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The general features of the electronic structure of disordered materials are investigated
using Edwards's model of an electron in the presence of dense weak random scatterers. This
model is equivalent to that of Zittartz and Langer which considers an electron in a Gaussian
random potential. A self-consistent-field (SCF) formulation, which generalizes and clarifies
that of earlier works, is used to demonstrate the presence of a mobility edge, a transition be-
tween localized and extended states at energy E,. Particular emphasis is placed upon the sym-
metry and analytic structure of the SCF and upon how the SCF theory introduces the symmetry
breaking which leads the localized states. In particular, the localization probability, the prob-
ability density that an electron with energy E returns to its initial position after infinite time,
is found to vary as )E-E~) ~3 6 for E ~E~ and to vanish for E &E,. Below the mobility edge
the size of the localized states is found to vary as )E-E~) . Although questions concerning
electron localization can rigorously be answered from a consideration of quantities which are
the averagesof a product of two Green's functions, such as the localization probability, the
SCF theory obtained from the average Green's function alone gives rise to the same analytic
structure as the SCF theory which is based upon the localization probability. This indicates
that it may generally be possible to extract information concerning electron localization from
the simpler average Green's function. The SCF theory is also generalized to consider quanti-
ties which are related to electron mobility. Although the mathematical difficulties encountered
in this case resemble those of the general three-body problem, a proof is given that the low-
lying states do, in fact, give a vanishing mobility. In addition, the SCF is used to derive the
model which Mott employs to show that the mobility due to electrons in localized states vanishes
as ~2 ln& as the frequency w tends to zero.

I. INTRODUCTION

Because of the periodic arrangement of atoms or
molecules in crystalline materials, the universal
features of their electronic structure are easily
deduced; corresponding universal features of the
electronic structure of disordered materials are

currently being sought. ' But the lack of periodic-
ity in disordered materials leads to the loss of
simplification that is provided by the Bloch-Floquet
theorem, and only very simple model Hamiltonian
have been employed in the study of the electronic
structure of these materials. However, if there
are indeed universal characteristics of this elec-
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tronic structure, the models employed should be
adequate to qualitatively represent these generic
properties. '

Since the pioneering work of Anderson concern-
ing the absence of diffusion in certain random
lattices, interest has been focused upon two ques-
tions: (i) Are the electronic states in disordered
systems localized or extended, and (ii) which fea-
tures of the model Hamiltonian determine electronic
localization as the electron's energy is varied?'
This concern with the question of electron localiza-
tion has been heightened by the use of the Mott-
Cohen-Fritzsche-Ovshinsky (CFO) model ' to
explain the general properties of the electronic
structure of amorphous semiconductors. This
model, which is based upon some (assumed) gen-
eral features of the electronic structure in dis-
ordered materials, requires the existence of lo-
calized electronic states in the band tails and ex-
tended ones for energies in the center of the band.
Thus, the region of energy in the neighborhood of
the energy E, where the electronic states change
from localized to extended is of central importance.
This energy is termed the mobility edge, since by
definition the localized states have a vanishing
mobility at 0'K.

The mobility edge must bear some mathematical
analogies to critical points (and/or phase transi-
tions) in fluid and magnets. ' ' ' ' lt is clear
from the use of classical analyses such as perco-
lation theory' that for energies near E, the long-
range potential fluctuations determine whether the
electron is localized. This analogy between
electron localization and critical points (or phase
transitions) reinforces the belief that simple mod-
els are both useful and necessary in the study of
the electronic structure of disordered systems.
(Compare the simplicity, yet generality, of the
Ising model. )

A number of different models and methods have
been used to study electronic structure in random
systems. Some of these, deriving from Anderson's
original work, consider the probabilistic conver-
gence or divergence of the renormalized perturba-
tion series for the electron's self-energy (a one-
electron model). ' 0 While this approach can
provide criteria for the determination of E„ it
gives little information, if any, concerning the
nature of the electronic states themselves or about
the mobility in the region of E, ~ Just as mean-
field theories are useful in the description of phase
changes (except near critical points), so are they
in the study of the electronic structure of disor-
dered materials. The coherent-potential approxi-
mation (CPA), which is just of this mean-field
variety, adequately describes the electronic struc-
ture of disordered systems in the energy regions
where there are extended states. As expected

from the analogy with phase changes, the CPA
fails in the region near E, ; it predicts only extend-
ed states. Cluster-theory generalizations of the
CPA can provide the requisite band tails of local-
izedstates, a'~' but theytoo mustfailin the region
near E, because of the neglect of long-range po-
tential fluctuations. Despite what has been learned
from classical and semiclassical models, a fully
quantum-mechanical framework is clearly needed.

The present work employs the same model (an
electron in the presence of a system of dense weak
random scatterers) as used by Edwards and

Gulyaev to discuss the density of states of a heavily
doped semiconductor. This model was subse-
quently used by Zittartz and Langer to consider the
low-lying levels in a random potential in a refor-
mulation of the work of Halperin and Lax. Zit-
tartz and Langer considered a self-consistent-
field formulation which had been used earlier by
Edwards in a discussion of the mathematically
isomorphic problem of polymer-excluded volume
(self-avoiding random walks). "'" A number of the
approximations employed by Zittartz and Langer
are clearly only valid for the low-lying states,
while some of those used by Edwards in the poly-
mer problem still require further clarification.
Thus, in this paper it is necessary to review this
self-consistent-field theory, to exhibit its funda-
mental aspects and shortcomings, and to present
some generalizations thereof. This clarified self-
consistent-field (SCF) theory is then used to dem-
onstrate the presence of a mobility edge at E, ~

That is, it is shown that for energies less than E,
the electronic states are localized, while for ener-
gies greater than E, they are extended. The lo-
calization criterion implied is chosen to be the ab-
sence of diffusion. Thus, if a (t,0E} represents
the probability amplitude that an electron with
energy E which is initially at the origin returns to
the origin at time t, then P,(E)= lim(la (0t, E)I') as
t- ~ represents the ensemble-averaged probability
(over all configurations of the disordered system)
that the electron can return to its starting point as

Thus we show that within this model
po(E) —= 0 for E &E„but po(E) &0 for E &E, . The
nature of the electronic structure is manifest, and
it is shown that the range of the localized states
varies as Ro~ [- (E -Eo}j "and that the localiza, -
tion probability is Po(E) «[- (E —E,))' in the re-
gion near the mobility edge (for E &E,) The.
present theory also allows the evaluation of the
mobility. Although the mathematical complexities
expected in this case are not unlike those encoun-
tered in the three-body problem, it is still possible
to demonstrate the absence of mobility (at 0 'K) in
the region of a finite density of states. These re-
sults lead to the model used by Mott to show that
the conductivity due to electrons in localized states
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varies as ln& as the frequency - 0.

II. MODEL AND PATH-INTEGRAL REPRESENTATION

Consider a single electron in the presence of a
set of N scatterers, where the scatterers have a
density p= X/fI, and 0 is the volume of the system.
If v(r —R, ) is the electron-scatterer interaction,
the one-electron Hamiltonian is

H({R&})= V- + Q v(r —R&),2m f~1
(2. I)

where m is the electron mass. The Hamiltonian
(2. 1) obviously depends parametrically on the po-
sitions of the stationary scatterers. Because of
the mathematical complexities of the problem at
hand, it is imperative to consider the simplest
case at each stage in order to eliminate the need
for extraneous mathematical approximations. Thus
the scattering centers are taken to be distributed
randomly with the probability density

P([R,])= fl ". (2. 2)

G(rr'; t)= fl "f ~ ~ 1 TId R& B(rr'; t ~(RJ) =(5) .

(2. 4)
Equation (2. 4) implies that G(rr'; t) has the usual

properties of Green's functions; e. g. , it satisfies
the initial condition

G {rr'; t)- (M) ' 5{r —r') as t - 0' . (2. 5)

Thus G of (2. 4) can be considered to describe the
propagation of a particle, even though it does not
correspond to a "real" electron in a specific con-
figuration of the random system. Approximation
techniques which are useful in calculating one-
electron Green's functions will also be useful for
G in (2. 4). We therefore speak of G as describing

As noted in earlier works, the use of (2. 2) is
satisfactory in the consideration of heavily doped
semiconductors with short-range electron-scatterer
interactions (where the correlations between scat-
terers can safely be ignored). 7'

For a given configuration of the scatterers the
one-electron causal Green's function obeys the
Schrodinger equation

—"((l(r))) ()("'; tl&Rs)) = ()( — ')()(t).~

~

(2. 3)
We are generally concerned with properties which
are averages over different replicas of the identi-
cally prepared system. Furthermore, measured
properties are also averages over the many dif-
ferent environments in a single sample. Thus, it
is only necessary to consider properties which
are averages over all configurations of the scatter-
ers. The average Green's function is defined by

the motion of a fictitious "average electron" which
moves in the "averaged system. " As usual, the
average Green's function in energy space is the
Fourier transform of (2. 4),

G(rr'; E+ie)= $ dt e " '"' " G(rr'; t), (2. 6)

and the average density of states is

p(E)= —(I/v) Im TrG(rr'; E+ie) . (2 7)

lim —= lim(p-~, v-0, pv -finite),
P

(2. 9)

where the density of scatterers is large, but the
electron-scatterer interaction is weak. This limit
is appropriate to some cases of heavily doped semi-
conductors. More importantly, however, if there
are universal features of electronic structure in
disordered systems, this simplest model is all
that is necessary to exhibit them.

It is amusing to pause to compare (2. 9) with the
familiar long-time (t-~) weak-coupling (v-0,
but v t-finite) limit in ordinary classical statisti-
cal mechanics. In the statistical-mechanical case,
this limit provides an essential simplification.
However, in the limit (2. 9), the present problem
is reduced to one that is still mathematically in-
tractable, as it is isomorphic to the polymer-ex-
cluded volume problem, "' ' that is, the problem
of the description of self-avoiding random ~alks.
This mathematical analogy is reason enough for
ignoring the higher terms in (2. 8).

In the limit (2. 9), Hamilton's principal function
for the classical average electron is of the form

S[r(r)] = f'd7 ~m [r(7)]'

Before explicitly introducing the path-integral
representation of G, we can give simple physical
insight into its form. The "average system" is
translationally invariant. Since the "average elec-
tron" cannot in general be a free electron, the only
possible interaction can be an electron-electron
self-interaction. That is, upon averaging out the
positions of the scatterers, there is nothing else
left for the electron to interact with but itself. Al-
though a completely quantum-mechanical theory is
employed in this paper, it is convenient to first
describe the electron classically. Then, if r(t)
describes the average electron's trajectory, the
self-potential is of the symbolic form

V,ff = V[r(t) —r{t')]+ (three time terms)+ ~ ~ ~ .
(2. 8)

The general case of (2. 8) is of enormous mathe-
matical complexity, and it is therefore imperative
to consider the simplest possible case where only
the two-time term V[ r(t) —r(t )] is retained. This
term is the only one that survives (see below) in the
convenient mathematical limit,
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—f d7 t dr' V[r(r)-r(r')]. (2. 10)

We, of course, are interested in the quantum-
mechanical description of this average electron.
However, the passage from (2. 10) to the usual
Hamiltonian quantum mechanics is not convenient,
since there is no conserved, or nearly conserved,
Hamiltonian. Thus, it is necessary to consider
instead the Lagrangian-Feynman path-integral
formulation of quantum mechanics where every
trajectory r(v) going from r(0) = r' to r(t)= r is
given the "weight" exp(iS[r(7)]/tt}.

We briefly review the introduction of the path-
integral representation of G in order to introduce
the requisite notation and concepts. The mathe-
matical details necessary to obtain the localization
probability Po(E) are very similar to those used to
obtain G. The one-electron Green's function de-
fined by (2. 8) has the usual path-integral represen-
tation

g (rr'; tlÃ })=8(t),
4 r(0)=r~

& [r(r)]

t N

x exp — d r —[ r (r )] —Q v [r (r ) —R&]
2

(2. 11)
where I) [r(v)] is the usual Feynman measure,
r(r) -=dr(r) d/r, and 8(t) is the Heaviside step func-
tion which makes G a causal Green's function.
[The 8(t) will often be omitted for convenience. ]
As Edwards and Gulyaev note, the average (2. 11),
namely, (2. 4), can be explicitly obtained because
the [R&}and therefore the (v[r(7) —R&]}are inde-
pendent random variables. ' ' The result is

~ r(t k~r

G(rr'; t) = l' &[r(r)] exp ——
ll

d7 [r(7)]
r(0)~ r' a

~ 0

V= p f dR v[r(r) —R] = p f dRv(R) {2.&3)

and can be taken to be zero, thereby establishing
the origin in energy. The limit (2. 9) is now easily
applied to (2. 12). In the expansion of the exponen-
tial of v only the quadratic term survives,

+p ~dR exp ——
~

d7v r v) —R —1
40

{2.S2)
If the exponential in v in (2. 12) is expanded in a
power series in v, the result is just that introduced
heuristically in (2. 8). E)luation (2. 12) clearly de-
scribes a Green's function G which is translation-
ally invariant. For, if we consider instead G(r+a,
r'+a; t), the change in variables p(t) = r(t)+a, R'
= R+a on the right-hand side of (2. 12) shows that
G(r+a, r'+a; t)=G(r, r; t) =G(r —r', t); t).

The average potential is defined by

giving1, 8-11~21'2S

w(r) = e'"'l v
l„(2v)' (2. 15)

and vf is the Fourier transform of v(r). The final
result is thus'

r(t )~r ~ ) t
G(rr '; t) = l B[r(r)] exp —— dr[r(r)P

" $(0)~%' 2

~t

wf~) )-F) ))), )a. ))))28'

as heuristically introduced from (2. 10). [W(r) can
be easily generalized to include the pair correlation
function, but there is no point in including the added
complications. ]

Note that, again making the analogy with polymer
statistics, for imaginary times (2. 16) is the dis-
tribution function for the end-to-end vector distri-
bution for a continuous polymer chain with the seg-
ment-segment interaction —pS'.

Having reviewed the model and the path-integral
representation of G, consideration is now given to
those quantities which are necessary to establish
electron localization.

III. LOCALIZATION CRITERIA

The criterion for electron localization is, in this
paper, chosen to be the absence of diffusion in dis-
ordered systems. ' ' ' Let

c,(tl{R})= g(6(j; tl(R })

be the probability amplitude that an electron, which
is moving in a given configuration of the random
system and which is initially at the origin, returns
to the origin at time t. The ensemble-averaged
probability that the electron return to its starting
point for long times is then

0o =- lim II f f Q dRilco(tlfR)}) I'

=- lim (l c))(tl fR),})) . (3. 2)

If Pp=- 0, all electronic states are extended, while
if Pp 0, the electron has a finite probability of re-
turning, and some states must be localized. ' '

Rather than considering Pp, it is more revealing
to investigate the dependence of electron localiza-
tion upon the energy of the electron. Let g (rr'; El(R&})

2g' l dR I dr dr' v[r(r) - R] v[r(r') —R]
p 4p

"t ~t«
ll

« W[r(r) r—(r ')], (2 14)
4p

where
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where

po(E I {R&})= lim [(o/o) go(E+ is
I {R~})

6 -0+

x g (E —i o
I
{R})] (3.4)

and Bo(z I{R~})is shorthand for 9(00; z I fR,}).
Taking averages of (3. 3) over the random distribu-
tion of scatterer positions leads to

Po =- f „dE Po(E), (3. 5)

where

Po(E) = fl "f f II dR~ Po(E I{Ro})

-=&Po(E
I {R.}}& . (3. 6)

Po(E) is therefore the probability density in energy
space that an average electron with energy E can
return to its initial position after an infinite time .

be the time -independent Green' s function. Using
the general properties of Fou rie r transforms, it
can be shown that in general,

lim
I

g (M; f
I Ã~}) I

' -=f dE po« I {Rg}), (3. 3)

Hence, if po(E) &0, electronic states at energy E
are localized; otherwise they are extended .

This crite rion for electron localization, in effect,
is equivalent to Mott' s. ' Mott defines localized
states as those which do not contribute to the dc
conductivity. If an average electron with energy
E could contribute to the d c conductivity, given
infinite time the probability distribution for the
position of the electron would spread out roughly
uniformly over the accessible Part of the system.
For a system with infinite volume, the probability
that such an average electron returns to its initial
position after infinite time must vanish. Using the
same arguments for the case of a localized electron,
it is clear that po(E) must be proportional to the
density of states at E pe r unit volume and inversely
proportional to some measure of the volume of the
localized state .

The evaluation of Po(E) requires the evaluation
of the average of the product of two Green' s func-
tions just as in the case of the conductivity . The
average of the product of g (E) oe((E

'
) can be obtained

from that of (4 (f)g (t ) by Fourier transforma-
tion, so we can consider the path -integral repre-
sentation of the latter. " Squaring (2. 11}, aver-
aging with (2. 2), and taking the limit (2. 9) simply
leads to the path integral

)(o 5t )~r
lim (g g) —

I!
r(0) =r

~ ( t 'alt ') p t o

~ [r(r)] exp ——
I d7 [r(r)] 0[pe(r')] exp

™
I dr'[p(7')]a 2 I, „;&o&.,- ~

4 t ~to

dr, ' d7o W[r(r, ) —r(7o)]
~ 0 ~ Q 0

dr)' dro W[ p(r, ') —p(~, ')]
44( 0

t

2 ~'
0 ~ 0

4 ' w[r(e( —p( (()e, (4. 4)

with W given by (2. 15). Again the polymer-statistics analogy is revealing: For imaginary times (3.7)
represents the end -ve ctor distribution for a pair of interacting polymer chains .

1V. INTRODUCTION OF RANDOM FIELDS

z
X I 6Q exP

h
0

(P[r(r)]d7

dr I
dr' P(r) W (r —r')&f&(r')

The identity
t ~ f

exp — d7 de ' W r w - r 7

0 4 0

x w'( — '(4( '(), (4. 4(

has been introduced earlier in both the contexts of
the polymer ~ ' and electron localization prob-
lems. ' ' Here W (r —r ) is the functional in-
verse of W(r —r'}

f W(r-r") W (r" —r') dr" = 6(r —r')
(4. 3)

If we interpret

w ith

5P exp
1

2 p
dr II dr ' P(r)

(4. 1) p(4(44 = 44 exp( ——
2p

x w-'( — '(4( '() (4. 4(
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as the probability that the function Q has the partic-
ular value in function space between ]j](P') and

]t](r) +5/(r), then Q is a Gaussian random vari-
able. In particular, it has zero mean and the vari-
ance is W(r —r'):

&y(r)&, -=f y(r)f'[y]5y=o, (4. 5)

&y(r) 4(r)&, = W(r — ') . (4. 6)

[The functional integrals in (4. 2) and (4. 5) and

(4. 6) can be thought to be a regular integration
over all the generalized Fourier coefficents of the
expansion of Q(r) in any complete set of functions. ]
The identity (4. 1}is easily verified by using the
transformation

on the right-hand side of (4. 1). Substituting (4. 1)
into (2. 16) gives

G(rr '; t) —= (G(rr'; t; []j]j)&~,

where
f' gt) r

G(rr'; t; [P]) = u[r(r)]
„r(p)~ r'

(4. 8)

~ ]'t ~ ~ ~t
x xp —' —I, d I ] )]'—

]]] Alr( )]d ) .
2

(4 9)
But (4. 9) just describes the Green's function for a
single particle in the potential ij](r); thus it satis-
fies the simple Schrodinger equation

(gg) - (G(rr'; t; [$])G(pp'; t'; []j]j)&~, (4. 13)

which is easily Fourier transformed to

(g(E) g(E'))-(G(rr'; E; [$])G(pp'; E'; []j]])&+.

(4. 14)

The G(f; [Q]) and G(E; []j]])are, of course, the
Green's functions defined in (4. 10}and (4. 12).
Thus, from (3.6) the localization probability den-
sity is

po(E)
-=&Pa(E' 8'j) &e

no(E)= ——lim Im &G(DE+i ;a[]t]]}&~,
1

6 ~p+
(4. 16)

that approximation techniques which are useful in
evaluating (4. 16) will also be of value in obtaining
(4. 15). We therefore consider a generalization of
the self-consistent-field theory of Edwards ' and
Zittartz and Langer. Application is first made to
&co(t 1PR~j)& and no(E) where the approximations are
physically more transparent. Then they can be
applied to Po(E} and a preliminary discussion of
mobilities can also be given.

V. SELF-CONSISTENT FIELD (SCF)

(4. 15}

where G(z; [Q]) is shorthand for G(00; z; [Q]). It
is clear from the similarity of (4. 15) to the expres-
sion for the average density of states at the origi-
nal (and final) position of the electron,

= 5(r —r') 5(f) . (4. 10)

The Fourier transform of (4. 8) can easily be per-
formed formally to give

G(rr'; E) =— &G(rr'; E; []j]])&o, (4. 11)

where G(E; []j]]) is just the corresponding time-
independent Green's function defined by

(
N'

E+ V; — ]j](r) ( G(rr '; E; []j]j)= 5(r - r') .

(4. 12)

We note that (4. 11) and (4. 12) along with the defini-
tion of the ]j] averaging [(4.4)-(4. 6)] represents
the starting point of the calculations of Zittartz and
Langer. The derivation is presented here be-
cause most of the above equations are to be used
further. In particular, we can immediately ex-
press (gg) in terms of this ]j] average. ~'~0'~ The
result can be shown to be

As noted following (2. 12), the average Green's
function G is translationally invariant. Since local-
ized states are not translationally invariant, in
order to obtain localized states symmetry must
somehow be broken. ' There are many ways in
which this may be accomplished. Halperin and
Lax and Zittartz and Langer break symmetry in
the simplest possible manner. They assume that
potential fluctuations are possible which give rise
to localized states which are deep traps. Thus,
they break symmetry by focusing attention upon a
particular configuration of the random potential
]j](x) and by assuming that there are in fact localized
states. They do not prove that these low-lying
states are localized, since the localized states they
considered may be infinitely degenerate with other
such states which are centered at other places in
the system, thereby leading to bands of states.

In a recent cluster theory of the electronic struc-
ture of disordered systems (using a one-band model},
symmetry is broken in a similar manner; how-
ever, the existence of localized states is not as-
sumed. Here attention is focused upon a cluster of
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atoms with a fixed configuration of the random vari-
ables and an average is performed over the random
potentials in the remainder of the system. Then
the existence of localized states can be determined
and their properties studied as the cluster becomes
larger and/or as similar and degenerate clusters
are placed elsewhere in the system. However, in

the region near E, theories based upon finite clus-
ters cannot distinguish between extended and local-
ized states. Thus, in this region the infinite-range
potential fluctuations determine electron localization
or delocalization.

Using the model presented in Sec. II, Edwards
introduces a mean-field theory of electron localiza-
tion' ' which bears some analogy with the van der
Waals theory of fluids and the Curie-Weiss theory
of ferromagnetism. Edwards considers that the
average electron is free to move inside a cubical
potential well and then determines whether the well
is of finite or infinite extent. The eleciron is then
localized or extended, respectively.

Here we break symmetry in quite a different
fashion. Employing the popular "mythology" of
Green's functions, G(rr '; t) is given the interpre-
tation of the probability amplitude that if we "create"
an average electron at the point r ' at time t = 0, we
then can "annihilate" this average electron (there
is only one here) at the point r at time t. The acts
of creation and annihilation at the space-time points
(r ', 0) and (r, t), respectively, in the translation-
ally invariant "average medium" make these points
in space special; it breaks symmetry for us. It
therefore provides spatial origins which can act as
the potential centers in an approximate calculation
of G, (gg), etc. This is an essential feature of
the SCF theory!

This method of symmetry breaking also illustrates
the origin of a self-consistent description of elec-
tron localization in disordered systems. In order
to illustrate this point heuristically, it is conve-
nient to first consider the classical motion of the
average electron. Given some particular trajec-
tory or some probability distribution for the tra-
jectory r(t) of the average electron from r(0) = r '

to r(t) = r, these trajectories could be combined,
in some manner, with the self-interaction to pro-
vide a self-field seen by the average electron. This
self-field clearly must depend parametrically on
the spatial origins r' and r and the transit time t.
Given this self-field, the trajectory (or probability
distribution thereof) of the average electron can
then be determined self-consistently.

The quantum-mechanical version of the SCF
approximation arises from consideration of (4. 10)
and (4. 8). If an approximate SCF theory is in fact
applicable to the problem at hand, then the SCF
Green's function GBC F must obey the Schrodinger
equation

(il —, + &- —Vscs(rr'; t) Gscr(rr'; t)
~t 2m

= 5(r —r') 5(t), (5. 1)

where Vscs is some (as yet unknown) functional of
Gscs, making Eq. (5. 1) a closed equation. Equa-
tion (5. 1) is markedly different from (2. 16) or
(4. 8); in these G(rr '; t) has an equation of motion
which is in terms of a three-point Green's function;
i. e. , it is the first member of an infinite hierarchy
of equations. ' If a SCF theory is at all a valid
approximation, comparison of (5. 1) with (4. 8) and

(4. 10) immediately implies that Vscs must be that
field, say $0, which makes the dominant contri-
bution to the P averaging (4. 8). This field has
been shown to be'

Ps(x~rr '; t)= pf dr "W(r" —x) J dTG(rr"; tr; [@s])

&&G(r"r'; 70;[Ps])/G(rr'; t; [Ps]), (5. 2)

where the Green's functions for part of the time in-
terval G(tT; [Psj) and G(r0; [Qsj) are the solutions
to a Schrodinger equation like (4. 10) for the par-
ticular value $0, e. g. ,

= 5(r' —r")5(v) . (5. 3)

The SCF Ps(x Irr'; E) which gives the dominant
contribution to the P averaging in (4. 11) for G(E)
is given by Zittartz and Langer, who assume that
it gives rise to low-lying localized states. Their
result is

Pscr(x)= —f dr" IV(x —r")G(rr"; E; [discs])

&&G(r" r'; E; [Ascsl)/G(rr'; E; [ASCF]) (5 4)

The Green's functions on the right-hand side of
(5. 4) are the solutions of (4. 12) for the particular
value P= discs. [Ps(t) and Pscr(E) are clearly not
Fourier transforms of each other. ] Equations
(5. 2), (5. 3), etc. , represent a very complicated
set of self-consistency conditions. To obtain
appropriate solutions, we must know something
of the general analytic structure of the SCF Green's
functions G([gs]). In the analogous polymer case
of self-avoiding random walks, there is some
knowledge of the analytic structure of G(rO; L),
where L is the length of the walk. However, there
is nothing known about the properties of the partial
Green's functions in (5. 2) and (5. 3). From the
facts that (in the polymer analogy) G(rO; L) is be-
lieved to have fractional critical-type exponents,
and the partial Green's functions can only be more
complicated, it is obviously very difficult to find
the self-consistent solutions to (5. 2), (5. 3), etc.
Thus, we follow Edwards and Zittartz and Langer
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in trying to find explicit approximations for G([p])
before determining the dominant field $0 by the
use of steepest descents in function space. Zit-
tartz and Langer evaluate G([$]) by a perturbative
diagram summation. Here we follow Edwards
and assume that the relevant fields Q are suffi-
ciently slowly varying that the WKB approximation
to G([P]), G"" ([@]), is all that is required. ~'
This approximation turns out to be satisfied in the
important regions of the dominant field (t)o, and
corrections to G "s([po]) could, in principle, be
incorporated in the standard manner. Before
introducing the WKB Green's functions, we should
pause to reflect upon the fundamental symmetry
of the SCF formulation.

lf we wish to evaluate no(E) of (4. 16) or
(co(tIfR&})), the SCFin(5. 2}wouldhaver=r', which
we can define as the origin r = 0. Thus, if $0 (x I

00; f) is assumed to be spherically symmetric,
the Green's functions on the right-hand side of
(5. 2) are those for spherically symmetric poten-
tials. Since all of them have at least one of their
end points at the origin, they are only s-wave
Green's functions. Taking W to also be of the form
W(l r" -x I) implies that $0(x IOO; t) is in fact
spherically symmetric. However, when the two
end points differ, re r =0, the potential go(x}rO; t)
is not spherically symmetric as is assumed by
Zittartz and Langer. The SCF has D„„symmetry:
cylindrical symmetry about the 0-r axis and a
plane of symmetry bisecting the 0-r axis. This
plane of symmetry arises because of the equiva-
lence of the two end points. ' The above arguments
also apply to Pp(x I 00; E) and Q(x I rO; E). As
shown in Sec. X, the SCF reduces to a spherically
symmetric potential only for the case of deep
traps, the case treated by Zittartz and Langer and
by Halperin and Lax. In the case of r&r', the
evaluation of G"" ([P]) requires the formalanalyt-
ic solution for the classical trajectories for a
particle in an arbitrary potential of D„„symmetry.
This is the general classical three-body problem.

Although the above discussion has been concerned
with the SCF evaluation of ( g ), it serves to rep-
resent the fundamental aspects of the SCF method;
virtually identical considerations apply in the SCF
calculation of (g g), etc. Steepest descents in
function space can be used to obtain the dominant
field @, which contributes to the averaging in (4. 14},
etc. In the general case of r wr'4p= p' (all differ-
ent), the field Q, has four origins, thereby com-
licating the evaluation of G ([P]). On the other
hand, when using the Kubo-Greenwood-Peierls
formula to evaluate the conductivity, only the case
r= r'&p= p' of two origins is required. However,
the SCF P, is then needed for all I r —p I, and the quan-
tities sg, /sr and &P,/sp are present in the SCF
equations for Q&. These equations are much more

V,~~(r) = @(r)+8 /8m r (6. 1)

with the extra centrifugal barrier, is employed in-
stead of the potential P(r). When the WKB s-wave
functions are continued into the classically for-
bidden region inside the inner turning point arising

complicated than those which arise in the consid-
eration of the mobility in Sec. X. However, in

evaluating Po(E} from (4. 16) all four points are
the same —they can then be taken as the origin.
Hence, the relevant field Q& has spherical symme-
try, and it turns out to be simply related to the
SCF $0 which is obtained in the approximate eval-
uation of no(E).

In order to continue the calculation, it is neces-
sary to introduce the WKB Green's functions 6""
(rr'; t; [Q]) and/or G"" (rr'; E; [P]). Recently,
there has been considerable interest in the evalua-
tion of semiclassical Green's functions in order
to obtain approximate S-matrix elements for heavy-
particle collisions and to find bound-state energies
for nonseparable potentials. The collisional work
focuses upon t space, while the bound-state studies
consider E space. The latter is clearly the
more relevant here. After introducing these WKB
Green's functions, we can consider the evaluation
of the SCF's $0 and Q& and their interpretation.

VI. SEMICLASSICAL GREEN'S FUNCTIONS

The path-integral representation of G (rr'; f; [Q])
given in (4. 9) can be used to obtain the semi-
classical Green's function. Fourier transfor-
mation then leads to G"" (rr'; E; [Q]}as a summa-
tion over all of the classical trajectories from r'
to r with energy E. Even when the angular momen-
tum is specified, the classical path with this double-
ended condition, r and r', is not unique. The par-
tial-wave semiclassical Green's functions can be
written in simple closed forms; however, from
(4. 15) and (4. 16) it is clear that itis onlynecessary
to evaluate the average Green's functionfor electron
positions at the origin both initially and finally. In
the approximate SCF theory, the potentials (the
SCF's) $0 and P, are spherically symmetric about
this origin. Hence, only the s-wave part of the
Green's function is required. Before presenting
the s-wave Green's function it is necessary to re-
call a few preliminary familiar facts and definitions
concerning the semiclassical approximation. The
s-wave Green's function G, (rr'; E; [P]) is a one-
dimensional Green's function for radial motion,
where r is non-negative. It is well known that the
usual WKB wave functions have the wrong behavior
for r- 0, where, for instance, the s-wave function
should approach a constant. This discrepancy in
the radial WKB functions is rectified in the standard
manner by the inclusion of the Langer correction.
Thus, the effective radial potential
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and the radial action

(6 2)

from this centrifugal correction, they are indeed
found to have the requisite behavior as r - 0. This
result assumes that the values of iP(r), tPO(r), and

t'ai(r) are less singular than r as r- 0, a result
which is proven quite generally in Secs. VII and
VIII. It is clear that attractive potentials Q(r) may
admit of bound states, while purely repulsive iP(r)
cannot. It is often convenient to take the extended
states to be box normalized in a radial well of
length L. The limit L -~ can then be taken in the
usual manner.

Define the radial momentum

the simple WKB wave functions (6.7) are divergent
(although square integrable) anyhow, so the approx-
imation is immaterial. For bound states, the nor-
malization should contain a small correction from
the classically inaccessible region. Its influence
on the wave function in the classically allowed re-
gion is negligible, but it will be useful to consider
this correction to extend the SCF into the classically
forbidden region.

The use of the WKB Green's function (6.4) gives
rise to a well-known and understood approximation
to G(E; [tP ]) which is an explicit functional of tP.
The corrections to this WKB Green's function can
also be systematically studied. The validity of the
approximation requires that

&(r) = J'"p(y) dy . (6. 3) mh&Y„, (r)
[ ( )],

Br
(6.9)

+ e -[8(r)+C(r') j/h+ir /2+i 8' -i [8 (r)-&(r')]/|i+i e"+e
(6. 4)

where

8' —= 8'(E; [tt)]) =) p(r)dr/h — v, (6. 5)

and the contour integral is to be taken over one
complete period of the classical motion. Because
of the box normalization, the extended states are
discrete. Equation (6. 4) has poles at the zeros of
1 —e', i. e. , when the Bohr-Sommerfeld quanti-
za'ion condition is satisfied,

f p„(r)dr = (n+ 2)k, n=0, 1, 2, . . . . (6. 6)

The residues at these poles are found to be

&& cos " ——,(6. 7)
4

where T(E„) is the period for the closed orbit,

T(E„)=) drm/p„(r) . (6. 6)

Equation (6. 7) is the usual bilinear product of the
normalized WKB wave functions t))„(r) g*„(r ) for the
state at energy E„. The normalization is, of
course, of an approximate nature, resulting from
the substitution for cos [f„"p„(y)dy/h —~)i], which
is rapidly oscillating in the classically accessible
region, the average value of &. This approxima-
tion becomes poor in the vicinity of classical turn-
ing points. However, in the turning-point region

Here r, is the inner turning point, where P(r, ) = 0.
The s-wave Green's function is then

G,""(rr'; E; [Q])= (m/4i/ihrr') [p(r)p(r')] "'
i t)' ~ i ~ i [ti (r)-Q tr')]/)) instr)+etr')3/)I -ir/2+ e

a condition which is obviously violated near the
classical turning point. This prohibits the deter-
mination of the SCF tP&(r) in the immediate neigh-
borhood of the classical turning points if any indeed
exist. The divergence in the WKB wave function at
classical turning points can, of course, easily be
rectified by the use of the uniform semiclassical
wave functions which asymptotically become the
sinusoidal WKB functions (6.7) in the classical re-
gion and the exponentially decaying functions other-
wise. The uniform semiclassical radial s -wave
functions are proportional to"

where Ai is the Airy function, k(r) = p(r)/h, and
ii)(r) =8 (r)/h Altho. ugh (6. 10) is finite at classical
turning points, it is not analytic at these points.
Thus, functional derivatives of (6.10) with respect
to Q(II) do not exist a,t these turning points. This
then precludes the determination of the SCF P& near
the turning points, but its value in these regions can
be obtained by continuation through the regions.
Hence, the more general semiclassical approxima-
tion (6. 10) is not considered further.

Aside from our general understanding of the use
of the WKB approximation (6.4), the most important
aspect of its introduction lies in the fact that it pro-
vides an explicit functional of Q which admits of
both bound (localized) and extended states. Hence,
(6. 4) does not contain any implicit assumption as to
the presence or absence of localized states. It is
an approximation which represents G(E; [Q]) in the
spectral expansion

(6.11)

where the wave functions, extended and possibly
localized, g„, and energies E„are obtained from
the WKB approximation with the radial potential
(6. 1).
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A(r) =-@'(r) + ~'(r),
where

(6. 12)

Since we require the wave functions for r- 0, it
is convenient first to evaluate the Langer correc-
tion. Let

term in the exponential is

» (2~) -1
@2 1/2

exp —' dy 2m 2
—E

8m'

—exp(-', lnvr}, r-0 (6. 17)

a'(r) = dy 2m E —
2 (6. 13) assuring that the radial wave functions are con-

stant as r-0. Using (6. 17) in (6. 13) and (6.4) can
be shown to lead to

@'(r) = dy {2m[E —V„,(y)]}'~~ G " (Z [y]}=~z~'~'[(2m)3~ /4' l']

dy 2m 8—
(2e)

(6. 14)

and .= (2m
~
E~ /E')'~', (6. 15)

so (2g) ' is the inner turning point when p = 0. 8 (-r)

diverges logarithmically as r 0, wh-ile 8 (r} is
regular in this limit. The divergence in 8 (r),
however, is just that which is necessary to cancel a
similar incorrect divergence in the normalization,
the prefactor in (6.4), in this limit to provide wave
functions (and Green's functions) which approach a
constant value as r (and r ) -0. Thus, since P(r)
is less singular than r as r-0, + (r) can be ne-
glected with respect to Co(r) as r 0. Si-milarly,
for r & r, the integrand in (6. 14) can be approxi-
mated by {2m[E-P(y)] }'~2, Thus, we make the
further simplification by taking

8'(r) —A(r) =f dy {2m[E—P(y)]}' (6. 16)

The results of the approximation in (6. 16) are
well known in the case of the Coulomb potential
where it leads to the WKB eigenvalues E„=- em/
2 ao(n+ —,'), with n = 0, 1, 2, . . . , instead of the exact
results E„=—e~/2a n~, n=1, 2, .. . , which are ob-
tained when the Langer correction is maintained.
Thus, in employing the simplification (6. 16), the
radial quantum numbers for the bound states from
Po and P, (if there are any} are taken to be integers
instead of half odd integers. For high quantum
numbers the difference is negligible anyhow. Sim-
ilarly, the use of (6. 13) and (6. 16}gives the proper
energy dependence of I g„(0})~ in the Coulomb prob-
lem. The appropriate quantization condition and
energy dependence of the density at the origin are
the major properties in the evaluation of Po(E) and
no(E). The similarity between the final Po and P,
and the Coulomb potential then permits the sim-
plification (6. 16).

For r-0 it is necessary to connect the sinusoidal
wave functions (6.7) with the usual exponentially
decaying WKB functions which are valid inside the
centrifugal Langer barrier of (6.1). The leading

where

x [1 —i+ 2 e'~(l —e' ) ], (6. 18)

e = 2KA (rp)

= j {2m[Z- y(r)]}'"dr, (6. 19)

and r2 is the outer turning point which is the solu-
tion to

~(..) =E. (6. 20)

is the density of states at the origin.
Having introduced the WKB approximation with

all the requisite notation, etc. , the SCF's $0 and
P, can be determined.

VII. SCF p

The initial approximation consists in replacing
Go(E; [P]) by its WKB approximation, Given this
approximation, if a further SCF approximation is val-
id, the SC F must again be that field which makes the
dominant contribution to the P averaging in (6.21),
etc. , for the analogous case of po(E). SincetheSCF's
$0 and fit, have spherical symmetry, the SCF can still
be obtained if the random fields P (r) in (4. 15)and
(4. 16) are limited to be spherically symmetric with
the origin 0 representing the average electron's initial
and final position. The contribution to the func-
tional integrals (4. 15) and (4. 16) from any partic-
ular value of the random field, in particular, the
SCF, is infinitesimal. Nontrivial results are ob-
tained only when contributions are taken from a

If the approximation (6. 18}is introduced into the
p averaging for (G(E; [p])}~, the resultant SCF
$0 is found to be complex. The general Zittartz-
Langer SCF (5.4) must likewise be complex. In
order to avoid such complications, it is simplest
to employ manifestly real quantities and determine
the SCF separately for the real and imaginary parts
of (Q), (g g), etc. Thus, we use the spectral de-
composition of (6.18}, whereupon (6. 18) and (4. 16)
imply that

no(E)=[(2m) /2mb ](P ~EJP]~'
n.7-'(E.f~];[~]}5(z-z.[~])). (6. »)
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region of function space. In practice, this con-
sists in evaluating the contributions from those
random fields which are in the neighborhood of the

SCF. Here, these fluctuation terms are limited
to those which maintain the spherical symmetry of
the SCF. In Sec. X we consider the difficulties
involved when the random fields P(P) are no longer
spherically symmetric.

Having thus made the further approximation of
limiting the P averaging in (4. 15), (4. 16), etc. ,
to an average over only spherically symmetric
fields, some general conclusions may immediately
be drawn which are independent of the use of the
semiclassical approximation. For the sake of sim-
plicity, it is convenient at this juncture to take the
self-potential 8' as the pseudopotential '~'@'

W(r) —m 5(r). (7. 1)

From (V. I) and (4.4) the measure associated with

any spherically symmetric potential P(R) is

R 0 PltdB) N

(7. 2)

If P(R}+0as R-~, M[/] vanishes identically,
since the integral in the exponential of M[/] then

diverges. Thus, the SCF must belong to that class
of spherical. .y symmetric potentials which asymp-
totically vanish faster than R ' as R- ~. The only

place where (j|} may diverge and still lead to non-
zero M[/] is for R= 0. However, in order that

jo R Q (R) dR be finite, P cannot diverge faster
thanR-' +~ for p&p, asR-0. All spherically sym-
metric potentials with a stronger divergence at R = 0
lead to M[/] -=0. The infinite potential fluctuations
for R= 0[values of the randomfield Q(r)]can, inprin-
ciple, be of either sign. However, both no(E) and

Po(E) contain factors of [$„(0;[p]}la and these are
negligibly small if P (R) -+ ~ when R -0. The
density of the average electron at the origin l g„(0;
[p]) i is, of course, maximal when p(R)- —~
when R-O, and, not surprisingly, the SCF's $0
and P, are shown below to have this property.

Hence, the wave functions lC „(0;[p]) can be taken
as those appropriate to a potential well at the origin
and to a potential which vanishes faster than 1/R
as R- ~. If the potential well is sufficiently wide,
it could have bound localized states for E& 0, with
continuous extended states for E & 0. Restricting
attention to the case of E & 0, there is the possibility
of the existence of subsidiary wells centered about
some R eO in the random potentials $(R). In this
case, for energies such that the potential only has
one classical turning point, a simple &KB wave
function is adequate. If there is more than one
turning point, it is necessary to consider tunneling
between the wells. The case of tunneling is con-

sidered in Sec. X; here it is assumed that only

the single radial turning-point situation need be
considered.

In order to evaluate (6. 21) by steepest descents
in fjt} space, it is convenient to represent the Dirac
5 function in (6. 21) as a generalized function,

no(E) = lim 2[(2m)'"/h'] eZ„(
~
E„[e]~"

where the summation over n has been taken outside
of the Q integration. A steepest-descents evalua-
tion of the P averaging leads to a different SCF
$0(R; n}for each "state" n. This is just a reflection

of the energy dependence of the SCF with P~(R; n)
—Po(R; E), since only E =E„[P ]0contributes to a
given term. If the summation over n is kept inside
of the P averaging and this whole integral. is evalu-
ated by steepest descents, the resultant equations
define a single E-dependent SGF. If the spectral
representation (6.11) of G([g]) is substituted into
the formal Zittartz-Langer SCF in (5.4), this 'for-
mal complex SCF has the same sum-over-states
structure. However, for E near E„[&f&sop], the po-
tential P«v (R; E) is dominated by the singularities
in G([$]) for E=E„[P s]c,rleading to a good ap-
proximation to a different SCF for each state. The
use of a steepest-descents evaluation of (7. 3) for
each n separately just leads to this simpler SCF
for each n. This procedure can likewise be ap-
plied in the evaluation of (g Q), etc. , where the ab-
sence of summations over all states in the SCF
equations lead to considerabl. e simplifications over
the use of the formal SCF's.

The P averaging in (7.3) can be written explicitly

SIf 5p exp(8[&]) -=St f 5p exp(ln
~
E„[p]

~

'+

—InT(E„[P];[P])—In((E —E„[P]) + e ]
—(4v/2pw) f R P (R)dR), (V. 4)

and theSCF $0 is the solutionto the equation

(V. 5)

More explicitly, (7. 5) implies that

«.[4] 5»T(Ede]'[&] )
2E.[4] 54 (R) 54(R)

2(E -E.[4']} &E.[d ] 4v
(E — E[p])~+ e 5$(R) pzg

(V. 6)
First we may note that because of the lim e -0',
only E=E„[$] can contribute to (V. 3). Thus, the
solution to (7. 6) can be obtained for E =E„[P ]. 0
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However, this implies that

1 E EE[(P()1

E.[4o) (E- E.[AO])'+e' ' (7.7)

R 4I(R) =0. (7.8)
pro 4=Op

Equation (7.7), in fact, implies that in the con-
sideration of the steepest-descents calculation of
(7.3), the factor e{(E—E„[(f)])3+es}-' is slowly
enough varying that it may be evaluated at the sad-
dle point Pp and taken outside of the functional. in-
tegral. Performing this operation and taking the
limit e-0' transforms (7.3) into

no(E) =2[(2m) /h ]ZE&(E—E,[40])Sl f 60

~ e~{ln~E„[y]~"'-inr(E„[y];[y]}

—(4w/2pw}f R P (R)dR). (7. 9)

The steepest-descents evaluation of (7. 9) obviously
leads to the saddle-point equation (7.8) for $0.

As noted in Sec. VI, the approximate radial WKB
quantization condition

$(2m{E„[(f)]—P(R))}'~2 dR = nh, n = 1, 2, 3, . . .
(7. 10)

defines the energy E„[P) as a functional of P and
a function of the discrete index n (for box normaliza-
tion). Taking the functional derivative of (7. 10)
with respect to $(R) yields

= (2 )'" '(E. [4); [e))

when e -0' and E =E„[$0), since the right-hand
side of (7. 7) is the definition of the principal value
(y/(E- E„[$0])which vanishes when E-EJP ]0.

Consequently, in the determination of the SCF |Imp,

the third term in (7.6) may be neglected with respect
to the first one; i. e. , to a good approximation Qp
is the solution to

6E.[&l 6 InT(E. [41;[4))
2E.[4) «(R) 6e(R)

Because the WKB approximation for E„[P] in (7. 10)
depends only on the potential in the classically a1-
lowed region, (7. 11) is nonzero only in this region.

In order to evaluate the remaining functiona1 deriv-
ative in (7. 8), it is convenient to introduce a no-
tation for partial functional derivatives with re-
spect to (P(R). Let r /r $(R) be defined by

6F(E[4]; [4))»(E;[4]) «[4]
«(R) sE ...., «(R)

, &F(E;[~)}
6e(R)

BF 5E[(f)] rEF

sE[e] «(R) ~e(R) '

From Sec. VI, we can write

T(E; [(p])= —(3 dR{2m[E —p(R)] )

=$ dR{(2/m}[E- 0(R))) '"
and consequently

AT(E; [P]}
&I

dR{2m[E —P(R)]) ~

(7. 14)

= —(m/2)'" 8(r„R)[E—y(R)]-'", (7. »)
since the S/SE and r), /rEQ(R) operations commute.
Introducing the notation

p(E;[&))='h ' T(E; [4)),
, (E. [~))

sp(E; [4 ])
P i

(7. 16a)

(7. 16b)

for reasons that will become apparent, the SCF
equations can be written as

a(E) E
Ea(E)IE-E(E))" '

2 (E)IE-E (E)I}

= C~~sRsy (R) . (7. 17)

In (7. 17), E has been written for E„[P,], the (Po

dependence of p(E) has not been explicitly expressed,

&: {E„[(p]—(p(R)} ' 2 8 (ro, R), (7. 11)
C = 87(h/(2m)' p~

a(E) = 1 —2E p (E)/p(E),

(7. 18a)

(7. 18b)
where

g (ro, R) =
0, otherwise, (7. 12)

and ro is the classical turning point (or f,) for the
potential P. The contribution to the functional
derivative from the dependence of ro on (P in (7. 11)
vanishes since it is just proportional to

2(2m{E„[P]—Q(R)}}'~25(R —ro) = 0.ay'
fp

and clearly the p in (7. 18a) refers to the scatterer
density as in (2. 12) and following. The quantity
p(E) must be obtained self-consistently from the
solution of (7. 17) with (7.16).

Equation (7. 17) implicitly defines (Po only in the
classically accessible region; its value in the non-
classical region(s) may be obtained from the con-
siderations in Sec. VIO. The SCF Pp is clearly
energy dependent. For E & 0 it is shown in Sec.
Vill that a(E)=+7/2. Thus, for ro& R, or equiv-
alently, E& Po(R), theleft-handside of (7. 17) is
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y (R;E) ——bR as R —0,

where

(V. 20)

[b(E)] / = (-E) p(E) C a (E)&0, E&0.
(7. 21a)

If we write

$0 (R i E) = Ef (R; E),
(V. 1V) becomes

(7. 21b)

(f —1) / [I —[2a(f —1)] '] =(R/Ro) f, R & ro

(V. 22)
where

53/4 ( E)-3/4 (7. 23)

is a fundamental length in the system. From (7. 22)
it is directly apparent that

f(R; E) =f (R/Ro}, R & ro (V. 24)

and (V. 20) represents the leading term in a power-
series expansion which is of the form

f=(R/R)+ + Pc„(R/R)", R&r . (7. 25}
n=p

Fortunately, the precise form of the series (V. 25)
is not required.

At the classical turning point the simple WEB
wave function (6.7) diverges, and even the func-
tional derivatives of the uniform semiclassical
wave function (6. 10) with respect to p(R) do not
exist at this point. As is well known, the WKB
approximation is poor in the neighborhood of rp,
and a real solution for $0 from (7. 17) ceases to
exist when the condition (7. 19) is violated. This
occurs when R satisfies

E —Q (R 'E) = —+E (7. 26)

which is near the classical turning point E —$0(vo; E)
=-0 when E is small —the region of energy of in-
terest. The functional E —$0(R; E}starts out at
the value + ~ at R = 0, where the WEB is valid, and
becomes undefined (i. e. , complex} slightly before
it reaches the value 0 at the turning point. A solu-
tion cannot be obtained up to the turning point be-
cause of the errors in the WKB wave function (6.7)
and its functional derivatives with respect to P(R)
for R near ro. [As noted after (6. 8), even the nor-
malization of the wave function involves approxima-

negative so long as

—E/2a(E) [E—Po(R)] & 1.
When (7. 19) is satisfied (see Sec. VIII}, Po (R; E) is
negative and can possibly lead to bound states.
From (7. 17) it follows that as R-O, $0(R) must
diverge. The leading divergent term in this limit
can be found by taking $0(R) « —R ", and then (7. 17)
implies

tions which are not valid in this region. ] Pre-
sumably, with the use of (6. 10), Po would be de-
fined closer to the turning point; however, the
equations are not tractable.

Although (7. 17) does not describe $0 in the region
of the classical turning point and in the nonclas-
sical region, Pp must possess a turning point for
E & 0. The measure (7. 2) implies that $0(R) -0
faster than 1/R as R- ~ and (7. 17) exhibits a large
region for which 0 & E & $0(R; E).

For Pp in the classically allowed region, the
condition (7. 19} is violated when R =Roof (7. 23}.
In this region $0(R; E) is still basically the leading
term —bR 4/3 as in (V. 20). Thus, as a simplifica-
tion Po(R;E) can be equated with (7. 20} for R in
the classically allowed region. This leads to the
identification of Rp as the classical turning point
and hence as the localization radius, the dimen-
sions of the localized states obtained from Pp.
Actually, the identification of Rp with the localiza-
tion radius follows directly from (7. 22} and (V. 24}
if Pp is assumed to maintain the same two-paraxn-
eter (E, R0) dimensionless form for all R &ro. The
quantum-mechanical expectation value of the radial
position (R) in the semiclassical limit becomes

RdR
( ) [E y (R. E}]1/2

=(const) Ro,

/ 7'p
dR., [E-e,(R;E)]'"

(7. 27)

Z. —f dE p(E;[0o]), (7. 28)

where the second equality in (7. 27) is obtained by
transforming to the dimensionless variable R/Ro
and using (V. 22) and (7. 24). [As is shown in Sec.
VIII, the asymptotic SCF for R —~ depends upon
the wave length x ' of (6. 15), and hence so may $0
in the classical region. However, this weak ad-
ditional dependence is ignored in obtaining (7.27). ]

Because of the R attractive nature of the SCF
$0, the WKB quantization condition (7. 10}for Po
leads to an infinite number of bound states for E
& 0 with an accumulation point at E-0 and then
a continuous distribution of states for E&Q. In a
real disordered system the average density of
localized states must be a continuous function of
energy. However, in the evaluation of no(E) and
pp(E), we consider those localized states which
have finite residues in the vicinity of a particular
point in space (0). In this case the distribution of
localized states near 0 is dense, but discrete. It
is therefore permissible, especially in the region
of high quantum numbers, to consider that in the
averaged system described by the SCF there is a
continuous distribution of discrete states. As is
customary then, the summation over discrete states
is converted into an integration over the continuous
distribution
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where p(E) is the density of states .If the relation-
ship (7. 10) is inverted, we obtain n(E; [P]), the
semiclassical approximation for the number of
eigenstates with energy less than or equal to E,
as

n(E [Q]}h= f (2m[E —P(R}]) dR. (7. 28}

The semiclassical approximation for the density of
states for the particular field P is then the well-
known result

(v. 3o)

The random fields P(r) in (4. 15) are restricted
to be spherically symmetric in conformity with the
symmetry of p„ the SCF for po(E). The conclu-
sions concerning &0 obtained from (7. 2) are also
valid for Q, . The formal SCF may be obtained by
directly evaluating (4. 16) by steepest descents
The details follow just as in Sec. V, but the results

which coincides with the quantity p(E) which is de-
fined in (V. 16).

(t)0 is the SCF for the imaginary part of
(g(M; E+ ie)). Since the latter quantity is rea', Po
must be real in contrast to the complex Q~F which is
obtained from the complex quantity (g(00; E+ ie)).
We could likewise obtain a real SCF $0 for the real
part of {g(00;E+ic) ). The equation for @~ would
have the additional term —{5E„[P]/6@(R))
x (E —E„[P])' on the left-hand side of (V. 6) with
the condition that E v E„[go] because of the principal
value function associated with ReGO(E+i&; [Q]).
This leads to only minor differences between
$0(R; E) and $0(R; E). As the real and imaginary
parts of the Green's function are related by a Hil-
bert transform, an integral over all other values
of energy, there is no necessity that $0 and $0 be
identical.

The present results provide a @0(R; E) which has
discrete states for E&0 and continuous ones for
E & 0, which is indicative of, but not proof of, lo-
calized states for E & 0 and extended ones for E
&0. Thus @0 suggests the existence of a mobility
edge at E = 0. An evaluation of po(E) is required to
provide a rigorous criterion for localization. How-
ever, as is demonstrated in the next section, apart
from inconsequential factors of 2, p& —the SCF for
po(E)—is identical to @0. Hence, the possible in-
ferences obtained from $0 concerning electron lo-
calization are indeed correct. There then remains
the general model-independent possibility that in-
formation concerning electron localization may be
obtained directly from the analytic structure of
{g) when the general theory indicates it is neces-
sary to consider {gg).

VIII. SELF-CONSISTENT THEORY OF LOCALIZATION:
Pl (R g)

are more complicated and are therefore not con-
sidered further.

In order to avoid dealing with complex SCF's, it
is again convenient to consider the limit q-0' be-
fore approximating the p averaging. This limiting
process introduces the spectral representation
(6. 11) of the s-wave Green's function Go(z; [P]) for
each value of the random field $(R),

&'~~'f&t)=" &
i ]

. )
ly„(0; [y])l'

. =p(E [4])le'(0; E' [e))l'
, p+ „E—E„[$)+i&

w0, (8. 2)

hence (8. 1) vanishes because of the over-all factor
of &. Barring any accidental degeneracies, for E
in the region of the discrete spectrum the only
terms contributing to (8. 1) are those for which h

=n, leading to the result

di screte states n

(8. 3)
which clearly exhibits p~(E; [Q]) as a localization
probability. It is convenient to extend the summa-
tion (8. 3) to be over all states, thereby defining a
quantity q~(E) which coincides with po(E) in the dis-
crete spectral region. Using (8. 3) and the WEB
approximation (6.4)-(6.7), Eq. (4. 16) becomes

qo(E) = [(2m) /(2vh ) ] Z„(l E„[$]I

x T (E„[@];[y])5(E —E„[P])), (8.4)

where again the summation over yg has been taken
outside the @ averaging. Apart from over-all con-
stants, (8.4) differs from (6. 21) by the presence of
the extra factor of l E„[p]l i T '. Therefore, using
the generalized function form for the g function in
(8.4) as in (7. 3) and evaluating the functional inte-
gral (8.4) by steepest descents leads to an equation
for P, which is identical to (7.6) except for the
presence of a factor of 2 before 6 InT/6$(R) and
E„'5E„/6$(R) and the substitution $0- P, . Equa-
tion (V. 7) and the argument following it can be used
to remove the g function from the P averaging in
(8.4) and have it evaluated at @,. This leads to

~.6(E-E.[& l) (IE.[c)I T'(E.[e)' [tl))
(8. 5)

(01 [4'1)1
(8 1)

~ E-Em[4) —i&

where a summation is, of course, implied for any
discrete eigenstates and an integration is taken for
the continuum. [The wave functions in (8. 1) are ex-
pressed in unbounded space. ] If E is in the neigh-
borhood of the continuous spectrum of f, e.g. ,
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~~) dRlx. ..(R)l'. (8. 9)

[The positive energy-independent proportionality
factors in (8. 8) and (8. 9) are not required. ] Be-
cause of the dependence of N on E [(f)] and of the
latter on (f)(R) for R in the classically allowed re-
gion, N introduces a minor correction into the
SCF equations for it)& in the classically accessible
region, and this is ignored. However, N now en-
ables f, to be defined for ro&R. Steepest descents
leads to the following integral equation for P, in
the classically forbidden region:

e(R, r()) B(R)
T(E.[4 ]; [4 i])b (R) - E.[e ]}"' 0 (R) -E.[4 ]

where
(8. 10)

(8.11)

The SCF equation for (f), is obtained from (7.8) by
multiplying the 5 ln T/6$(R) and the 6E„/6$(R) in
(7. 8) by 2. Continuing as in Sec. VII, the equation
for ft)& is

a(E)
ZpWfs (, ()—))]"' )u(Z)&S 0, (-E)])

= 2C i R (f)|(R), (8.6)

where a(E), p(E), and C are as given in Sec. VII.
The form of P, (and $0) in the classically inac-

cessible region can be determined by considering
the contribution to I]))„(0;[(t)]) I arising from the
finite electron density in the nonclassical region.
This result can be used to prove that (t), (R)-0 as
R- ~ as it must. For convenience, only one
classical turning point is assumed to be present
for the random fields P(R) which contribute to
f)0(E) and admit of bound states. Using the WEB
connection formulas, the unnormalized wave func-
tion p(r) ~ cos[f p(r)dr/ff fv] inth-e well con-
nects with the wave function

()l)-[(()() g] &l,~( I a„&mm(e(")-zl) ")
' "o

(8. 7)
(apart from an overall constant) in the nonclassical
region. Introducing the Langer correction, 8 the
magnitude of the normalized wave functior at R
= 0 is just inversely proportional to the norm of
this unnormalized function,

(8.8)

where

and y is a constant independent of E. A solution to
(8. 10) and (8. 11) clearly does not exist as R- ro
as is to be expected. For R & ro, (8. 10) implies
that (f)|(R) & 0. If p, (R) is finite as R- ~, the left-
hand side of (8. 10) vanishes as R- ~. Thus, the
only possible solution gives (t),(R)-0' as R- ~,
and (t), (R) is of nonzero measure. For R large
enough, Q, may be neglected in (8. 11) and in the
left-hand side of (8. 10). This then implies that

(t)&(R)-O[e ""/«p(E)R ], R- ~ (8. 12)

where )& is defined in (6.15).
One possible interpretation of positive P, (R) in

the nonclassical region-except in the immediate
neighborhood of the turning point —is that this re-
flects the requirement of conservation of probabil-
ity. In order to obtain localized states, negative
potential Quctuations are required in some region
of space. But (4. 5) implies that, on average,
(f)(R) is everywhere zero. Therefore, if such nega-
tive Quctuations are found somewhere, it becomes
highly likely that positive potential Quctuations
must occur elsewhere in space. By specifying that
an average electron is initially and finally at the
origin, we make it more likely that a negative po-
tential Quctuation is centered about this position-
otherwise the average electron would not have
"chosen" to be at that point in space in the first
place.

Although the exact details of and the contribu-
tions from the classically forbidden region are dif-
ficult to extract from (8. 10), they are not required.
Equations (8. 10)-(8.12) do imply the existence of a
classical turning point ro(E) for (t), (R; E) as re-
quired by the negative value of the SCF (t),(R; E) in
the classically allowed region and the probabilistic
requirement that (f)|(R)-0 faster than R ' as R

Because of the nonanalyticity of the WEB ap-
proximation [even (6. 10) in the case] for the SCF,
the potential (t), is uncertain in the region of the
classical turning point for, say, a wavelength on
either side. However, given ft)& on either side of
ro from (8.6) and (8. 10), probabilistic arguments
can be used to join the SCF in these two regions.
First consider values of the random potential P(y)
in the integrand of (8. 5) which are fairly smooth
in the neighborhood for which ~t) & is presently un-
certain, but which coincide with P, in the region
for which it has been determined. Here smooth-
ness is taken to imply that (t)(r) has no large posi-
tive or negative Quctuations about the potential p,
which is derived from Pi by continuing it through
the uncertain region with a simple straight line.
For such smooth p(r), the difference p(r) —(f)|(r)
can be treated as a small perturbation on @&, since
it would not qualitatively change the nature of,
e.g. , the energy dependence of the density of states
and the magnitude of the wave function at the origin.
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p(E [y ]) (b')"'(-E) "' (8. 14)

where b' [(b') e~ =-,'(b) e~ ] is still energy dependent
by (7. 21) and (8.6). p' is defined in (7. 16) as sp/
GE when (t) is E independent. Hence, in the present
case p' must imply Jsp(E; [p])/sE], e. If d, w. ere
energy independent, O' would be a constant, so

p' = —5p/4E, (8. 15)
and hence a(E) =+e as stated above. Substituting b'
into (8. 14) gives

p(E) [p(E)] '"(-E) "'~ (- E) "' (8. 16)
The radial density of s-wave states (8. 16) becomes
infinite as E-0 since E=O is an accumulation
point for the discrete spectrum from a potential
which has the leading singularity —O'R 3 at the
origin. In the continuum (E &0) the radial s-wave
density of states (7. 30) is proportional tothe size
of the radial well L which is introduced to provide
the box normalization. As L- ~, this density of

All such smooth potentials would also have similar
measures, thereby contributing equally with Q&.
The second case is that set of potentials d (r) for
which p(r) —@~ is large and positive in the uncer-
tain region. Although these potentials would mini-
mize the penetration of the wave function into the
classically forbidden region, this penetration is
already small, since @,(r) becomes positive in the
determined part of the nonclassical region. Fur-
thermore, such large potential fluctuations would
have very small measures, so their effects can be
neglected. Similarly, those potentials for which
P(r) —P&(~) becomes large and negative need not
be considered because of their small measures.
They would possibly have a qualitative effect upon
the nature of the SCF: However, these potentials
would also lead to a value of pe(E; [P]) which is
much less than pe(E; [p,]) since the large negative
potential fluctuation implies that the localized
average electron of energy E spends a lot of time
in the neighborhood of this fluctuation, and there-
fore less time in the vicinity of the origin. Thus,
we conclude that the SCF Pz cannot differ much
from @„and we now consider that this must be
the case.

The density of states p(E) must still be evaluated
in order to complete the determination of ft), . By
(7. 30) and (6. 8), the density of states is just

p(E; [P~])= (2m/8 ) ~ f dR[E —Qq(R; E)]

= (- 2m/Eb')"'Re f""'"[f(~) —I]'"d» .
Q

(8. 13)
Since re/Re, and hence the integral in (8. 13), is
dimensionless and energy independent, (7. 23) im-
plies that (8. 13) can be written as

states is obviously infinite. The density of states
must be continuous across E =0, a fact which
clearly follows from (7. 30) since when L &Rp i.e. ,
as E-O, the box normalization also cuts off the
discrete states. Hence for finite L there is really
no difference between the highest-lying discrete
states and the bottom of the continuum, and the
singularity in p(E) as E-0 is formally removed.

The result (8. 16) implies that the localization
radius RQ varies as

R ~( E)e~s (8. 17)

—= 0, E&0 (8. 18)

with the mobility edge at E= 0. Intuitively pe(E) is
expected to be inversely proportional to the local-
ization range. The larger the size of a localized
state, the lower the probability of the average elec-
tron being in the vicinity of the origin. The behav-
ior pe(E)- 0 as E-0 is therefore indicative of the
fact that the localization radius inc"eases as E-0; the decrease in pe(E) due to the large value of
RQ dominates its increase because of an increasing
density of states in this limit. The critical expo-
nent behavior of (8. 18) is indicative of, but not
proof of, critical exponent behavior on the other
side of the mobility edge, e. g. , a mobility which
increases as (E)™for n &0, E& 0. If only the domi-
nant part of the SCF —O'R 3 is maintained, then
for E, & E & 0, the states in this potential correspond
to resonant states, ones which spend a long time
in the vicinity of the origin. This is also suggestive
of a continuous increase in the mobility for E & 0.

In contrast to derivations of the mobility edge
which consider the probabilistic convergence prop-
erties of the renormalized perturbation expansion
for the electron's self-energy, the present SCF
method can provide a description of these localized

and hence the localized states become more ex-
tended as we approach the transition energy E=0
from below. Thus, those localized states near the
mobility edge are profoundly affected by the pres-
ence of similar states which are centered else-
where in the system. The present theory is, how-
ever, only a single-center theory-only spherical-
ly symmetric potentials enter —and therefore it can-
not account for the effects of these other states.
A proper SCF evaluation of the mobility, on the
other hand, requires two centers, the initial and
final positions of the average electron. Thus,
these two center states are explicitly considered
in the SCF treatment of the mobility —herein lies
the mathematical difhculty —and this may lead to
a shift of the mobility edge.

Evaluating the integrand of (8. 5) at &f&, and taking
the continuum limit (7. 28) leads to the result that

Pe(E) ~ ( E)issue E & 0
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and extended states. Furthermore, the method

can, in principle, be generalized to treat the mo-
bilities.

The results (8.18)-(8.18) follow from the use of
$„. however, any single potential has zero weight,
and it is necessary to consider the effects of fluc-
tuations about P&. As shown in the next section,
these fluctuations lead to energy-independent fac-
tors; consequently, the proportionality constants
in (8. 18), etc. , have been omitted as these re-
sults also contain the effects of fluctuations. In

Sec. X a discussion is given of the SCF theory of
mobilities and the difficulties inherent in a two-
center theory.

IX. FLUCTUATIONS

Within the semiclassical approximation it still
remains to consider the contributions from the ran-
dom fields @(r) in the neighborhood of (P, in order
to verify the results in the preceding section. The
semiclassical approximation to (8. 5) involves
neglecting contributions from the nonclassical re-
gion; however, it is necessary to invoke the prop-
erties of P, in the latter region in order that the
SCF be taken to be continuous up to the classical
turning point. The functional form for ft), is also
assumed to be of the same form as in (V. 22) and
(7. 24) with b b'. Th-ese assumptions correspond

to the belief that the functional derivatives of po(E;
[(t)]) with respect to (j)(R) should remain analytic at
the classical turning point, or at least lead to in-
tegrable (or square integrable) singularities.

Equation (8. 18) just provides the values of

IE.[e]l I-'(E.[@]'[@])6(E —E [4])

in (8. 5) at the saddle point (t),. The measure of (t),

is then given by

M (()(l0 =, exp — R~((R) «, )2pK

$(r)= (t)(r) —(p, (r), 6$(r) =6)(r), (9.2)

the (P averaging in (8. 5) is written approximately as

4 ] (ro/'80)

2pso

(9.1)
since r()/Ro is dimensionless, and invoking (8. 1V)

implies that (9.1) is a constant independent of en-
ergy. The integral is easily evaluated if only the
leading part of (P, in (7. 20) is maintained. In this
case ro/R()=1 and sf (x)~x / . The corrections
to (7. 20) therefore are small.

As is customary in saddle-point integration, if
the (j) averaging in (8. 5) is written as
BtJ6pe ' '~'"" and wedefine

ezP[z(&((', (;(4 ))) ~ ~()«m 1 ~« l(d" ()&()()()((„) (()))(()('))((+o((')(,
l* 1 l', 6'F(E[e1; [el)

(e. 3)

where the terms of 0($') and higher that arise from the functional Taylor series of F in powers of $ are
ignored but can be considered to yield a perturbative expansion in the usual fashion. The factor e "~~' '

has already been considered, and we now show that the Gaussian functional integral in (9.3) is independent
of the energy Using the .definition of partial functional differentiation in (7. 13) and the shorthand (P and
(p' for (p(R) and (t)(R'), respectively, it follows that

6 F(E[(pl; [(p]) a'F 6E n» 6E 6» 6E 6E B'F' 6'E[(p] BF
P6(t6() 6(Pk(P 6(t) 6(P BE 6(f) g(P BE 6(f) 6(j) BE g g(~ 1 6(P6$ BE 1( @1+&

where

6'E[el & BE[41,BE[41 B «[@1
E= ~Co) ~~ ~E & ft) E- ECe )

(e. 5)

and 6E[/p]/6/p is in (9.4) and (9. 5) taken to be (V. 11) with E instead of E[(p]. Using (7.11), Eq. (9. 5) is
readily evaluated as

6'E[@1 (2m)'"6(R —R') m
27(E y)&/I Ve(E ~)1/2 (E ~I)1/2 [(E 'p) +(E 'p ) + 2P /Pl

EC4 3

Similarly, the results

(e. 8)

6 lnlE[@]I /(2m)'/ 6(R —R')
(E ~)s/2

—
ET'(E (p)1/3 (E ~ )1/2

x [2E-'+ (E —(t))-'+ (E —(p')-'+2p'/p] 8(ro, R) e(ro, R') (9.V)
E~ E C3
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6 jnT(E[@];[p]) (2m)' 5(R-R')
[ 3( )-1 I/ ]2T(E q-}'" ' ' ' &(E ~)"'(E ~')"'

x [- —,'+ (E —P)(p'/p)(I —p'/p) + (E —P ')(p'/p)(1 —p'/p) + 3(E- P)/2(E —P')

+3(E —y'}/2(E —p)+(E —p)(E —p')(2(p"/p) —4(p'/p)')] e(ro, R) e(r„R')
E= Efy]

(9.8)

detK= [det(-,'1)][det(1+ K')], (9. 10)

the Fredholm determinant of the first factor in
(9.10) is infinite, being proportional to the dimen-
sion of the space. This divergence is in the stan-
dard form of the "unlinked cluster. " It is an over-
all normalization which appears in all orders of
perturbation theory, i.e. , the expansion in (9. 3)
containing the terms of 0(( ) and higher. However,
in the expansion inyowers of g", m~3, there are
also coefficients which are proportional to dirac 5
functions. The terms in perturbation theory aris-
ing from these diagonal parts are then proportional
to the trace of the dirac 6 function (or powers
thereof), i. e. , to the dimensions of the function
space. These diagonal terms in perturbation theo-
ry therefore directly correspond to the "unlinked
clusters" which must cancel this infinite normal-
ization in the familiar manner.

The nondiagonal part of K(RR'; [Q,]) is symmet-
ric and separable in R and R'. After the "unlinked
clusters" have been factored out, the remainder of
K can be written in the form

d
K"=1+2 g,~A (E, R/Ro)AS(E, R/Ro) =1+K',

o, /~1

(9.11)
where g ~ are constants independent of E and g is
finite. By assumption, the functional derivatives
with respect to f are to be regularized at the

can be obtained.
The Gaussian functional integral (9. 3) has the

value (detK(RR'; [PJ)) '~, where det implies the
Fredholm determinant and K is the kernel

6'+(E[41; [41)
4vRR' 6y(R)6@(R')

(9.9)
The kernel K has a diagonal part, proportional to
5(R —R'), which is dimensionless. In fact, if the
second term in (8.6) in (E —P, ) 3~2 is ignored, then
this modified equation (8. 6) is substituted into the
diagonal part of (9. 9), and finally when the leading
term (7. 20) of the SCF is used, this diagonal part
is found tobe —,'6(R —R') e(ro, R). If we write

K= ~ 1+~K',

classical turning point, so the integrals

f A (E, R/Ro)A~(E, R/Ro} dR = S 8 (9. 12)

(10.1)

Equation (10.1) is the probability that an average
electron travel a distance R in time t, where e and
g are defined in Sec. III. If the limit R- ~, t- R
is considered in (10.1), then the case of n= 2
would correspond to diffusive motion. Near the
mobility edge a value of a differing from two may
be expected. Introducing Fourier transforms of
the probability amplitudes as in (3.3}-(3.6), Eq.
(10.1) becomes

boa(f) =lim (2v) f dE f dE' e "
6 0+

x (g(OR; E i&l+(R&))g(RO; E' —iel {H&)) ) .
(10.2)

exist. Employing the simplifications that led to
(9.10), the functions A and A are obtained by tak-
ing RR' times the factors in (9.7) and (9.8). With
this identification and using (8.15)-(8.17), when
the change in variables x = R/Ro is made in (9.12),
the resulting integral is dimensionless, and hence
the S ~ are independent of E. Since

d

detK" =tr ln(1+K') = Q ln(1+ X, ), (9.13)
~=1

where X, are the eigenvalues of the kernel K', i.e. ,
the eigenvalues of the energy-independent matrix
gS, the contribution from the fluctuations is energy
independent as asserted.

X. TOWARDS A SCF THEORY OF NOBILITIES

From a discussion of po(E}, the probability that
an average electron with energy E returns to its
initial position after an infinite time, it is possible
to deduce certain properties of the transport pro-
cesses. However, in order to discuss these trans-
port phenomena directly, it is necessary to con-
sider average electrons which do not return to their
original yosition. The simplest quantity which con-
tains this information is the following generaliza-
tion of (3. 2):

p «)=&lc (fl(It,))l')
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It is clear that in the limit t-~, R-t', only val-
ues of E=E' contribute to (10.2}. Thus, introduc-
ing the sum and difference variables

p,„(h, ~) =Z,Z, (p, (0; [P])t,'(R; [4])e,*(0; [y])

x g, (R; [A]}&(h —2E~[4]- lEa[41}

g = 2(E+E'), &u =E —E'

transforms (10.2) into

p„(t)= f dS p,„(t;h),
where

(10.2)

(10.4)
with

x 5(~ —E~ll]+E~[4]) ),
(10.6)

p (t; g)=(2v) ' f d(ue '"' "
p (h, ~), (10.9)

P( (t;8}=lim(2v) z f„dare '"'~"
6 0+

x(g(OR; 8 +-,'(o +i z~(R,})

xg(RO; 8 —2m —i&(R&)) ) (10.5)

and in the long-time large-R limit only small val-
ues of &o contribute to (10.5). 8 can then be taken
as the energy of the average electron, and pz, (t; g)
is related to the mobility for electrons of ener-
gy 8. The P averaging of Sec. IV can be intro-
duced into (10.5) as in (4. 15) in place of the aver-
age over all the scatterer positions,

pw, (t; $)=lim(2w)~ f d(ee '"''"p~($, (u),
6- 0+

(10.6)
with

p( (h, (o)=(G(OR;S '+sr is+, [d])

x G(RO; h ——,'&o —i&,' [p]) )o . (10.7)

We could consider the formal SCF obtained from
(10.?) or (10.6) by evaluating the P average by
steepest descents. In the latter case, the SCF
would be a sum of two terms of the form (5. 4) with
the replacement of W by the gseudopotential (7. 1)
and the indices rr'-OR and HO, respectively.
Since (5.4) is already too complicated when r, r'
-=0, the formal SCF from (10.7) cannot be treated.
Alternatively, the forrnal SCF arising directly
from (10.6) has a more complicated structure than
(5. 2}with rr'-OR and therefore leads to SCF equa-
tions which are too "complex. " The important
point to emphasize is that in both cases the SCF has
cylindrical symmetry about the O-H axis. Since
the initial and final points are identical by time-re-
versal invariance, there is also a plane of symme-
try bisecting the (j-R axis. The SCF's Pz from
(10.6) and (10.7) therefore have D„„symmetry!

If the formal SCF's are obtained from (10.6) or
(10.7) before the limit z-0' is taken, these SCF's
must in general be complex. In order that only
real SCF's occur, it is convenient to consider the
spectral decompositions (6. 11) of the Green's func-
tions in (10.6) and (10.7) just as in Secs. VII and
VIII. With some rearrangement (taking the limit
z-0'), these equations can be rewritten as

y, (r) =go(r)+pa(r), (10.10)

where fg and PR have the same general structure
as (Ie) & except for some constants, the appearance
of a different density of states, and the ~ depen-
dence. For E & 0 and cases in which classical mo-
tion is forbidden with the simple I r I

3 approxi-
mations in (10.10), the WEB wave functions in the
nonclassical region can be used to obtain the SCF
in this region. This leads to a SCF with a positive
potential fluctuation in this nonclassical region,
thereby making tunneling between the two wells
even less likely. The qualitative picture is clear
since the situation (10.10) resembles the case of
the hydrogen molecular ion. The —

I r I
~ poten-

tial is more singular at the origins (0 and R) than

where g~ and g, are the eigenfunctions correspond-
ing to the energies E&[P] and E, [@], respectively,
for the particular value of the random field P(r) of
D„„symmetry.

Considering the development in the preceding
sections, it is natural to invoke the semiclassical
approximations to the Green's functions in (10.6)
and (10.7), G"" (OR; z; [Q]), or, equivalently, the
states and energies {g~(r; [P]) and Ez[)]j in (10.8)
and (10.9) for arbitrary D„„symmetry fields P(r).
Unfortunately, however, the determination of such
semiclassical Green's functions, etc. , requires
the general analytic solution for classical motion
in a plane with an arbitrary potential with the two
equivalent spatial origins 5 and R. This is a re-
stricted form of the general classical three-body
problem. It is useful to recall that a general analyt-
ic solution is required because the SCF is un-
known; it is to be determined from a steepest-de-
scents evaluation of the f averaging involving a
functional differentiation. The latter operation re-
quires an explicit representation of G([$]).

Given the present difficulty of obtaining G([P]) in
this case, it is then permissible to consider crude
approximations f15~ to the SCF which enable some
qualitative conclusions to be drawn. Before pre-
senting the detailed mathematics, we discuss the
physical implications. For large R a zeroth-order
approximation to Q~ can be guessed to be the sum
of two attractive I r I

4 potentials $6 and P~ which
are centered about the points 0 and 5, respectively.
This result is, of course, correct in the limit H
-0. Thus, as is in fact demonstrated below,
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the Coulomb potential, and the former is of shorter
range in space than the latter. Even for long times
(t~ R ) an electron in a low-lying hydrogenic state
will not hop to a very distant proton (i.e. , for the
case of clamped nuclei and R- ~). For the —Irl
potential, this hopping can only be more difficult
for the low-lying levels than in the Coulomb prob-
lem. Q an electron on a proton were, say, photo-
ionized to a state with E&0, it could hop to another
proton which is fixed at a large distance R. Con-
sequently, the SCF P~ will lead to a nonzero mobil-
ity for E& 0. The behavior of the mobility near
E =0 will depend intimately upon the presence or
absence of positive potential fluctuations as E- 0.
If absent, the mobility edge might shift to a value
of E which is less than zero and vice versa. In any
event, the general qualitative conclusion from
(10.10) is that the mobility vanishes for the low-
lying states for E &0 and is nonzero when E is suf-
ficiently greater than zero. Hence a mobility edge
occurs near E=O in a region of nonzero density
of states. This inference of the presence of a
mobility edge therefore is based upon Mott's crite-
rion for a transition between localized and extended
states. Section VIII also demonstrates that E = 0
represents such a transition when the criterion is
represented in terms of the localization probability;
however, as was noted in Sec. VIII, because of the
long range of the states for E-0, potential fluc-
tuations involving two wells might slightly alter the
transition energy. Thus, the two formally equiva-
lent operational definitions for the mobility edge
are satisfied within the SCF approximation for the
present work.

Most of the above conclusions leading to the
structure of P2 in (10.10) and to the implications
arising from this structure can be obtained quite
generally directly from (10.8) and (10.9). Just
as in the analysis of @~ and P„ the general fea-
tures of P2 can be deduced directly from the mea-
sure associated with random fields p(r) which have
D„„symmetry about the focal points 0 and R.
Since this measure is

XM'[p]6p =st exp[- (2psr) ' f dry (r)]5/, (10.11)
the volume element dr for coordinate systems with
D~ symmetry implies that P(r) must approach
0 as either Irl or Ir-Rl- ~. Similarly, the
only place where infinite potential fluctuations may
occur are at the points 5 and R. Since infinite
positive potentials at 0 and R would lead to very
small amplitudes of the wave functions at these
points, the contributions from such fields P(r) to
(10.8) are very small. Again, the potentials P(r)
which approaches —~ as r -0 and as r- R make
the dominant contributions to (10.8). Hence the
SCF @s(r) must have deep potential wells which
are centered about 0 and R.

Given that P(r) with symmetric deep wells at 0
and R and P(r)-0 as I r I or I R —r I- ~ provide the
dominant contributions to (10.8), it then follows
that for large R, ImG(OR; E; [P]) vanishes for all
such p when E is in the vicinity of the low-lying
states: For R large and low-lying states the wave
functions are composed of two pieces which are
centered on the wells and which have negligible
overlap with each other. This implies that there
are pairs of g and u states g z and gz in this double
well (with energies E z and 8„,, respectively)
which become degenerate when R is large and the
states are sufficiently low lying. In this case, the
wave functions at R and 0 correspond to

ti, (o' [e])=4, (R [41)-4.(0'[4l)=-4. (R'[4])
(10.12a)

when

(10.12b)

For E in the neighborhood of a particular pair j= a
of degenerate states E, = E, the imaginarypart of
the Green's function becomes

——ImG(OR; R+ia , [P])"
"4,.(0' [Ilk,*.(R; [e]) «R —R,.[4])

+0 (0' [4])e*(R' [41)«R-R..[4])-=0,

(10.13)
where the equality follows directly from (10.12).
This vanishing of G for E low enough only ensues
because 0 and R correspond to particularly related
symmetry points of the random fields P(r) which
make the major contribution to (10.8) and which
have the D„„symmetry restriction. Equation
(10.13) implies that there cannot be any contribu-
tion to (10.8) and (10.9) when E+ &o is low lying,
i.e. , in the region of a finite densify of states.
As only small &o can contribute to (10.9) in the limit
R- ~, t- R, this provides a proof of the existence
of the mobility edge. For these deep traps for R
large where the degenerate states P„and |t)„,have
negligible overlap, the g and u states can be trans-
formed into another pair of degenerate levels with
the same energy which only have amplitude on one
of the wells. Thus, these left- and right-well ei-
genstates are

P„=(g„+g )/~2, g„=(g„—g )/v 2 (10.12c)

where g„ is nonzero only in the neighborhood of the
well centered at 0 and g„, is nonvanishing only near
the well at R. The picture (10.12c) of the low-lying
localized states is just the one used by Mott to
show that the conductivity due to localized states
vanishes as co inca when the frequency &-0.

For the lowest-lying states a wave function in
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5 f'd~{-,'m[r(r)j —P[r(r)])=0, (10.14)

where 5 represents variations of the path r(r) sub-
ject to the end-point constraints r(0) = r' and r(t)
= r and the fixed transit time t. By Hamilton's
principle the solutions r„(7 ) to (10.14) are the
classical trajectories from r' to r in time t. In
general, there are many such paths, and the serni-
classical approximation to (4. 9) must contain a
summation of contributions from each of these.
The paths in the neighborhood of the classical paths
are included in the usual fashion by retaining terms
up to quadratic in the difference r(T) —r„(7 ) when
Hamilton's principal function is expanded in a Tay-
lor series about the classical paths.

The semiclassical approximation to G(E; [P])
of (4. 12) is then obtained by Fourier transforma, —

tion. Consistent with the semiclassical limit, this
Fourier time integration is evaluated by the method
of stationary phase. (In cases where there is only
tunneling, the point of stationary phase corresponds
to a complex time. ~~) In this approximation the
well-known result is~5

one well initially has zero amplitude on any distant
wells at later times. Hence in the formal SCF
(5. 4) of Zittartz and Langer r and r' can be taken
to be close to each other for these deep states.
The SCF then reduces to a-potential with a single
well as they assumed. Lukes has assumed that the
result (10.10) can be used to consider electron con-
ductivity in disordered systems as it represents the
hopping of electrons between two Zittartz-Langer
potential wells. ' The explicit derivation of P~ be-
low, albeit crude, provides a justification for this
intuitive model. Equations (10.8) and (10.9) are
again to be approximated by the use of WKB wave
functions which are obtained as the residues of
G"" (OR; z; [P]) at the singularities. The deriva-
tion below is designed to indicate that these residues
can approximately be taken to have the structure
associated with potential wells centered on 0 and
R as in (10.10). The relationship between the path-
integral representation of G([P]) in (4. 9) and the
semiclassical approximation which we now briefly
review provides the impetus for this simple approx-
imation. '4-"

In the limit that 8 is small relative to typical
values of Hamilton's principal function in the ex-
ponent of (4. 9), neighboring paths r(~) will essen-
tially have random phases with respect to each
other. They will therefore all destructively inter-
fere, unless these paths are in the vicinity of the
path or paths which make the exponential in (4. 9)
stationary. These trajectories are therefore the
solutions to

= —(2wh )
classi cal paths

!
I 1/2 i&/& - &vr/2

t

(10.15)

where the classical action is

A(rr';E; [P])=$, p ~ dr= f dip(v) r(7),
(10.16)

the normalization is

N~ = det

BA
Br Br

BA
BZBr'

BA
Br BE (10.17)

and the quantity v is the number of unit reductions
of the rank of the determinant X~ along the classi-
cal trajectory. (For one-dimensional motion v is
the number of traversals through the classical
turning points. ) In general, there are an infinite
number of classical trajectories for a given r, r',
and E, and the contributions from these paths will
destructively interfere unless the actions for all of
these trajectories are somehow related; i.e. , they
all lie on some periodic (or multiply periodic) or-
bit. This then leads to the Bohr-Sommerfeld quan-
tization condition for many-dimensional nonsepara-
ble potentials. ~v For one-dimensional radial mo-
tion, application of (10.15)-(10.17) leads to the
results quoted in (6. 8) [cf. (6. 18) also].

In the case of (10.8) and (10.9), those periodic
orbits passing through 0 and R, for IRI large, are
required. These planar orbits for the present case
of D„„symmetry potentials with deep symmetrical
wells about 0 and R can easily be deduced from the
radial orbits which arise in the spherically sym-
metric case when R-0. Consider first the lowest-
lying states where classical motion from 0 to R
may be forbidden. The tunneling orbits required
must be those which lie on the 0-R axis, going
from 0 to R, R to R+a, R+a back to —a, and then
back to 0, etc. Because of thedeep wells surround-
ing 0 and R and the condition that the fields p(r)
contributing to (10.8) vanish as I r —Rl or Ir I

—~,
this orbit is the one with minimum potential barrier
in the classically forbidden region. Thus, our ap-
proximation is an adiabatic one in which we con-
sider the motion as being along the one-dimension-
al coordinate representing the most favorable path.
The semiclassical wave function is then the one-
dimensional wave function for this path multiplied
by a function of the coordinate orthogonal to the
path. The assumption is that the latter function is
rapidly decaying away from the most favorable
path, so its effect upon the SCF can be ignored;
only the motion aloag the most favorable path is
used to obtain the SCF. During the classical mo-
tion in either of the deep wells, the contribution to
the potential from the other well is negligible.
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Hence, the motion corresponds to bounded radial
motion in a spherically symmetric potential on the
given well. During tunneling, in the region sur-
rounding —,'R, the dependence of the potential upon
both 0 and R becomes of prime importaace, and
consequently, we are unable to deduce the precise
shape of potential in the important "bar of the
dumbbell. " In summary, in the region near 0, the
unnormalized wave function is of the form (apart
from the Langer correction for radial wave func-
tions which must eventually be included)

[po(r)] "'cos[J P5(r') «'/h ,' v]-, - (10.18)

where

(10.19)

and Qo(r) is the spherical part of the random field
P which is centered about 0. The function (10.18)
connects with the exponentially decaying function

Ipo(r)1
' exp[- f"

I p (ro')I dt'/h] (10.20)

[P r7(r)] ~ cos[f p~(r')dr'/h —,'v]—(10.aS)

inside the well around R.
The evaluation of the SCF now proceeds just as

in Secs. VII and VIII. The steepest-descents eval-
uation of (10.8) is performed with a particular j
and k andwith ~ small. The wavefunction
g, (A; [@]), A=-0, R (with the Langer correction),
is proportional to

IE, [@11 (7o+&5+ &a+&S) (10.24)

where TA is the period for the radial classical mo-
tion in the well about A [cf. (7. 14)], Ng is the con-
tribution from the nonclassical region [cf. (8.7)
and (8.8)] near the well on A, and the small con-
tribution from the region about —,'R is ignored. The
energies E, [p] can be taken as approximately those
for a single well —the presence of the second well
could be treated by perturbation theory. After us-
ing the q form for the two dirac 5 functions in
(10.8), these 5 functions are shown to be slowly
varying in the region of the saddle point f& just as

for x just inside the nonclassical region beyond the
turning point rp zR» ~p ~ 0. The wave function
(10.20) eventually joins up with the function which
exponentially increases (as r increa, ses) as we
approach the turning point ~~, A&r&» 2A, i.e. ,

1~(r)1 exp[- f I p a(r')
I dr'/h]], (10.21)

where

(10.22)

and @„-is that spherical symmetric part of (II) which
is centered about R. Lastly, (10.22) connects with

in the case of (7.6)-(7.9) and (8.4)-(8. 5). This
slow variation arises because (10.8) is only needed
for q and co small, and hence

P P
h —l(E, [@o]+E~[@o])' ~ -E, [&o]+E.[&ol

(10.25)

Thus the 5 functions in (10.8) can again be removed
from the ft) averaging and are evaluated at @z. The
remaining saddle-point determination proceeds
identically as in Secs. VII and VIII leadinI, to pg
and P„- being —

I r I

' wells centered at 0 and R,
respectively, with positive potential fluctuations
in the nonclassical region. (Because of the neglig-
ible overlap between low-lying functions on either
well, we can safely take P~ and Pg - 0 at —,'R as the
first approximation. ) Although the above deriva-
tion only considers the wave function along the 0-
R axis, clearly the form of the wave function is
known throughout all of space, thereby leading to a
more complete derivation of the $3 quoted above.

As 8 increases and the parts of the wave func-
tions centered on the wells at 0 and R begin to
overlap for those dominant contributing random
fields P(r), the above arguments still lead to
—Ir l wells about 0 and R, with greater uncer-
tainty about the region around —,'R. When the over-
lap begins to grow large, Pp and P~ are still pri-
marily —Ir I wells, but they are increasingly
perturbed by the presence of the other well. This
perturbation arises mainly from the dependence of
the energies E„[P]on both wells in the overlap re-
gion; the basic structure of (10.24) is retained ex-
cept that Ng and NR cannot be separated but must
be combined into a single N~.

The next range of energies to be considered are
those for which classical motion from 5 to R is no
longer forbidden. In this case there are a number
of types of classical periodic orbits which contri-
bute to the semiclassical Green's function (10.15)-
(10.17). For instance, let the points Ro and %o be
those which are common to the plane bisecting the
Q —R axis and either the turning point surface or
the wall which is included to provide box normaliza-
tion. There is then a periodic orbit where the~ar-
ticle travels from~ 5 to Ro, then R, to R, R to R „
and finally from R, back to R. In this case the or-
bit does not intersect the 0 —R axis at points other
than 0 and R. Clearly there are also periodic or-
bits which intersect this axis at other points an ar-
bitrary number of times, the simplest being of the
form of a figure eight with the orbit intersecting it-
self at oR (by symmetry).

In the simplest case, when R and Rp are large,
the motion from 5 to Ro can be approximated as
purely radial motion in the spherically symmetric
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well /II(r), etc. , for motion near R. In order to
determine the dependence of the over-all normal-
ization (10.17) on the number of full traversals of
the periodic orbit, it would be necessary to con-
sider the stability of the orbit, a task complicated
by the general nature of Q(r). Our adiabatic hy-
pothesis in part corresponds to ignoring the depen-
dence of this normalization on the number of full
traversals. With this assumption, the phases from
all the classical paths (say, for the case that the
orbits do not intersect the 5-R axis other than at
0 and R) can be summed to yield

G"" (0R; z; [+])= —(2z+) '/&z(0Ri zi [@])I'"
xz'"~"(I -e")-', (10.26)

where

me= 2 f 'dr(2m[z —yn(r)]}'"

+ 2f dr(2m[z —Pit(r)]} ~ —vh. (10 27)
Rp

The poles of (10.15) lead to the quantization condi-
tion h 6) = 2', n =1, 2, . .. , for standing waves in the
box-normalized states or some of the high-lying
bound states [cf. (6.4)-(6.6)]. Introducing the
Langer correction for the radial motion, the spec-
tral representation is then written as

Gwza( $R. . [4 ] )

I Ey[$] I My( 0 R; Eg[Q]; [@])
~ ( -E![4])(T5(El[I];[4])+Tif(Egal! [4])}'

(10.28)
where, for instance,

Tit(z) = f dr((2/m) [ z —pit(r) ]} (10.29)

is that part of the period which is spent in the well
at K. The term M& contains the dependence of G on
motions perpendicular to the most favorable path,
and this dependence is ignored in the saddle-point
evaluation of fIJ) averaging. This steepest-descents
calculation proceeds just as in the analyses of fp
and Q& leading to a Pz(r ) with the structure given
in (10.10) and —

I r I
~~ wells centered at 0 and R.

A general solution to the present problem would,
of course, be of interest, but given the inherent
mathematical complexities, the crude approach
taken here is sufficient to exhibit the general struc-
ture (10.10). In fact, given this result, it will be
instructive to consider simple model potentials
which exhibit the general structure of Qz, but which
are even simpler to handle mathematically. One
such model involves the "dumbbell potential" which
is made up of three parallelepiped sections, where
allowance is made for the differences in potential
between the bar and the two ends. Similarly, the

sizes of the three wells are kept arbitrary and are
then determined "variationally" as in the case of
Edward's simple van der Waals-type model. This
variation in size, therefore, includes the possibil-
ity that the dumbbell degenerates down to a simple
parallelepiped with the symmetry points 0 and R.

XI. CONCLUSIONS

The model of an electron in the presence of dense
weak random scatterers, or equivalently an elec-
tron in a Gaussian random potential, is used in an
attempt to elucidate the general features of the
electronic structure of disordered systems. The
model leads to a mathematical description of the
ensemble-averaged one-electron properties which
is analogous to that for the general many-body
problem. Thus, a solution is sought within the
framework of a self-consistent-field (SCF) formula-
tion. Because the existence of localized states in
the translationally inVariant ensemble-averaged
system represents a breaking of symmetry, it is
important to indicate how the use of a SCF approxi-
mation naturally introduces this symmetry break-
ing. The resulting symmetry of the SCF is also an
important aspect of the approach.

In order that only real SCF's need be considered,
separate SCF's are to be determined for the real
and imaginary parts of averaged properties. This
is an essential simplification over the occurrence
of complex SCF's when this separation is not per-
formed.

The Green's functions for electron motion in the
Gaussian random potential are approximated using
semiclassical techniques. The transition between
localized and extended states is found to occur at
E= 0, the average energy. The probability density
that an electron return to its initial position 5 after
an infinite time, Po(E), varies as (-E) ~~ below the
mobility edge and is zero above it. The SCF ob-
tained for p, (E) is a spherically symmetric
—I Rl energy-dependent potential well. The lo-
calization range, the classical turning point from
the SCF, is found to vary as (-E) z '. Outside of
the classically allowed region, the SCF becomes
positive and then decays as e ""/Rz as R- ~, there-
by reinforcing the association of the turning point
with the size of the localized states. Another
slightly different measure comes from equating the
localization volume with the ratio of no(E)/po(E).
This leads to a localization radius which varies as
( E)-5/9

Note added in Proof. R. M. White and P. W.
Anderson [Phil. Mag. 25, 737 (1972)] have shown
that the large size of the localized states near the
mobility edge contributes to the enhancement of the
diamagnetic susceptibility of amorphous semiconduc-
tors (e.g. , AszSz and AszSez) relative to the corre-
sponding crystals.
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It is important to note that the SCF's determined
for no(E), the density of states at the original (and
final) position, and po(E) are identical except for
some inconsequential factors of 2. Since the for-
mer is related to the average Green's function, while
the latter is obtained from the average of the prod-
uct of two Green's functions (Qg), there remains
the possibility that the position of the mobility edge
can generally be inferred from the average Green's
function alone, whereas a rigorous determination
requires a consideration of (9Q).

In order to directly calculate the electron mobili-
ty in the disordered system, the simplest quantity
to consider is Ipo„(E, t), the ensemble-averaged
probability that an average electron with energy E
at 5 will be at R at time t, in the long-time large-
distance limit of diffusive or nearly diffusive mo-
tion. The SCF for this property has D„„symme-
try, the same symmetry as the nuclear field in the
hydrogen molecular ion, thereby complicating the
determination of the semiclassical Green's function
for motion in such an arbitrary nonseparable poten-
tial. However, it is generally demonstrated that
the SCF must have deep symmetrical wells which
are centered at 5 and R, and these wells are shown
to have the same —

l r I
' ' energy-dependent behav-

ior as is found for the SCF's for no(E) and po(E)
This —l rl ' ' dependence arises because the aver-
age electron, when in the neighborhood of one of the
wells, has its motion determined by the nature of
the singularity of the potential at that well. Be-
cause of the mathematical complexities inherent in
potentials of D „symmetry, it has not been possi-
ble to determine generally the nature of the SCF in
the important region between the wells —near &R.
However, for the lowest-lying levels the general
features of the SCF in this midregion are deduced,

and the results are used to show that the conductiv-
ity due to electrons in these low-lying states van-
ishes. The resultant SCF for Pop(E f) provides a
justification for the model used by Mott to show
that the conductivity due to localized states vanish-
es as ur~ln~ as the frequency cu- 0. It likewise
yields the ad hoc model of Lukes which describes
hopping between two Halperin-Lax-Zittartz-Langer-
type deep wells. Similarly, it provides another
justification for Halperin and Lax's and Zittartz
and Langer's use of spherically symmetric SCF's
and their neglect of distant wells in discussing the
lowest-lying levels.

In the case of no(E) and po(E) the contributions
from the fluctuations about the SCF that preserve
the symmetry of the SCF are maintained. Those
potential fluctuations with other symmetries could
be included by perturbation theory using the tech-
niques of Zittartz and Langer. In considering
P»(E, t), it is probably more instructive to per-
form model calculations with simpler random po-
tentials, say of a form which represents a natural
generalization of Edward's van der Waals model,
than to explicitly consider the fluctuations about
the SCF.
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It is customary in the model-potential theory of simple metals to solve the Schrodinger
equation for the conduction electrons by perturbation theory and to retain only terms to second
order in the lattice structure factor. This method of solution leads to a simple expression for
the total energy of a metal. Two values of the bulk modulus of the metal may be deduced from
this expression: one (BD) by direct differentation with respect to volume and the other (Bz~)
by an application of the r.method of long waves. These two approximations to the bulk modulus
are not equal in a second-order theory. However, equality may be obtained, for local elec-
tron-ion potentials, if certain terms of third and fourth order are retained in the perturbation
solution of the Schrodinger equation. The magnitude of these terms has been estimated for
several potentials and metals and has often been found to be large. Results are also extremely
sensitive to the potential used. In this paper, it is argued that the variation among existing
results implies that the full nonlocality and energy dependence of the electron-ion potential
must be retained if reliable estimates of (BD -Bz~) are to be made. Consistent and complete
expressions for the total energy of a metal in terms of an optimized form of the Heine-Abaren-
kov model potential are presented and it is shown that these expressions give an adequate
account of the cohesive energies and lattice parameters of several simple metals. From the
expression for total energy, formulas for BD and BL are obtained which are qualitatively
different from those of a local approximation. The nonlocal and energy-dependent contribu-
tions are found to be numerically important in calculations of BD and Bz~ for three simple
metals. The expressions obtained imply small differences between BD and Bg~ for these
metals, when one of the parameters of the theory is suitably adjusted. This parameter, which
represents the spatial distribution of the depletion charge, is not obtainable within the
framework of conventional model-potential theory. Thus the calculations suggest that further
work is necessary before a complete statement about the influence of higher-order per-
turbation terms on (BD —Bzz) can be made.

I. INTRODUCTION

The majority of detailed calculations of proper-
ties of simple metals have involved the use of a
single-particle model Schrodinger equation to de-
scribe the conduction-electron energies. In this
equation, the true conduction-electron-ion poten-
tial is often replaced by an effective or model po-
tential. This replacement is justified, since the

effective potential is chosen to maintain, modulo
m, the correct scattering phase shifts for conduc-
tion electrons. In order to guarantee that this
latter condition is fulfilled, it is found that the
effective potential must be a function of both the
angular momentum and energy of the scattered
electrons.

Since the effective potential (including electron-
screening effects) is weak, the model Schrodinger


