
4856 VANFLEET, DECKER, AND CURTIN

ACKNOWLEDGMENTS

The authors express their appreciation to Dr.
C. T. Candland for his assistance in data analysis

and interpretation, and for making several pres-
sure calibration runs relating to the ion-pairing
experiment.

TResearch supported in part by the National Science
Foundation. Based in part on a Ph. D. dissertation sub-
mitted to Brigham Young University by H. R. C.

*Present address: Cutter Laboratory, Ogden, Utah.
'C. S, Fuller and J. A. Ditzenberger, Phys. Rev. 91,

193 (1953).
C. S. Fuller and J. C, Severiens, Phys. Rev. 96, 21

(1es4).
3J. R. Haynes and W. Shockley, Phys. Rev. ~81 835

(1es1).
H. Reiss, C. S. Fuller, and F. J. Morin, Bell System

Tech. J. 35, 535 (1956).
B. Pratt and F. Friedman, J. Appl. Phys. 37, 1893

(1e66).
B. I. Boltaks, Diffusion in Semiconductors (Academic,

New York, 1963).
'N. H. Nachtrieb, J. A. Weil, and A. W. Lawson, J.

Chem. Phys. 20, 1189 (1952).
N. H. Nachtrieb, H. A. Resing, and S. A. Rice, J.

Chem. Phys. 31, 135 (1959).
~N. H. Nachtrieb, and A. W. Lawson, J. Chem. Phys.

23, 1193 (1955).
' W. C. Dunlap, Jr. , Phys. Rev. 94, 1531 (1954).

Kubo and T. Nagamiya, Solid State Physics (McGraw-
Hill, New York, 1969), p. 359.

' Reference 4, p. 622.
'3M. Cardona, W. Paul, and H. Brooks, J. Phys. Chem.

Solids 8, 204 (1959).
'4A. E. Stern and H. Eyring, J. Phys. Chem. 44, 955

(1940).
'~R. N. Jeffery and D. Lazarus, J. Appl. Phys. ~41

3186 (1970).
'6J. A. Weyland, D. L. Decker, and H. B. Vanf lect,

Phys. Rev. B ~4 4225 (1971).
"O. L. Anderson, J. Phys. Chem. Solids ~27 547

(1966).
' H. T. Hall, Rev. Sci. Instr. 29, 267 (1958).
'9H. R. Curtin, D. L. Decker, and H. B. Vanf lect,

Phys. Rev. 139, A1552 (1965).
D. L. Decker, Rev. Sci. Instr. ~39 602 (1968).
C. T. Candland, D. L. Decker, and H. B. Vanf lect,

Phys. Rev. B 5, 2085 (1972).
R. Glang, J. Electrochem. Soc. 107, 356 (1960).
E. M. Pell, J. Phys. Chem. Solids, 3, 74 (1957).
H. Reiss and C. S. Fuller, J. Phys. Chem. Solids 4,

S8 (19S8).
2 C. D. Thurmond and J. D. Struthers, J. Phys. Chem.

57, 831 (1953).
26S. N. Vaidya, J. Akella, and G. C. Kennedy, J. Phys.

Chem. Solids ~30 1411 (1968).
~'I. C. Getting and G. C. Kennedy, J. Appl. Phys. 41,

4552 (1970).
R. E. Hanneman, H. M. Strong, and F. P. Bundy, in

Accurate Characterization of the High Pressure Environ-
ment, edited by E. C. Lloyd (National Bureau of Standards,
Washington, D. C. , 1971).

2 H. Portnoy, Jr. , W. M. Letaw, and L. Slifkin, Bull.
Am. Phys. Soc. ~30 13 (1955).

E. Rapoport, J. Chem. Phys. 44, 3581 (1966).
C. A. Wert and C. Zener, Phys. Rev. ~76 1169 (1949).
K. Weiser, Phys. Rev. 126, 1427 (1962).

PHYSICAL REVIEW B VOLUME 5, NUMBER 12 15 JUNE 1972
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Trends relating nearest-neighbor distance (d) in elemental materials and A B ~ compounds
to atomic number (Z), valence (z), and principal quantum number (n) of the outermost filled
electron shell are reported. These trends can be described by simple functional relationships
which are typically accurate to within a few percent. For elements, these relations are dZ ~ /
n=-constant for fixed z, and d ~"Z=

3 (Z —z+12) for fixed n. An analysis of the results based
on a Fermi-Thomas model for the core electrons and a free-electron model for the valence
electrons is given. The trend observed for the A B compounds is that dZ /n = constant
for a fixed cation species. This relation is used to construct a modified Mooser-Pearson plot
which yields a complete separation of zinc-blende, wurtzite, and rocksalt structures.

I. INTRODUCTION

Crystal structure is perhaps the most fuadamen-
tal property of a material aad at the same time one
of the most difficult to understand theoretically.

Two rather different approaches have historically
been used to discuss crystal structure: (i) the
mmlysis of structural treads in terms of some
scaling parameter such as ionicity; and (ii) the
detailed computation of the lowest-energy structure
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using a first-principles pseudopotential model.
The first approach has been widely applied with
considerable success by Mooser and Pearson' and

by Phillips. While structural-trend analysis pro-
vides an appealing description of broad classes of
materials, it usually fails to provide a precise
theoretical description of the structural energy.
On the other hand the pseudopotential approach,
which was first applied to simple metals by Har-
rison and has recently been used to discuss a num-
ber of metallic systems, has the disadvantage
that, for the present, it can be used to investigate
only a limited class of materials.

In this paper we shall adopt an approach which is
in some ways a combination of both the trend and
the pseudopotential analyses. We focus our atten-
tion not so much on crystal structure (though we
do return to structure at the end) as on the nearest-
neighbor distance d. This distance characterizes
in a general way the bonding and packing properties
of a material and has been the subject of extensive
discussion over the years. ' A number of interest-
ing trends have been observed involving the near-
est-neighbor distance d, the atomic number Z, the
valence z, and the principal quantum number n of
the outermost filled shell (referred to as the met-
allization parameter by Mooser and Pearson').
The empirical observations will be presented first
and then a simple semiquantitative explanation will
be considered for some of the trends in terms of
a local-pseudopotential model. At best, however,
the success at explaining the observed trends is
incomplete and a number of interesting questions
which still lack detailed theoretical answers are
offered without apology.

Though for clarity in presenting the results of
the investigation, we deal first with elemental ma-
terials, it is worth noting that trends among the
elements were observed only after the correspond-
ing trends in the binary semiconductors and salts
had been noticed. This reflects the long-term goal
of our study —to understand the origin of complex
crystal structures and the relation between struc-
ture and the properties of materials. It was in the
course of exploring possible extensions of the Phil-
lips theory '8 that the author came upon the results
to be presented in the present paper.

II. BOND-LENGTH TRENDS AMONG ELEMENTS

We shall direct our attention in this section to
the nearest-neighbor distance or shortest bond
length d between atoms in their elemental state.
When an element occurs with more than one crystal
structure we select the shortest nearest-neighbor
distance; when it occurs as a molecule, we select
the internuclear distance. Our interest will be in
studying, and trying to understand, systematic
variations of d as a function of the three most fun-

A. Trends for Fixed Valence

The first of these relations is illustrated in Figs.
1-4. We have plotted d/n vs Z on a log-log scale
and we find that for each column in the Periodic
Table (that is, for fixed valence) the relation

dZ"'/n =f(z) (la.)

describes the variation of d. The function f(z) is
approximately a constant for fixed z but varies with
z as we shall see shortly. Since for the metallic
structures (bcc, fcc, hcp) d is proportional to the
atomic radius R, , we can recast (la) for those

damental coordinates which characterize the
Periodic Table: (a) atomic number Z, (b) column
number or valence z, and (c) row number n. If we
consider the first full series (Li-F) as row one,
then the row number is equivalent to the principal
quantum number n of the outermost (highest-ener-
gy) filled shell of electrons.

Our initial motivation for considering nearest-
neighbor distance was that d enters as an important
parameter in the spectral moment approach to
calculating ionicity in the A"B compounds. On
further reflection, it becomes clear that d is also
a particularly important distance in the elemental
materials as well. The majority of elements are
found to occur in one of the three structures bcc,
fcc, and hcp and for these structures, d is related
to the atomic radius by d=-1. SR, , where R, is de-
fined in terms of the atomic volume fI by A=gzR, '.
[We shall use atomic units (a. u. ) throughout. In
these units, I =m =c =1 and lengths are therefore
measured in Bohr radii. Recall that 1 Bohr radius
=0. 529 A. ] Hence, for bcc, fcc, and hcp struc-
tures, d is a direct measure of atomic volume.
For elemental materials occurring in molecular
form, d is of course the only relevant distance
parameter we have available. When materials oc-
cur in distorted structures, e. g. , gallium, it is
legitimate to ask why d is the relevant distance to
consider. A similar question can be asked when
we seek to compare materials with metallic struc-
tures to those of diamond structure or with materi-
als such as the chalcogenides. To both of these
questions we can at present answer only that d ap-
pears to exhibit more significant trends than other
distance parameters one might consider.

An extensive, entirely empirical, search for
trends in d as a function of Z, z, and n has revealed
two striking and exceedingly simple relationships
which appear to describe trends across the entire
Periodic Table with an accuracy which is occasion-
ally 1G%%uo and more frequently only a few percent.
We shall simply present the data graphically and
write down the summarizing relationships in this
section, reserving theoretical discussion for
Sec. III.
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FIG. 1. Nearest-neighbor distance (d) divided by the

principal quantum number (n) of the outermost closed
electron shell plotted as a function of atomic number for
elements of columns IA, IIA, IIIA, and IVA. The arrow
indicates that aluminum deviates from the trend appro-
priate to the other IIIA materials.

structures in the form

QZ/n'=g(z) (lb)
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FIG. 2. Log-log plot of d/n vs Z for elements of
columns IVA, VA, VIA, and VIIA. As in Fig. 1, arrows
indicate significant deviations from over-all trends.

where 0 is the atomic volume and g(z) is a new

constant for fixed z. However, (1b) provides a less
complete description of the Periodic Table than

(1a) since it does not apply to molecular systems
or crystals with distorted structures. There are a
number of specific comments about the results
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FIG. 3. Log-log plot of d/n vs Z for elements of
columns IB and IIB. The arrow here indicates a range of
d/n values for Hg.

shown in Figs. 1-4 which are worth making.
(i) By adjusting the slope of the best-fit line

around the value 3 it is possible to achieve a more
nearly constant f(z). However, the uniform value
of & for the slope actually yields remarkably con-
stant values of f(z) without requiring any adjustment.

(ii) The fifth-row elements, i. e. , Cs-Rn, devi-
ate slightly from the linear relationship (Cs ex-
cepted). This is illustrated in Figs. 4 and 5.

(iii) There are several elements which deviate
more than a few percent from (1). Aluminum ap-
pears to be an open structure relative to the other
GIA elements in that its nearest-neighbor distance
is significantly greater than (1) would suggest. It
is known, that despite its relatively high electron
density, aluminum is the prototypical free-electron
metal and seems to have remarkably little covalent
character in its bonds. ' These observations are at
least consistent with the apparent openness of its
structure. Similarly, fluorine has an anomalously
large interatomic distance relative to the other
halide molecules. This is consistent with the
anomalously large lone-pair weakening of the single
bond which is known to occur in the F2 molecule.
On the other hand, nitrogen seems to be more tight-
ly bound in its molecular configuration than (1)
would indicate. It is likely that this deviation is
associated with the fact that we have used the dis-
tance appropriate to the triply-bonded N2 molecule.

(iv) In the IVA series it appears that two separate
values of f(z) provide the best fit, one for C-Si and
a slightly different one for Ge-Sn. However, these
values are in fact equivalent to within 1(P&.
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FIG. 5. Trends in nearest-neighbor distance (d) as a
function of atomic number compared to similar trends
for the lattice parameter (a). Structures of the column

IIA elements are indicated. The dashed curve connecting

aln points is intended to illustrate significant deviations
from a linear trend.
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FIG. 4. Log-log plot of d/n vs Z for the transition
elements of columns IIIB-VIIIB.

ample, suppose we plot d/(n+ 1) instead of d/n
The results for column IA, plotted in Fig. 6, are
illustrative of the general situation. Apparently
only the principal quantum number of the outermost
filled shell will do.

The situation for the solid inert "gases" is par-
ticularly interesting. We have plotted in Fig. 7
both d/n and d/(n —1) vs Z, where here we think of

The question one immediately asks when faced
with the results of Figs. 1-4 is whether similar
results could be obtained with other combinations
of the same parameters. In other words, is Eq.
(1) unique to within the prescribed level of accuracy?
Our tentative answer would have to be yes. That
is to say, that of the numerous simple combinations
we have tried, none provides as consistent a de-
scription of the data as (1). For example, we indi-
cate in Fig. 5 what one obtains if lattice constants
are used in place of nearest-neighbor distance.
We have chosen to plot column IIA because of the
variety of structures represented. Clearly (1) does
not hold if d is replaced by the lattice constant a.
This is, of course, not surprising because a is
strongly structure dependent, whereas d, as we
mentioned earlier, is a measure of atomic volume
and consequently provides a more fundamental
characterization of the material. As another ex-
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FIG. 6. Illustration that no simple trend is obtained
when d, the nearest-neighbor distance, is normalized
with the principal quantum number of the valence shell
(n+1) rather than that of the outermost closed shell (n).
Data for the IA elements are shown. The dashed lines
connecting d/(n+1) points (and the extension of these
lines) are intended to illustrate the magnitude of deviation
from a straight-line trend through all five points.
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FIG. 7. Log-log plot of d/n vs Z for the "inert-gas"
solids; when d is normalized with the principal quantum
number of the outermost closed shell (n=2 for Ne) a i ~

linear trend is obtained. If the eight outer electrons are
treated as valence electrons (n =1 for Ne) then the rela-
tion is no longer linear. The dashed line connecting d/
(n-1) points is intended to emphasize the deviation from
a linear trend.

FIG. 8. Function dZ /n vs Z-z for several columns
of the Periodic Table. The value of dZ /n is approxi-
mately constant for each column. Note that the constant
differs for IA and IB columns as well as for IIA and IIB
columns, but that the constant is nearly equal for IIIA and

IIIB columns.

elements do not seem to fit the general trend, either
as z=0 or z= 8 elements. These exceptions aside,
f(z) is a decreasing function of z, obeying a nearly
linear relation with approximately integer values
for small z and then decreasing less rapidly with
increasing z. The quadratic function f(z) = 0. 09

n only as the quantum number appropriate to the
outermost fil/ed shell of electrons. It is clear
from the figure that it is more consistent with Eq.
(1) to think of neon, for example, as the first
element in row two with valence 0 rather than the
last element in row one with valence 8.

We turn our attention next to the function f(z)
which enters Eq. (1). In Fig. 8 we have plotted
dZ"'/ ans a function of Z-z for the first four col-
umns of the Periodic Table. In addition to illustrat-
ing the approximate constancy of f(z) for fixed z,
the figure emphasizes another interesting point,
that the constant f(z) for the IB elements is dis-
tinctly smaller than that for the IA elements. A
similar statement can be made for the IIA and IIB
elements. This result is consistent with the usual
arguments that the resonant or near-resonant d
electrons in the IB and IIB series lead to more
closely packed structures than one might expect
for mono and divalent metals, based on simple
total-energy arguments (see Sec. III).

A more complete illustration of the validity of
(1) is given in Fig. 9 where we plotd Z"'/n vs z.
With a very few exceptions, the value of f(z) is
constant to within 10%%uo or less for each value of z.
The IB and IIB elements appear to have "effective"
valences of z=5 and z=4, respectively, values
which agree rather well with those frequently quoted
in the chemical literature. ~~ The column-VIII

I I I I I I I I I

8.0 — ~ —ABSENT OR I NCOMPLETE
nd SHELL

o 70— 503—

I
6.0—

z)c

5.0—

4.0—
W'I I I I I I I I Ih

0 1 2 3 4 5 6 7 8
VALENCE z

FIG. 9. Function dZ /n vs valence z for all elements
in the first four rows of the Periodic Table. For each
z the points indicate the spread in values of f(z) [Eq. (1)
in text]. A parabolic fit to the basic trend is shown (solid
line) and various linear trends are also indicated (dashed
lines). The curves shown are only empirical fits to the
data and have no detailed theoretical significance. Note
that the IB and IIB elements show a distinct deviation from
the over-all trend. The "inert-gas" values are plotted
both in the z=0 and z=8 positions and in neither case do
they fit the over-all trend.



TRENDS IN THE NEAREST-NEIGHOBR DISTANCE: ELEMENTS. . . 4861

x[(z —7)z+ 50] is found to give a reasonable empir-
ical fit to the results.

Finally we note that, had we considered trends
in atomic radius R, rather than d, the values of

f(z) in Fig. 9 would be reduced by a factor of ap-
proximately 1.8 for z=0, 1, 2, 3, by 1.4 for z=4,
and by somewhat smaller factors for the remaining
crystalline materials. (ft, is not well defined for
molecules so we would have to omit elements oc-
curring in the molecular state from the discussion. )
The net effect would be to produce a sharp knee in
the f(z) function at z= 4 with f(z)=- constant for
elements with z a4.

B. Trends for Fixed Row Number

Before discussing the above results in detail, we

go on to consider the second of the general trends
me have observed. In Fig. 10 we plot d""Z as a
function of z for fixed n, and note immediately a
remarkable regularity in the results. Within each
rom of the Periodic Table, the value of d""Z appears
to be constant to within a few percent, though a
gradual rise with increasing z is discernible. For
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FIG. 10. Values of d ~"Z as a function of valence for
elements from the first five rows of the Periodic Table.
For a fixed value of z, the function d "Z is essentially
constant for each distinct value of Z-z within the rom.

FIG. 11. Function of d' "Z vs Z-z. The error bars
indicate the spread of values obtained for elements in
each row. The point is the mean value for all elements
in the row. A linear fit to the points is shown and repre-
sents the result given in Eq. (2) of the text.

d""Z =- + [(Z —z) + 12] (2)

Nitrogen and fluorine of the first-row elements
deviate from (2) by as much as 2(P/p Deviations.
throughout the next five rows of the Periodic Table
are less than ten percent and typically only a few
percent. Equation (2), then, is a remarkable gen-
eral result which describes, with considerable ac-
curacy, trends in the nearest-neighbor distance
throughout the Periodic Table.

III. THEORETICAL DISCUSSION

The two relations we have obtained in Sec. II
involve the same physical parameters and describe

n = 3, 4, 5 there is a distinct constant for those
elements with filled d or f shells. The constant
values of d""Z are found to scale linearly with Z-z
as me show in Fig. 11. Slight deviations from the
linear fit arise when we reach values of Z-z ap-
propriate to row five and the lanthanide series.
However, we should note that even for the heavy
elements, d '"Z is approximately constant for fixed
So

The linear relation illustrated in Fig. 11 can be
represented analytically as
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FIG. 12. Plot of z, where z is the principal quantum
number of the outermost closed electron shell, vs the
number of core electrons {Z-z) for elements in the first
four rows of the Periodic Table. The two values for n
= 3, 4 correspond to elements with unfilled and filled
outer d shells, respectively.

trends in nearest-neighbor distance when valence
z and row number n are held constant, respectively.
One might suggest that a s-ngle relation should de-
scribe both trends since, in effect, Eqs. (1) and (2)
define grid lines on a log-log plot of d/n vs Z. Such
a relation would describe a surface, or surfaces, in
the four-dimensional [d, n, z, Z] space, and the equa-
tions we have given would be the projections for
fixed z and n. There are two possibilities which

can be explored immediately.
First, we might attempt to eliminate one of the

variables from the two equations, either directly
(which does not yield a particularly appealing re-
sult} or by developing a third relation between the

variables. An immediate candidate for the latter
approach would be a relation between the principal
quantum number n and (Z —z). We show in Fig. 12
a plot of nz vs (Z —z) which indicates an approxi-
mate linear relation of the form n = 0. 4(Z —z).
This expression averages the ten-electron spread
occurring in rows three and four. Unfortunately
we find that if we use this expression to replace n

in (1) and (2), the results exhibit less consistent
trends and, consequently, we have not pursued this
approach further.

The second approach is to consider d/n as the

first term in an expansion of some function such as
(1+d)""and identify this second function in an ap-
proximate way with d' ". We have explored a num-

ber of possibilities along these lines without notable
success. It is interesting to note that d/n and
d""bear a resemblance to arithmetic and geometric
means. While suggestive, this observation has not
led to a detailed theoretical connection between (1}
and (2). Essentially then, we must leave open the

question of a unifying expression and address our-
selves to each expression separately.

We have made the most progress in understanding

Eq. (1}, and hence will proceed now with a brief
theoretical analysis. The presence of a Z' 3 fac-
tor in (1) suggests immediately the Fermi-Thomas
statistical model' " and we shall pursue this ap-
proach.

The derivation of the Fermi- Thomas equation is
given in many texts, ' and need not be repeated
here. The idea is to assume that, within a small
region of space around the nucleus of an atom, the
potential V(r) varies sufficiently slowly that it may
be treated as a constant. Within this region we
then treat the Z atomic electrons (core plus va-
lence) as a degenerate electron gas with "local"
Fermi-momentum kz(r) = [- 2V(r)]"z. The local
electron density is then (in atomic units through-
out)

n(r) = [- 2V(r)] 'z/3w

and we use this expression in the Poisson equation
to obtain a self-consistent equation for the poten-
tial

dz 8(x) 8"'(x)
3 1/2

This is the Fermi- Thomas equation in dimension-
less form with 8(x) = —rV(r)/Z and x = 4(2/9zz}"'rZ"'.
We may now take the "free-atom*' boundary condi-
tions 8(0) = 1 and 8(~) = 0 and solve (4) by machine.
Calculations of this sort have been carried out by
a number of authors, and we have repeated
them only for later computational convenience.

Alternatively we might consider using the "me-
tallic" boundary condition 8'(x, ) = 8(x, )/x, in place
of the "atomic" condition 8(~) = 0. However, to
determine the cell radius x, it is necessary to
specify the energy zero in some consistent, but
arbitrary, way, whereas in the atomic case we can
set this constant equal to zero. We have therefore
considered only the atomic case in detail.

We begin by computing the dimensionless radius
xo inside of which all but the z valence electrons
are contained. It is straightforward to show that
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this radius is defined by the condition

(5)e(x,) —x, 8'(x,) = z/Z

We may think of ra= 0. 885xo/Z"' as equivalent to
the "core" or model radius R„which would enter
in the local approximation to the optimized model
potential, ' ' and we shall assume that ro does not
change from the atomic value as we form a mole-
cule or a solid.

We have solved (5) numerically for z/Z ratios
appropriate to elements in the first four rows of
the Periodic Table and have plotted the resulting
xo as a function of g" in Fig. 13. It is an em-
pirical fact that for each column in the Periodic
Table, the results are described almost exactly
by a straight line. Furthermore, all the lines have
nearly identical (Z= 0) intercepts which leads us to
the interesting result that

9.0

8.0—

70—

5.0—
O

3.0—

EXPERIMENT

r = 6. 5(-1/z'" —1/Z"') (6)
2.0—

40
flub xe I Te sb

3.0

is the general solution of (5) with precision ap-
proaching computational accuracy. In other words,
the Fermi- Thomas model leads empirically to a
simple analytic form (6) for the "core" radius.

A similar approach would be to determine the
radius at which the Fermi- Thomas potential inter-
sects the Coulomb potential. This corresponds
to the condition e(Xo) = z/Z and here the radius ro
= 0. 885xo/Z"' would be the appropriate radius to
use in the so-called "empty-core" pseudopotential. '3'

If we solve for xo, we again find that xo is linear
in Z for each column in the Periodic Table but
we do not obtain a simple relation such as (6) for

Consequently we have not explored this case
in detail.

We return, then, to the result (6) for the model-
potential core radius r, and plot in Fig. 14 the corn-

1.0—

0
0 2.0 40 6.0

d C IA O. u. 3

8.0 10.0

FIG. 14. Plot of calculated Fermi-Thomas core radii
ro, determined by Eq. (5) of the text, as a function of the
observed nearest-neighbor distance d for elements from
the first four rows of the Periodic Table. The theoretical
curves are obtained from Eq. (10) of the text and the
linear fit is described by Eq. (7). The inert gases follow
a displaced linear relation.

puted values of 2ro as a function of the experimental
nearest-neighbor distance. We include in this fig-
ure all elements in the first four rows of the Period-
ic Table except those from columns IB and IIB,
which we exclude because, as observed earlier, the
neighbor distances are significantly reduced by
resonance or near-resonance d-electron bonding.
It is clear from Fig. 14 that there is a nearly linear
relation between ro and d:

N
d=- 2(1+ra). (7)

2.O F

1.0
p(xp)- xpg'( xp) Z/Z

I I I I I I I I

2.0 4.0 6.0 8.0 10.0 12.0 14.0 16.0 18.0
xp

FIG. 13. Dimensionless core radii ~0 calculated from
the Fermi-Thomas model tEq. (5) of the text] shown
plotted as a function of Z for elements in the first four
rows of the Periodic Table. The linear interpolations
satisfy Eq. (6) of the text.

The "inert-gas" solids follow a similar, though
shif ted, linear relation.

Equation (7) implies a very simple explanation
for the nearest-neighbor distance in an elemental
solid or molecule, namely, that d is the sum of
atomic "core" radii ro plus a distance of about 2
a. u. determined by the valence electrons. Qf
course (7) is only approximately correct but it sug-
gests that we consider a model in which we imagine
Fermi- Thomas cores immersed in a free-electron
gas of density n = 3z/4vR, , where R, is the atomic
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radius introduced earlier.
We pursue this free-electron model a bit further

and consider a simple expression for the total en-
ergy of a solid. ' Let the potential of an ion have
the local-optimized-model-potential form' '

V(r) =
—Z/R„, r & R„
—Z/r, r& R„

(8)

and set R„=ra as determined from the Fermi-
Thomas model. Then we write the total energy as
(the reader is referred to the review article by
Heine and Weaire' for details)

1.1P5z'» P. 458z"3 P. 9z z ro

&&{1+[1+0.31(2r ) (0.9z+'+0. 458)]"g .(10)

[Precisely speaking, d/R, = 1.76 (bcc), 1.81 (fcc),
1.81 (hcp), and 1.40 (diamond). For distorted
structures, other values are appropriate. Qur use
of a uniform value d/R, = 2 for all structures there-
fore introduces some error. ]

This result is plotted in Fig. 14 for z=1 and
z = 8 and we see that it provides a reasonable de-
scription of the data, though certainly no more
accurate a description than the simple linear fit given
by (7). If we substitute (6) for ro in (7) we obtain
immediately the proportionality between d and Z " .
This proportionality also follows from (10) in the
large-Z limit. We should emphasize, however,
that the above discussion does not give any expla-
nation for the appearance of the quantum number n
in the empirical relation (1). Recently Van Vechten
and Phillips have discussed the radii of covalently
bonded elements in terms of a modified Slater'
treatment in which the core radius is proportional
to n divided by an effective atomic number. How-
ever, this approach does not lead to the linear
dependence of d on n which we have observed. The
combination of Eqs. (1) and (7) suggests that the

(9)
The first term in (9) is the kinetic energy of the
valence electrons, the second is their exchange
energy, the third term arises from the structure-
independent part of the Ewald electrostatic energy,
and the last term is the contribution from the mod-
el potential. We have ignored all structural con-
tributions to the energy as well as the correlation
energy of the valence electrons, all of which are
small contributions relative to the terms we have
included. If we minimize (9) with respect to R,
we obtain an equilibrium cell radius and hence a
nearest-neighbor distance, d=-2R, , of the form

2. 21z
(0.9z+ + 0.458)

core radius ro might be determined by the sum of
n equally spaced shells. However, such a model
is certainly not compatible with detailed quantum
calculations of core charge densities for the ele-
ments.

It remains to provide a detailed quantum treat-
ment which will explain the appearance of n in (1)
am&, perhaps more important, the remarkably pre-
cise empirical expression given in Eq. (2}. We
have considered a perturbative solution of a one-
electron Hamiltonian in the small-(z/Z) limit with-
out any notable success. Possibly the trends we
have described are too gross to be amenable to
detailed theoretical explanation, but that would be
contrary to one's expectation that simple general
results can be understood in a reasonably straight-
forward way. For the moment, however, we must
leave our puzzle largely unresolved.

IV. TRENDS AMONG A B COMPOUNDS

Qur investigation of lattice-constant trends began
with the observation that the lattice parameters of
the A B " salts and semiconductors exhibit sys-
tematic behavior. This seemed an important ob-
servation since the lattice parameter (or nearest-
neighbor distance') is an important scaling param-
eter used to determine the homopolar energy gap
in the Phillips theory of ionicity and crystal struc-
ture jn the A B~ compounds. Evidently trends
in lattice parameter, or in d, might bear some
relation to trends in crystal structure and we set
out initially to explore this possibility.

Note that for the A"B~" materials it makes lit-
tle difference whether we consider trends in the
nearest-neighbor distance d or in the lattice con-
stant a. This is because for a fixed cation species
the A"B compounds are isostructural. The one
exception to this rule is the sequence MgQ-MgTe
in which a change from rocksalt to wurtzite struc-
ture occurs. We have found that the magnesium
compounds can be included in our trend analysis
if we work with d rather than a, and for this reason
alone the results which follow are given in terms
of d.

Motivated by the work of Mooser and Pearson,
we introduce an average "metallization" parameter
n which is the average of the row numbers for the
A and B constituents, n=-,'(nz+nz). We then note
that the trends in the distance d of closest approach
of the two species in an A"B compound can be
summarized by the relation

dZ"'/8=A, ,

where Z= —,'(Z„+Zs} is the average atomic number
and A, is a constant for fixed cation (c) species.
This relation is exactly analogous to Eq. (1) given
earlier for the elements. We illustrate Eq. (11)
in Figs. 15-17 and in Table I we have listed the
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FIG. 15. Log-log plot of d/n vs Z for the alkali-halide
salts {A B,N=1) with n= ~(n~+na) and Z=2(Z&+Z&).
The linear behavior is described by Eq. (11) of the text.
Values of d/n vs Z for the elemental constituents are
shown for comparison.
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FIG. 17. Log-log plot of d/n vs Z for the A B com-
pounds of N= 3. The linear behavior is described by Eq.
(11) of the text. The values of d/n vs Z for the elemental
constituents are shown for comparison.
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values of A, for the alkali halides in order to show
that (11) is valid to within a few percent.

There are several additional points of interest
to note: (a) While Eq. (11) holds for a fixed
cation, a similar relation does not seem to exist
for a fixed anion, as is clear from Table L (b)
The value of A, shows a general tendency to de-
crease with increasing cation row number, though
there are exceptions to this trend. For example,
A, is lower for the Be salts than for the Mg salts.
(c) The values of A, always fall between the cor-

responding f(z) for the constitutent elements.
Roughly speaking, if we linearly interpolate between
the appropriate f(z) values on Fig. 9 we can read
off A, at @=4. However, this method does not
lead to a very accurate determination of A, . (d)
The compound BSb cannot be prepared, perhaps
because B has a slightly greater electronegativity
than Sb. If BSb could be formed we would expect
it to have the zinc-blende structure with a nearest-
neighbordistance of d=-4. 3 a. u.

At present we can offer no particularly convinc-
ing theoretical explanation for Eq. (11). For one
thing, it is not clear why the result is specific to
a fixed cation species. For another, it is difficult
to understand why the average quantities n and Z
enter as they do. In particular, from the Fermi-
Thomas approach discussed in Sec. III we might
anticipate an averaging of the core radii Fo- 1/Zz"
+1/Zs'" to enter. However, if we introduce aver-
ages of this sort we find no systematic trends.
This may be due to the large energy differences in

TABLE I. Values of A, [Eq. (11)] are given for the
alkali halides. The values of f(z) for the constituent ele-
ments are included for reference.

I I I

4 6 8 10 20

ATOMIC NUMBER Z

40 60

FIG. 16. Log-log plot of d/n vs Z for the A B+ salts
and semiconductors of N = 2. The linear behavior is de-
scribed by Eq. (11) of the text. Values of d/n vs Z for
the elemental constituents are shown for comparison.

Alkalis
Li
Na
K
Rb

Halides

f(.)
8.28
7.81
7.64
7.64

Cl

5.57 4.83
6.90 6.96
6.27 6.44
6.09 6.23
6.06 6.22

Br

4.72 4.73
6.94 6.89
6.39 6.47
6.24 6.30
6.11 6.17
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the Fermi- Thomas potential V(ro) at the "core"
radii of the A and B constituents. Evidently the
equilibrium distance is determined by an energy
minimization which leads to rather different
averaging of the critical parameters than we might
at first expect. Finally it is important to note
that we do not observe for the A"B " compounds
any trend analogous to Eq. (2) for the elements,
a fact which may reflect only that we do not have
any theoretical guideline to motivate a selection
of the appropriate parameters.

Having observed a trend in the lattice parameters
of the A"B "compounds, we consider next the
possibility of using this trend to classify the struc-
tures assumed by these materials. We construct
a modified Mooser-Pearson plot, ' replacing their
"metallization" parameter n by the parameter
Z/n~ which is proportional to the inverse cube of
the nearest-neighbor distance, and hence approxi-
mately related to Phillips's homopolar energy gap
for a particular material. In Fig. 18, we give a
plot of Z/n ' against the electronegativity difference
&X=X& —X& for the A"B "compounds and we ob-
serve immediately a separation of the plot into
three regions corresponding to each of the three
structures assumed by these materials. The plot
is more dramatic than Phillips's plot in that it
separates not only covalent and ionic structures
but the intermediate wurtzite structures as well.
However, it has the disadvantage that the bounda-
ries between the regions do not as yet have a
well-defined theoretical interpretation, a disad-
vantage shared by the Mooser-Pearson plots. i

Our motivation for constructing Fig. 18 was not
so much to give another two-coordinate plot sep-
arating the A"B " materials by structure, but to
look for a scheme which could be used to under-
stand structural differences in other classes of
materials in terms of simple combinations of fun-
damental parameters rather than having to rely on
a detailed theory which may be relevant to only one
type of material. As an example, we have con-
structed a plot such as Fig. 18 for the several
score materials assuming one of the three Laves
intermetallic phases. ~ While the resulting plot
does not yield the precise separation found in Fig.
18, it does reveal some interesting trends, but
that is the subject for another paper.

V. SUMMARY

To conclude briefly, we have presented several
simple expressions which describe, with remark-
able accuracy, trends in the nearest-neighbor dis-
tance of both elements and the A B compounds
as a function of atomic number, valence, and the
principal quantum number of the outermost closed
shell of electrons. The key equations which sum-
marize these empirical results are (1), (2), and

(11). In addition, we have provided some discussion
of the results and a brief theoretical analysis of
Eq. (1) in terms of a Fermi-Thomas model for the
atomic radii and a free-electron model for the
valence electrons. We have also remarked on the
numerous puzzling questions which have arisen
from these observations and which await detailed
theoretical interpretation.
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FIG. 18. Modified Mooser-Pear-
son plot for the ANB+~ compounds.
The ordinate is the average atomic
number divided by the cube of the
average rom number and is propor-
tional to the inverse cube of the
nearest-neighbor distance. The
abscissa is the Pauling electronega-
tivity difference ~=X& —Xz. The
dashed lines separate materials with
the three basic structures zinc blende,
wurtzite, and rocksalt, but other-
wise have no theoretical significance.
The materials on the wurtzite-rock-
salt boundary are MgS and MgSe,
which assume both structures.
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A model for the lowest-order optical nonlinearity in InSb is presented. A method for en-
suring the cancellation of sizeable contributions throughout the Brillouin zone is incorporated
in the model. A calculation, based on the band structure of InSb at k =0, successfully ac-
counts for the dispersion of the optical nonlinearity near the band gap, measured by a second-
harmonic-generation (SHG) experiment in InSb. General results are also presented on the
interpretation of SHG measurements in absorbing media, with special attention devoted to
interference experiments. From a comparison of the experimental dispersion with the theory,
values are obtained for momentum matrix elements near k =0.

I. INTRODUCTION

The recent measurements by one of us' (JJW),
of second-harmonic generation (SHG) in InSb, re-
vealed a surprisingly large frequency dependence
of the nonlinear susceptibility y' '(- 2~, u&, &u)

= y+'(&u+ &u) near the band gap, In addition, the mag-
nitude of r.'2'(~+ ~) was found to be significantly
larger than the calculated static values. ' No ex-
perimental measurements of the static value for
InSb exist. We have examined the possible con-

tributions to the dispersion observed by JJW and
have developed a model based on the band struc-
ture of InSb at k'= 0. This model successfully ac-
counts for the experimental results. In calculat-
ing g' ' from the band structure, we recognize the
need to ensure the cancellation of sizeable con-
tributions throughout the Brillouin zone. This
cancellation is automatic when the exact band
structure is used. But an approximate band struc-
ture can lead to noncancellation unless further


