ ~zp

zpp= (9z,,eph /4mpe N")' ', (15)

The eigenvalues E, are asymptotic values for large
i, but they are amazingly close even for the ground
state i =0. The exact eigenvalues for the three
lowest states have i+ 4 in (10b} replaced by 0. 7587,
1.7540, and 2. 7525, respectively. " Another
property of these solutions is that the average
separation of carriers in the ith subband from
the surface, defined by

z, = fz &P(z) dz/J k, (z) dz, (11)

5zp ——4N/, zpp/9N

Ep = Epp+ 5Ep,

(3)p/p (e pg/ml/2 z e }2/8 (N ~N }/Np1/3

5Ep = (2N„e zpp/3zpcepN ) (Np, »+ pp N„,}. (16)

Here N = N~,»+ ~~ N„, and N„ is the net acceptor
concentration. In the limit N„,= 0, for which the

is 2E, /3eF„and that the average of z z is apzz, .
See Appendix 8 for the relevant integrals, includ-
ing the normalization of (10a).

0.4 I

Vaepl ~
B. Variational Results for Electric Quantum Limit

(12)

with a single undetermined parameter b. The en-
ergy of the lowest state is found after a straight-
forward calculation to be

The triangular-potential approximation which
we have just described is a reasonable approxi-
mation when there is little or no charge in the in-
version layer, but fails when the charge density
per unit area in the inversion layer is comparable
to or exceeds that in the depletion layer. When
only one subband is occupied, i. e. , in the electric
quantum limit, a variational approach gives a good
estimate for the energy of the lowest subband.
Fang and Howard' used the trial eigenfunction

t (z) —(~ hp)&/p z e ~/

g) 0.3

0
Zo 0.2

O
LLJ~ O. l
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FIG. 1. Potential energy V(z) = —
erat (z) at 0 K for elec-

trons near a (111) surface of p-type silicon with 10 net
acceptor ions per m3 and with 10" inversion-layer elec-
trons per m . The Fermi energy' and the energy Eo
of the bottom of the lowest subband are shown. The dot-
dash curve is the potential energy with the inversion-
layer contribution removed. The potential V(z) was used
to calculate the results in Table III.



4894 F RANK STERN

TABLE II. Comparison of variational (var) and self-consistent (sc) values of energy Eo and spatial extent zo for the
lowest subband, as a function of X&„, the number of inversion-layer electrons per unit area, and Ng~g, the number of
depletion-layer charges per unit area. The results are for a (100) surface at 0 K, with 10 m net acceptors, and with
the parameters taken from Table I. See Eqs. (15) and (16). All energies are in meV and all distances in nm.

N... (m-')

0
1 xlp
2 x]p'4
5 x10'4
1 x10~5

2 x10"
5 x10
1 x1Q'6

2 x10"
5 x10
1 x10"

N, e»(~ ')

1.214 x10
1.213 x10
1.213 x10
l. 213 x 1p"
1.212 x10
1.211x1p"
1.210 x10
1.207 x10
1.204 x 10~'
1.198 x10
1.192 x1Q

Eoo

19.91
20. 65
21~ 31
23 ~ 54
26. 96
33~ 31
49 ~ 83
72 ~ 75

110~ 4
197~ 9
311~ 2

&Eo

M. 052
—0 ~ 050
-0 ' 048
M. 043
-Q. 037
-0 ~ 029
-0 ~ 017
-0 ' 011
-0 ' 006
-0 ' 003
-0 ' 002

19~ 86
20 ~ 60
21 ~ 34
23 ~ 50
26 ~ 92
33~ 28
49.81
72. 74

110~ 4
197.9
311~ 2

18~ 76
19.53
20 ~ 28
22 ~ 48
25. 96
32 ~ 35
48 ~ 81
71~ 50

108~ 7
195~ 1
306 ~ 8

Eo (var) Eo (sc) zoo

7 ~ 072
7 ~ 008
6 ~ 945
6 ~ 768
6 ~ 511
6 ~ 093
5 ~ 273
4. 522
3 ~ 760
2 ~ 858
2 ~ 294

6zo

0 ~ 018
0 ~ 018
0 ~ 017
0 ~ 015
0 ~ 012
0 ' 009
0 ~ 004
0 ~ 002
0 ~ 001
0 ~ 000
0 ~ 000

zo (var)

7.09
7 ~ 03
6.96
6.78
6.52
6. 10
5 ~ 28
4. 52
3.76
2.86
2 ~ 29

zo (sc)

6 ~ 69
6 ~ 63
6 ~ 56
6 ~ 38
6 ~ 13
5.72
4. 95
4 ~ 26
3 ~ 56
2 ~ 72
2 ~ 19

potential approaches the triangular potential, the
variational values of both Zoo and zo are 5. 9%
larger than the corresponding exact results. The
trial function (12) has too slow a decay at large
values of z; it gives an average of z~ equal to
fzo, compared to the value pzo found for the Airy
function.

The variational results are compared with nu-
merical self-consistent calculations in Table II
for several values of N, „/N~, », and the ratios of
the variational and self-consistent values of Eo
and of zo are plotted in Fig. 2. Because of the
scaling property discussed in Sec. IIID, the re-
sults in Fig. 2 are valid for all electric-quantum-
limit cases provided the correction terms in (15)
and (16) are sufficiently small.

C. Excited States in Electric Quantum Limit

Approximate energy levels for the excited states
can be obtained in the electric quantum limit by
treating the inversion-layer potential and the cur-

I.08

1.06

O
t- I04

vature of the depletion potential as perturbations.
The inversion-layer charge density is assumed to
be a sheet located a distance zo from the surface.
If we neglect the oscillations in the Airy function'
and assume that the probability density for the
excited states varies as (a, —z) '~, zo where a,
=E, z/eE«„and E'», =eN~e»/K zp thenwe find
that the energy levels for the excited states are
approximately given by

E(=E~ q
—e Ed")E&n zo/4

—4Ef,z/15eE'„, zz+ eE„,zo, (17)

where E„,=eN„, /v„E p allcl Z» g is the energy ob-
tained from (10b) by using the depletion-layer field
E"» as the surface field. The second term in (17)
is the approximate lowering of the excited-state
energy by the inversion-layer potential well. The
third term gives the approximate contribution of
the depletion-potential curvature to the energy lev-
els; it is much more important for the excited
states than is the corresponding term for the lowest
subband, given in (16), because of the larger spatial
extent of the excited states. The last term in (17)
gives the inversion-layer contribution to the poten-
tial energy at the surface.

Equation (17) applies to the electric quantum li-
mit, but it may still have some validity when more
than one subband is occupied, provided zo is re-
placed by

I.02
z~~ =Q&N(z&/Ng- (1S)

I.OO I I

4
inv ~depl

II I i I

5 20 50 80

FIG. 2. Ratios of variational to self-consistent values
of the energy Eo and of the average penetration zo of the
lowest subband as functions of the ratio of the inversion-
layer charge density to the depletion-layer charge density
in the electric quantum limit, when only the lowest sub-
band is occupied. Note the change of scale atN)11+/Npy = 5.

the average distance of all the inversion-layer elec-
trons from the surface.

The quantity zo in (17) can be found by combining
the variational expression (15) and the correction
factor in Fig. 2 ~ The magnitudes of the terms in
(17) and of the energy obtained from a numerical
self-consistent calculation are given in Table III
for excited states of a sample inversion layer.



SELF-CONSISTENT RESULTS FOR n- TYPE Si INVERSION. . . 4895

D. Scaling

In the electric quantum limit, Eqs. (2) and (4)
can be written in dimensionless form, with (K ep8 /
2mpePN~»)'iP as the unit of distance and (I /2m, )'
x (Np„, ep/w ap)pip as the unit of energy, as first
pointed out by Howard. 6 If the inve rsion- laye r thick-
ness is much smaller than the depletion-layer thick-
ness, then the only parameter characterizing the
dimensionless equations is N„, /Np, » Th. us solu-
tions for other semiconductors can be obtained
from those given in this paper for Si in the electric
quantum limit by appropriate rescaling There
does not appear to be a simple scaling relation when

more than one subband is occupied.

IU. DESCRIPTION OF CALCULATION

The self-consistent calculation starts with an
initial estimate for the potential P(z) and then solves
Eqs. (2) and (4) successively until the output poten-
tial from (4) agrees with the input potential in (2)
to within specified limits. The general method used
to achieve self-consistency has been described else-
where. ~' Here we give only a brief description of
the calculation.

The trial potential is obtained by assuming that
all the carriers are in the lowest subband, for which
we use the variational approximation described above.
The trial eigenvalues for the initial integration of
(2) are obtained by an approximation similar to (17).
The trial potential generally leads to good conver-
gence except at high temperatures, for which the
assumption that all carriers are in the lowest sub-

TABLE III. Energies of excited states for a (111) sur-
face at 0 K, given in meV. Columns 2-4 correspond to
the first three terms on the right-hand side in Eq. (17).
The inversion-layer contribution to the surface potential
energy is eE)~~0=338.5 meV. The fifth column is the
approximate energy calculated from (17), while the last
column gives the energy from a numqrical self-consis-
tent calculation. We use N&~& =1.2 ~10 m (corre-
sponding to NA-ND=10 m ) and Nfg~ 10 7 m ~ the con-
stants are taken from Table I. The numerical calcula-
tion gives z0=2. 189 nm and ED=306. 8 meV; the Fermi
level is at 317.9 meV.

band is particularly bad. At high temperatures
we start with small values of N„, and then gradual-
ly go to larger values, taking the results of each
case to construct the starting potential for the next.

The convergence criteria are that successive
eigenvalues in the solution of the Schr5dinger equa-
tion (2) with a given potential agree to within 10
eV and that the potentials in successive rounds of
the iteration differ by no more than the larger of
KT/2000, (Ez —Ep)/10, or 10 eV. This does
not mean that the solutions are correct within these
limits. We have not made a systematic study of
the accuracy of our results, but it is thought to be
considerably better than 1' in most cases. Great-
er accuracy is not needed for comparison with
experimental results because physical parameters
like the acceptor concentration, the position of the
Fermi level in the bulk, and the dielectric constant
are not known to greater accuracy.

The present program handles up to 25 subbands
numerically, and a crude scaling approximation
for the contribution of higher subbands to the poten-
tial is used if required. This is adequate at 300 K
for (100) n-type inversion layers on Si if N„& 10 '
m . Fewer subbands are needed for the other
high-symmetry surfaces because they have a larger-
energy splitting between the lowest subband and the
first excited subband. At lower temperatures the
number of subbands required drops sharply. The
present version of the program automatically as-
signs the grid interval used in the numerical in-
tegration, and fixes the number of grid points
needed for each subband. Up to 1201 grid points
can be used, but will normally not be required
except for cases with very many subbands.

The computer program has evolved over a period
of years. It contains 13 subroutines and about
2000 FoRTRAN statements. Execution of the program
requires 280K bytes of storage, much of it for the
wave functions themselves. A run with 17 subbands
and 748 grid points, which took six iterations to
converge, required 5. 2 sec of central-processing-
unit time on an IBM System/360 Model 91 data pro-
cessing system.

U. SELFXONSISTENT RESULTS

1
2
3
4
5
6
7
8
9

10
15
20

32.43
43.83
53.90
63.10
71.67
79.75
87.45
94.82

101.91
108.76
140.30
168.61

-10.53
—7.79
-6.34
-5.41
-4.76
-4.28
-3.91
-3.60
-3.35
-3.14
-2.43
-2.03

Ef,d T2

-0.13
-0.23
-0.35
-0.48
-0.62
-0.77
-0.93
-1.09
-1.26
-1.44
-2.39
-3.45

360.3
374. 3
385.7
395.7
404. S
413.2
421.1
42S. 6
435. 8
442. 7
474. 0
501.6

361.9
375.4
386.5
396.3
405. 2
413.5
421.4
428. 8
436.0
442. 8
474. 0
501.6

T3 E&(approx) E;(sc)
In this section we give some representative re-

sults of our self-consistent calculations to illustrate
properties and trends in the solutions. A set of
results complete enough to encompass the entire
range of temperatures and doping levels used by
experimenters would be too lengthy to be published
here. We hope nevertheless that this sampling will
be useful. .

Figure 1 shows the potential energy at 0 K for a
(111) surface with N& —N& = 10 ' m ' and with N„,
=10'7 m, the same values as for Table III. This
is a case in which N„, is much larger than Nd, »
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Io

0I
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FIG. 3. Energy-level splittings and Fermi energy at
0 K for a (100) surface inversion layer on p-type silicon
with 102 net acceptor ions per m3, showing the change in
slope when the Fermi level passes into the first excited
subband. Note that the bottoms of subbands 1 and 0'
cross where N,»/N~~, = 5.3. All energies are measured
from the bottom of the lowest subband.

= 1.2 x10" m ', so that the electric field at the sur-
face is much larger than the field in the depletion
layer.

As N„, increases from zero at low temperatures,
the separation E~ —Ep of the Fermi level from the
bottom of the lowest subband increases faster than
the splitting E, —Eo between the next subband and

the lowest subband. But after the Fermi level
crosses the bottom of the first excited subband, the
rate of change of Ey Ep decreases and the rate
of change of E, —Ep increases; the Fermi level
seems to be pinned near the bottom of the second
subband. This effect is shown in Fig. 3 for a
(100) surface at 0 K for a sample with N„—Nz& ——10
m

The results of the self-consistent calculations
are not easily characterized by a single parameter,
but one that is quite important is z„, the average
penetration of the inversion-layer charge density
from the surface. This quantity is shown in Fig.
4 for N„Ns = 10-' m 3 for the (100) and (111) sur-
faces as a function of the total number of charges
in the space-charge layer, i. e. , N, +Nd, „, at
2, Vv, and 300 K. Near threshold, i. e. , when the
inversion layer is first populated, z„ is almost
the same for all three surfaces at 300 K, showing
that quantum effects are relatively unimportant
there. A calculation on the continuum model con-
firms that the results at 300 K are very close to
those obtained here; they differ substantially at
lower temperatures.

As the temperature is increased, inversion-layer
electrons will be excited to higher-lying subbands,
with larger average values of z, and the inversion-
layer contribution to the ptoential well increases.
The temperature dependence of zp and z„and of the

30
NA ND ' 102l ~-3

Io

C

O
N

gNyepi (77K

I

30

t

(a)

NA -ND IIO21gn ~

Ip

E
C

0
hl

~N~ (77K)

l

3
I

IPI5
I

IO16

Ninv+NAp (rn 2)

(b)

OIY

FIG. 4. Average penetration of inversion-layer elec-
trons into the semiconductor as a function of total density
of charges in the inversion and depletion layers for (a)
(100) and (b) (111) surfaces on p-type Si with 10 net
acceptor ions per m3. The values for a (110) surface are
very close to those for a (111)surface.

energy-level splittings is shown for a (100) surface
in Fig. 5 for N& —N~ = 10 ' m and N„, = 10 m

A measure of the importance of quantum effects
is the distribution of carriers among the subbands.
Figure 6 shows the fraction of electrons in the
lowest subband for several temperatures for

A No = 10 ' m ' as a function Of Ni +Nd pi for the
three high-symmetry surface orientations. Also
shown is the fraction of the electrons in all the
subbands in the ladder associated with the highest
value of m3, the mass for motion perpendicular
to the surface. When quantum effects are unim-
portant, this ratio should be the degeneracy for
this ladder, as given in Table I, divided by 6, the
total number of valleys. We see in Fig. 6 that
the fraction of electrons in the lowest ladder of sub-
bands does indeed approach the expected value at
300 K when N„, +N~„, is small, but departs from
it both for low temperatures and for large values
of N„,+N~„,. Thus, quantum effects must be con-
sidered even at room temperature if accurate re-
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electron in a 1-eV barrier, a smaller barrier than
the one present at the Si-SiO& interface. ' If the
field just inside the semiconductor is 2 x10' Vjm,
a relatively high field, and ms =0.916m, then the
scaling distance a* for the abscissa of Fig. 7 is
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FIG. 5. Temperature dependence of {a) zo and z»,
the average penetration of electrons in the lowest subband
and in all subbands, respectively, and (b) the energies
of the lowest seven subbands, for a (100) surface with
Nz-iV&=10 m and N&~=10 m . Note that levels 0'
and 1 cross at about 35 K. Note also that Nd, decreases
from 1.21x10 5 m at 0 K to 0.96x10 m at 300 K. If
the surface field were held constant at the value for 0 K,
splittings at 300 K would be about 1% larger than the
values shown here for a fixed value of N(„.

suits are to be obtained for high surface-charge
densities.

VI. DISCUSSION
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Sections III-V give representative results of self-
consistent calculations for n-type inversion layers
on Si. In this section we comment on the validity
of some of the approximations that we use.

The assumption that the envelope wave function
vanishes at the surface simplifies the calculation
considerably, but a more realistic boundary con-
dition specifies the ratio of the wave function to its
derivative at the surface, a value which depends on
the nature and height of the barrier there. The en-
ergy change connected with this more general boun-
dary condition is easily calculated for the triangular
potential, whose eigenfunctions and eigenvalues are
given in (10), by using tabulated values of the Airy
function and its derivative. ' The dependence of the
eigenvalue on the boundary condition is shown in
Fig. 7.

For a numerical estimate of the effect of more
general boundary conditions, let us take for

i- Ct
~~ 06

U
pm

04
Opi- z
Oc[Z
K
u. 0.2—

Nd~i (77K)

0 r I

IOI5 3

NA- ND 102jm

(III) Si

I

ioj~

Ninv+ Nd I
(m-2)

(c)

IOI7

FIG. 6. Fraction of carriers in the lowest subband,
and in all the subbands associated with the valleys having
the largest value of m3, the mass for motion perpendic-
ular to the surface, for the (a) (100), (b) (110), and (c)
(111) surfaces. The fraction in the lowest valleys should
be 3 and ~, respectively, for the (100) and (110) surfaces
when quantum effects are negligible. It is identically
unity for the (111) surface, for which all valleys have the
same value of m3.
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FIG. 7. Effect of boundary conditions on energy levels

for the triangular potential. The abscissa is the scaled
ratio of the envelope wave function at the surface to its
derivative there. The scaling distance a* is
(8 /2m3eF~), where E~ is the electric field, and the
scaling energy E* is eE,a*. The energies for dg/dz = 0.
are marked at the right-hand side.

0. 52 nm and the scaling factor E* for the energy
scale is 0. 155 eV. For a value of 0. 38 on the
abscissa of Fig. V the energy levels are reduced
by less than 15% from the values found with a wave
function which vanishes at the surface, and the
energy-level splittings are increased by less than

We conclude that within the framework of the
effective-mass approximation the errors made in
taking the wave function to vanish at the surface
are relatively sma11.

The effective-mass approximation itself will be-
gin to fail when the calculated energies are com-
parable to the energy gaps in the bulk and when the
spatial extent of the wave function for the lowest
subband is comparable to atomic dimensions. The
resulting errors have been estimated by Howard';
they become significant for wave functions whose
average penetration z is of order 2 nm or less.
Exchange and correlation effects in the inversion
layer have been ignored in our work, an approxima-
tion which requires further examination.

At the highest surface fields it may be necessary
to undertake a more fundamental calculation of the
effects of interfaces on wave functions and eigen-
values. This problem is somewhat like the problem
of low-energy electron diff raction, because both in-
volve the matching of waves across an interface be-
tween two media. It may be possible to include
within the framework of a simple model both the
surface subbands associated with band bending
and the conventional surface states which arise
from the presence of the interface itself.

The most promising experimental method to
determine inversion-layer subband splittings for
comparison with the calculations appears to be
to look for structure in the photoconductivity ex-

The author is indebted to A. B. Fowler and W.
E. Howard for many valuable discussions, and to
M. I. Nathan for comments on the manuscript.

APPENDIX A: DEPLETION-LAYER-EDGE EFFECTS

We have assumed in Eq. (7) that the depletion-
layer charge density is constant for 0 &z &z~, and
then changes abruptly to zero. The actual charge
density decays smoothly, with a characteristic
length given by the bulk screening length. Near
the surface, this effect can be accounted for by
adding a constant to the band bending used to cal-
culate z, in Eq. (7). We must now think of z~ not
as the abrupt termination of the depletion layer,
but as a measure of its charge density, defined by
z, =N~„ /(N„- Ne ). We give the required correc-
tion term in this Appendix, and also give values for
the screening length. The derivation is straight-
forward, and has been omitted. '

If the bulk is characterized by acceptor and
donor concentrations N& and N&, respectively, and
by hole concentration p, if all the minority im-
purities are ionized, and if there is a negligible
minority-carrier concentration, then we find that
the bulk-screening length L is given by 5

L =KI,KOKTN/e fN~p+(Ng&+p)(N„-Nn-p)] .
(Al)

At high temperatures, where p-N„-N&, we get
the familiar result

L =K„eoKT/e (N„Nn)- (A2)

while at low temperatures, where P «N„-N~,
I. =K„eoffTN„/e Ne(N„—Ne) . (AS)

The surface-charge density K &o(dp/dz} can be
found as a function of (t) by multiplying both sides
of Poisson's equation by @

—= dP/dz and integrating.
We find

citation spectrum. This method was first used by
Katayama et al. 22 for InSb, and has been used for
Si by Wheeler and Ra1ston. The latter authors
used a laser with a fixed photon energy, and varied
the surface electric field to change the subband
splittings. We have calculated the energy levels
expected from the parameters they report, but
find considerably smaller subband splittings than
the 44 meV of their laser if we use their subband
assignments. Alternative assignments also did
not fit. It is probably too early to draw conclusions
from this comparison for a single sample, but
more extensive measurements should allow a
comparison with self-consistent calculations to be
made. Experimental information on subband split-
tings in accumulation layers is provided by the tun-
neling measurements of Tsui.
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= (2/z„zo)((N~ —Nz)eg

—KT[P+N„ in[N„/(Nz+P)]}) . (A4)

for the cases we consider, but might be significant
in other calculations.

APPENDIX B: INTEGRAI. S OF AIRY FUNCTIONS

The term in KT is the correction term which takes the

edge effects into account. At high temperatures, "
= (2/z„zo)[(Ng —Np)(eg —KT)], (A5)

while at low temperatures,

L'-0 4z z n/e'N '"N '"
@"= (2/z, z,)[(N„N,}e-y

(A7)

—0.45&N Nz ' ] (AS)

The numerical coefficients and exponents are ap-
proximately correct for Ne/N„= 0.01.

We have used the high-temperature result (A5)
in Eq. (9) and in our calculations over the entire
temperature range. The difference between (A5)
andthe more exact results (A4) or (AS) is negligible

= (2/&„&0) [(N~- Na)e p —N„KTln(N„/ND) ].
(AS)

At very low temperatures it is necessary to con-
sider the width of the acceptor level. If we charac-
terize it by a Gaussian distribution whose full ener-
gy width at half-height is 4, we find the following
approximate results when KT «b, :

In connection with the normalization of the eigen-
function (10a) of the triangular-potential well and
with the calculation of averages of powers of z, we
note the following results:

f Ai (z')dz' =-z Ai (z)+Ai (z), (Bl)

f, z'Ai (z')dz' =-,'[- z Ai (z)+zAi'z(z)

—Ai(z)Ai'(z)],

f z Ai (z )dz'= —,'[-z Ai (z)+z Ai (z)

(a2)

—2z Ai(z) Ai'(z) +Ai'(z)] . (a3)

These results are easily verified if we use Ai (z)
=z Ai(z), where Ai and Ai denote first and second
derivatives, respectively, of Ai with respect to z.
For the boundary condition used in our work, the
lower limit of the integrals is (8 /2m~eF, )'i times
the (i + 1)st zero of the Airy function, ' for which
the results take a much simpler form. To obtain
the results quoted in Sec. III A, note that the z axis
here has its origin at the turning point where the
energy is equal to the potential energy, while in
the body of the paper the origin is at the surface.
The difference is a&=E, /eF, .
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