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carbon in O.-iron was measured for temperatures
above 823 'K. This result contrasts sharply with
the lack of pressure dependence obtained by re-
laxation measurements at low temperatures.

(ii) Analysis of the data in accordance with the
empirical approach of Eq. (5) suggests a temper-
ature-dependent activation volume varying from
5 cmm/mole at 889 'K to 8 cm /mole at 1000 'K.

(iii) Analysis of the data in accordance with the
two-mechanism m(riel proposed in Ref. 4 suggests
a temperature-independent activation volume of 10
cm'/mote for high-temperature-diffusion mechanism.
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Theoretical calculations of the magnetic susceptibility of solid and liquid noble metals are
presented. The effective shape of the Fermi surface of solid metals is taken into account by
using the simple "eight-cone" model by Ziman. The interference function of liquid metals is
evaluated according to the procedure given by Ashcroft and Lekner. A model potential recent-
ly proposed by the authors allows completion of the calculations. We find that, when electron
correlations are taken into account, good agreement with the available experimental data gen-
erally results. The resulting estimates of the shift in susceptibility on melting are also con-
firmed by experiment.

I. INTRODUCTION

Recently tractable expressions for the magnetic
susceptibility of simple metals have been obtained
by many authors through the use of the pseudopoten-
tial formalism. ' ' We have shown in a preceding
payer the applicability of these expressions to
noble metals also, for which some reliable pseudo-
yotentials exist~ '; we have also carried out a sim-
ple calculation of the nonoscillatory diamagnetic
susceptibility of the noble metals Cu, Ag, and Au.

In this payer we present the results of a more
complete calculation of the nonoscillatory magnetic
susceptibility of solid and liquid metals Cu, Ag,
and Au. While for the liquid metals the calculation
does not offer any trouble once accurate pseudopo-
tentials and the liquid-structure factor are known,
for the solid metals some difficulties arise because
of the distorted Fermi surface. Actually, as is
well known, the Fermi surface of the solid noble
metals is so much distorted from a spherical shape
as to contact the (111)faces of the Brillouin zone. "
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Since it is not possible to treat the Fermi surface
as a sphere, a revision of the existing expressions
for the spin paramagnetisrn' and for the orbital
diamagnetism' of conduction electrons is needed.
On the other hand, this revision is made easier by
a simple model of the energy surfaces of the noble
metals, the "eight-cone" model, devised by Zi-
man' about eleven years ago. Many reliable re-
sults for the calculated transport properties of the
noble metals were given, in the past, by use of this
model. Using the "eight-cone" model, we have ob-
tained expressions for the magnetic susceptibilities
of the noble metals which are consistent with both
the known topological properties and the existing
theories.

The geometry of the "eight-cone" model is out-
lined in Sec. II. In Sec. III we derive suitable ex-
pressions and evaluate the spin and diamagnetic
susceptibility of the solid noble metals. In Sec.
IV an analogous calculation is carried out for the
liquid metals. The effect of electron correlations
is taken into account in Sec. V and a comparison
is made with the available experimental data.

II. "EIGHT-CONE" MODEL

g2
(k, +k, )+—f(k,),2m ' m

(2 1)

To start our calculation, we need to know an
analytical representation for the Fermi surfaces
of the solid noble metals. This is easily accom-
plished using Ziman's' phenomenological model,
the "eight-cone" model. This model is quite
simple; in fact, since we know that the Fermi sur-
faces of the noble metals keep far away from all
zone boundaries but the (111)planes, we can make
the shape of the energy surfaces depend on a single
parameter, which can be interpreted as the pseudo-
potential form factor, or one-half the g-p band gap
at L [the center of the nearest (111)zone face].
In this way the integral expressions over the Fermi
surface which enter in the calculation of the diamag-
netic and spin susceptibilities can be evaluated by
elementary methods. In order to make the calcu-
lation of Sec. DI clear we shall give here a brief
account of the "eight-cone" model.

The first Brillouin zone is supposed to be made
up of eight circular cones, pointing into the center
along the diagonals of a cube. Each cone subtends
the solid angle 4z/8, so that its vertex angle is
cos '(-,'). The axis of the cone is a vector p= —,'P,
where G is the vector of the reciprocal lattice cor-
responding to the nearest hexagonal (111)zone face.
The free Fermi surface would have a radius k~
= 0.902P-

Taking the local z axis in the p direction, the
expression for the one-electron energy E„-can be
easily shown to be

z = ,'(z +—y')+f(z),

f(z)=-,'+-,'(1 —z) —[u'+(1 —z) ]'i

Since on the cone

x +g =9z

(2. 3)

(2. 4)

(2. 8)

one finds that each energy surface cuts the side
surface of the cone at some ordinate z&, so that

z=$ z~+f(zi) . (2. 8)

This same energy surface will either cut the z axis
at some point z& given by

z =f(z2)

or meet the zone boundary at z&= 1.
III. SUSCEPTIBILITY OF SOLID METALS

(2 7)

We shall first derive an expression for the chem-
ical potential in the case of a single Bragg-reQec-
tion plane. We start from

N= (1/4z ) J d k F(E), (3.1)

where F(E) is the Fermi function, N is the number
of electrons per unit volume, N= (2m'())212/3zz|f 2,

and &0 is the free-electron chemical potential.
The volume (in units of p ) lying inside a fraction

of —,
' of the Fermi surface is the sum of the volume

of a right circular cone, of height z, and semiangle
cos '(-,'), i.e. , (7z/27)z„plus the volume

v J (x +y )dz=2z J [zz f(z)]dz, -(3.2)

where zz = g/(k p /m). The integral goes from z&

to 1, since the Fermi surface is known to contact
the (111)zone boundary.

Taking into account these results and the expres-
sion (2. 4) for f(z), E(l. (3.1) easily gives

r, = (, )"'(~ *l ~ (2r, —()(( —*,)

+(1 —zi) [(1—zi)'+u']"'- l(1 - z )2

(1 —z ) + [(1 —z ) +u2]1~2 2/2

Q

(3. 3)
where &0 is the free Fermi energy in dimensionless
units, z() = $2/(g p /m).

By the knowledge of the pseudopotential form

where

f(k, ) = —'P + —'(P —k,)' —[U'- +P'(P —k,)']
(2 2)

and Vd= k Un/m is the Fourier component of the
lattice pseudopotential. Introducing, as in Ziman's

paper, '2 dimensionless variables x=-k, /p, y =—k, /p,
z—= k, /p, z-=E2/(k p /~), and u= Un/p, formulas
(2. 1) and (2. 2) are more conveniently written as



NEARLY- FREE -E LE CT RON SUS CE PTIBILIT Y OF NOBLE METALS 4763

factor u it is possible, using Eqs. (2.6) and (3.3),
to calculate z& and &~ by a reiteration process or by
a graphical interpolation method. The diamagnetic
and spin susceptibilities are then evaluated in terms
of zg and fg.

For the spin susceptibility one simply has

ii
XP 2 z

Il

dz= 2 2(l —zl)psc K SPIC 7T
gg

X/ = Xp""(4P/kz) (1 —zg),

(3.6)

(3. V)

(3.4)

where p, z is the Bohr magneton and N(g) is the den-
sity of states in energy at the Fermi surface.

For the "eight-cone" model surface we have

(3. 6)

and Eq. (3.4) gives

where ~"' is the spin susceptibility of free elec-
trons. Now, to derive an expression for the dia-
magnetic susceptibility y~ suitable for solid noble
metals, we start from the general expression given
by Misra, Mohanty, and Roth, '~ which we simply
adapt to our case in order to take into account the
effective shape of the Fermi surface. Taking also
into account the cubic symmetry of the problem, we
obtain in our notations

z 3 z z g z F (E) 1 kp
$2 I 4 &a ($ —+ &&](y,) ]/ 8 8]t2[($ )2 ]I )

mu g F(E)
1 k],

(3 8)4pz ]

k
[(1 )2 z]z pz[(1 )2 + ]1/zz

where the local z axis is parallel to the axis of the
cone, E'(E) is the derivative of the Fermi function
E(E), and k, is the component of the k momentum
normal to the z axis.

The integrals are to be extended to each cone and
then multiplied by 8 to get the total contribution to
the diamagnetic susceptibility. Using cylindrical
coordinates and the fact that at zero temperature
E'(E) = —6{E—f), we have for the first term X, in
Eq. (3.8)

Integrating this expression over the Fermi surface,
we obtain

z {1-z, ) .
3w mc

As may be easily seen from Eqs. (2. 6) and (2. 7),
y, gives the Landau diamagnetism for free elec-
trons if one takes the correct limit 1 —zg za zg
=kz/4p for a spherical Fermi surface. On the
same basis it is a matter of algebraical derivation
to obtain the correct result for the second and third
terms in Eq. (3.8). We will limit ourselves to re-
porting the final result,

1 (1 —z, )'
3 4 [(1 )2 2]$/2 (zF 2 + 2u )

and H is a very complicated expression which re-
sults from integrating the third term into the cone
for z varying from zero to z&. For this reason we
will report here only the terms of H which give a
significant contribution to ~,

1 1 +u i 1 , 1 —zi zf —zz(1 + u )
2u' i u u u +(1 —z, )'+u'

1+(1+u')'"
18 1

(1 ) ~ [(1 )2 g]t/2

As we have succeeded in obtaining the contribution
to susceptibility from the nearest (111)G vectors,
it would be very simple to take into account, by
means of a nondegenerate calculation, the contribu-
tion given by the more distant reciprocal-lattice
vectors. However, as they usually contribute about
1% of the total value, ' we neglect them with a

TABLE I. Susceptibility corrections for solid metals.

(4P/kz)(1 —zg —u I+gg u H), (3.11)

where g~' is the nonoscillatory diamagnetic sus-
ceptibility of free electrons

Q b~

Cu 0.20 —0. 70 0. 57 0. 142
Ag 0. 168 —0. 89 0. 54 0. 14
Au 0. 188 —0. 79 0.56 0. 15

—0. 96 0.50
—1.03 0. 51
-0.95 0. 52

From de Haas —van Alphen measurements (see Ref. 12).
From optical measurements (see Refs. 14 and 15).
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TABLE II. Parameters which enter in Eq. (4. 5). TABLE III. Susceptibility corrections for liquid metals.

Cu
Ag
Au

1.815
2. 38
2. 60

0.50
0.68
0.50

1.90
2. 95
2. 66

Cu
Ag
Au

—0.26
—0.36
—0.39

0.29
0.35
0.40

very small error.
To emphasize the deviations from the free-elec-

tron values we write

~free (1 y g ) y
~fice (I + n )

We have calculated 4p and 41. for solid noble metals
using for u both the values deduced from de Haas-
van Alphen experiments, as reported in Ziman, '
and the values deduced from the optical measure-
ments of the band gap at g. '4'"

As may be seen in Table I, the results are nearly
similar for the two sets of experimental u values,
both giving almost a vanishing diamagnetic suscep-
tibility for the conduction electrons.

IV. SUSCEPTIBILITY OF LIQUID METALS

The expressions for spin and diamagnetic suscep-
tibility of liquid metals have been recently calcu-
lated in the pseudopotential formalism by Timbie
and White. ' However, these expressions can be

also briefly derived from the analog expressions
for solid metals' by going to the correct continu-
um limit for the reciprocal-lattice sums go- (0/
Sv') J d'q i S(q) I ~, where II is the volume and S(q) is
the liquid-structure factor. If we write y~ = y~"'
x (1+ n~), we obtain from Abe's expression~

3 ~„dkI(k)v (k) Gz, (k),
32/0

(4. 1)

G, (k) = 2k I (4. 2)

Here k=qjkr, I(k) =IGNIS(k) I is the interference
function for the liquid, and v(k) is the pseudopoten-
tial form factor.

In an analogous way we write y~=y'I'" (I+6~) for
the diamagnetic susceptibility and obtain from the
Misra and Roth expression' in the nondegenerate
case

O. 3

O. 2

0. 1

0 -0. &I-
U

L,

& -0.2
R
0
lL

—0.4

FIG. 1. Pseudopotential form factor for copper at liquid density.
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FIG. 2. Pseudopotential form factor for silver at liquid density.

dkI(k) v (k) Gz, (k) s32/0 (4. 3)

2 2 k+2 8 24 —22k +3k
k k —2 3 (k -4)~

(4. 4)

4m@ A
v(q) = —

z cos(qrz) + —[sin(qr2) —sin(qr, }Qoe(q) q q

—qr, cos(qra) + qr, cos (qr, ) j

Once these expressions have been obtained, the
basic requisite for investigating the magnetic prop-
erties of liquid noble metals is the knowledge of
suitable interference functions and pseudopotential
form factors.

The interference functions we use are calculated
by means of the Percus Yevick theory, according
to the procedure outlined in Ashcroft and Lekner. "

The packing density is 0.45 for Ag and Au and
0.456 for Cu. The pseudopotential form factors are
taken from a semiempirical model potential recent-
ly proposed by the present authors,

tree dielectric function. The values of the param-
eters r&, r&, A, and Vo appropriate to the liquid
noble metals are reported on Table II in atomic
units. As may be seen in Figs. 1-3, these form
factors converge properly for q» k~.

The results of the calculation are given in Table
IIL The integrals which appear in E(ls. (4. I) and
(4. 3) are evaluated first by integrating numerically
on each side of k = 2 and then calculating analytically
the contribution of the divergences at k = 2 as prin-
cipal value. '

V. COMPARISON WITH EXPERIMENT AND
DISCUSSION

Before comparing calculated susceptibilities with
experiment we must give a brief account of the ef-
fect of the exchange and correlation of the electrons.
Unfortunately, in the case of the diamagnetic sus-
ceptibility, the effect of the exchange and correla-
tion is not well understood at metallic densities. ' '
TABLE IV. Correlation corrections for noble metals.

~ex+cor

[s' (q, }—qrs(qr, }]), (4, . S}
~V

q

where Qo is the volume per ion and e(q) is the Har-

Cu
Ag
Au

2. 67
3.01
3.00

—0.21
—0.22
—0.22



4766 E. BORCHI AND S. DE GENNARO
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FIG. 3. Pseudopotential form factor for gold at liquid density.

However, a recent calculation by Isihara and Tsai, '
who evaluate the exchange and correlation contribu-
tion to X~ to second order in the interparticle spac-
ing ~„would give very small corrections at den-
sities of interest here (r, =3). For these reasons
we do not take into. account any correlation correc-
tion to X~ and will limit ourselves to consider the
corrections to X„only.

Including the exchange and correlation effects,
the spin susceptibility becomes

-1
free

XP XP + ~ez+cor j. + bp

work and we have replaced mlm* in Silverstein's
expression by (1+b~) ', the free-electron-to-band-
mass ratio. Correlation corrections to XP are re-
ported in Table IV for the solid noble metals. At
liquid densities the values of 5„„arepractically
unchanged. In Table V our theoretical values for
the total electronic susceptibility X~ are listed and
compared with the available experimental data. '

Since no direct experimental measurements of
either the diamagnetic or the spin susceptibility of
noble metals are available, the experimental values
of X~ have been obtained in an indirect way from the
relation

where 5„„canbe estimated from Silverstein's XE —Xr X~ ~

TABLE V. Electronic susceptibility of solid and liquid noble metals (10+emu/g).

Free
Liquid Xz
Calc. Expt. Free

Solid Xz
Cale." Expt.

X liq X eo ~

Calc. b Expt.

Cu

Ag
Au

0. 070
0. 052
0. 029

0. 160
0. 134
0. 078

0. 10
0. 09
0. 07

0.072
0. 055
0.030

0.243
0.188
0. 103

0.236
0. 186
0.101

0.22
0.21
0. 16

—0. 083
—0. 054
—0. 025

—0. 076
—0. 052
—0. 023

—0. 12
—0. 10
—0. 07

The experimental values of Xz in the liquid and of X1,q
-g~& are taken from Ref. 21; the experimental values of
X@ in the solid have been obtained from Ref. 22.

The first column refers to the g value deduced from

de Haas-van Alphen experiments (see Ref. 12), the sec-
ond to the g value from optical measurements (see Refs.
14 and 15).



NEARLY-FREE-ELECTRON SUSCEPTIBILITY OF NOBLE METALS 4767

where y~ is the measured total magnetic suscepti-
bility and X, is the susceptibility of the ion cores.

In spite of the general good agreement between
experiment and theory, we wish to point out that
same caution must be adopted in examining the ex-
perimental values of y~. Indeed, as pointed out by
Cusack, ' the uncertainty here is rather large, par-
ticularly in subtracting y, .

However, it might be argued that whatever y, is,
it should not be affected very much by melting, and

that therefore the change in the susceptibility at the
melting point is a better experimental test of the
theory than its magnitude. For this reason the
shift in the electronic susceptibility at the melting
point &p= p, fq pgpg is also given in Table V and
compared with the experimental value.

The theory predicts the correct sign for the shift
and gives a fair account of its magnitude. It should
be emphasized again that the error in the experi-
mental values is quite large.
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N. T. Panousis~ and K. A. Gschneidner, Jr.
Institute for Atomic Research and Department of Metallurgy,

Iowa State University, Ames, Iowa 50010
(Received 5 August 1971)

The low-temperature heat capacity of a nearly pure P-cerium sample (91%P-9%&) and six P-
stabilized Ce-Y alloys were determined between 2. 5 and 20 K. Three principal results were
obtained. (i) All six alloys showed magnetic ordering characteristic of P-cerium; the order-
ing temperatures decreased linearly with yttrium concentration. (ii) The magnetic contribu-
tion to the heat capacity of p-cerium was found to depend on the cube of the temperature

inagreem-
entt with spin-wave theory for an antiferromagnetic material. (iii) The entropy associated
with magnetic ordering was found to be R ln2, and is consistent with a crystal field splitting of
the J= 2 multiplet into three doublets by the hexagonal lattice.

I. INTRODUCTION

This is the second in a series of papers con-
cerning the physical properties of the low-tempera-
ture allotropes of metallic cerium. The first
paper~ was concerned with the low-temperature
heat capacity measurement of pure, single-phase
e.-cerium (collapsed fcc, a = 4. 85 A) made at
standard pressures. The purpose of this work

was to study the P allotrope of metallic cerium
(dhcp, a= 3.68 A, c= 11.92 A).

Magnetic-susceptibility~'3 and neutron-diff raction
experiments have established that P-cerium under-
goes an antiferromagnetic transition at 12. 5 K.
Crystal field effects in p-cerium' based on heat-
capacity measurements 6'~ have been considered,
and an article by Qschneidner and Smoluchowski'
discussed, among other topics, the electronic


