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We have performed a self-consistent calculation of the potential in the accumulation layer
at the surface of a degenerate semiconductor and of the bound-state energies which that poten-
tial supports in the presence of a perpendicular electric field of appropriate sign and strength.
The calculation is carried out in the Hartree approximation appropriate to the small r, values
found in moderately doped, narrow-band-gap materials, using a parametric scheme which
enormously simplifies the calculation. This makes it feasible to study the effect of a quantizing
magnetic field on the self-consistent potential and the bound-state energies. Bound states and
mobile states are determined from the same Schrodinger equation. We derive and make ex-
tensive use of a one-dimensional Friedel sum rule, and show that there is a sudden rearrange-
ment of mobile charge which compensates for what would otherwise be a discontinuous charge
alteration when the number of bound states changes in response to changes in the external fields.
Simple models are presented which reproduce the results of the self-consistent calculation and
which are useful in interpreting the meaning of the detailed numerical results. Magneto-oscil-
lations of the potential caused by a perpendicular magnetic field are studied in detail. The
observable magneto-oscillations in the potentia1. here arise from Landau-level quantization of
the bound states only. We compare the results with earlier calculations in which the mobile
states were treated using linear-response theory and we find that the role played by the Landau-
level quantization of the mobile electron states is, in this nonlinear treatment, quite unimpor-
tant, supporting the conclusion which we drew from the linear surface-screening approximation
of our earlier work.

I ~ INTRODUCTION

In this paper, as in the earlier ones in this
series, ' we study the self-consistent potential
which exists near the surface of a degenerate
semiconductor. Three broad questions present
themselves. First, what is the shape of this po-
tential in the absence of any external fields, and
how does that shape depend on the doping of the
semiconductor? Second, what is the effect of ap-
plying an electric field normal to the surface of
the semiconductor? Third, how does a magnetic
field applied normal to the surface affect the
screening just described?

This program of investigation is closely related
to the one which we carried out in Ref. 1(a), and
indeed, the physical model is identical with the
one we used there. In this model, the conduction-
band electrons are the entities which rearrange
themselves to provide the screening and they are
treated within the simplest effective-mass for-
malism. Recall, however, that in that earlier
treatment we made the approximation of treating
the mobile electrons (conduction electrons which
are not bound in the self-consistent potential well
near the surface) via linear-response theory. In

retrospect, that earlier effort was productive in
that it provided some insight into the role played
by the magnetic field in altering the screening.
The insight was valid primarily because in the

cases we studied most of the screening was pro-
vided by bound electrons (conduction electrons
bound in the self-consistent potential well near the
surface) and these bound electrons were treated
exactly. Hence, we achieved a reasonable de-
scription of the potential well but we learned rath-
er little about the true role the mobile electrons
play in determining it. We undertake the present
investigation with the objective of trying to under-
stand the role of the mobile charge more fully.

In order to achieve this objective, it is neces-
sary for us to treat the bound charge and the
mobile charge on an exactly equivalent footing,
which means a fully nonlinear treatment for both.
This allows us to handle both strong and weak
electric fields, i.e., to study in detail the depar-
tures from any of the linear screening theories.
This we will do. One of the surprises we en-
counter here is that there is virtually no attractive
electric field which gives rise to a weak potential.
Even at zero electric field, it will turn out that at
small values of x, (the interelectronic spacing ex-
pressed in units of the effective Bohr radius) the
self-consistent potential is of such depth and range
as to support a weakly bound state. Hence, the
zero-field wave functions are severely distorted
from the sine waves on which linear screening the-
ories are based. A second surprise is that in spite
of the severe distortion of the mobile-state wave
functions and the existence of a bound state which the
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linearized theory ignores, i. e., in spite of its total-
ly erroneous conception of the "eroth-order situa-
tion, the linear theory does provide a reasonably
good accounting of the low electric field situation.
Yet a third surprise is that it is possible to devise
crude and easily manageable models which seem to
provide insight into what is taking place. These
models may ultimately prove to be the most useful
feature of what we have done, in that the concepts
they suggest may prove to be more generally appli-
cable.

There is clearly much material to be covered
here, and the paper, unfortunately, is a long one.
Before going on to describe the contents of the re-
maining sections, it is perhaps in order to say a
few words about how this calculation was per-
formed. In brief, we are carrying out a Hartree
self-consistent field calculation, but instead of
striving for full self-consistency (which would be
prohibitively costly for the number of cases we

want to explore), we settle for a parametrized
self-consistency. That is, instead of using the
potential obtained from Poisson's equation for the

input to Schrodinger's equation, we use a param-
etrized form which approximates the potential and

solve for its eigenfunctions and eigenvalues. From
these eigenfunctions a charge density is constructed
and used in Poisson's equation to produce an iter-
ated potential which is again approximated by the
parametric form. The parameters of this form
must be adjusted so that the new parameters and

the old parameters agree. This condition expresses
such self-consistency as can be achieved from a
scheme in which the form of the potential is speci-
fied beforehand. '

This sort of procedure could be used with virtual-
ly any parametric form for the potential. The
special form we choose has the advantage that its
eigenfunctions are sums of exponentials. From
this, it follows that all the spatial integrals which

go into calculating the potential can be carried out
in closed form, so that the only integrals we evalu-
ate numerically are one-dimensional integrals over
the continuum of mobile states. It is this feature
which simplifies the problem enough to make it
feasible to vary the electric field, add magnetic
field, and study the concentration dependence.

Having described the program, we outline briefly
the content of the following sections of this paper.
In Sec. II, we present the model, describing why

a Hartree calculation should be valid for the nar-
row-band-gap semiconductors to which this investi-
gation is intended to apply. In Sec. III, we derive
the Friedel-like sum rule which plays a central
role in our analysis. Section IV describes the run-
ning-wave (rather than the standing-wave) form for
the mobile states. In Sec. V, we present the para-
metric method used for carrying out the calcula-

tion, exhibit the extent of seU-consistency which
this method achieves, and derive the working for-
mulas which are needed. In Sec. IV, wg show that
the result of the Kohn-Majumdar theorem, name-
ly, the continuity of the properties of a fermion
system in an external potential as the number of
bound state changes, also applies to our self-con-
sistent calculation. The importance of this theorem
is that it probably provides part of the underlying
reason for the success of the crude models men-
tioned above. Section VII contains the results and
discussion of our numerical calculations. The
crude models form a part of that discussion. We
conclude by comparing the results obtained in Ref.
l(a) with those obtained here.

II. MODEL

We start by considering a uniformly doped, de-
generate n-type semiconductor. The undoped crys-
tal (ion cores plus filled valence bands) is to be
regarded as a passive, neutral medium whose only
electrical effect is to provide a background dielec-
tric constant &. We ignore true surface states here
(states induced by the truncation of the crystal po-
tential), or, alternatively, we lump any charge
they may contain with that giving rise to the ex-
ternal field.

Suppose that there is a uniform electric field E
outside the crystal and normal to its surface. It
will be reduced in strength to E/& inside the crys-
tal. When we specify boundary conditions on the
potential, we shall mean that it is the interior field
which is fixed, and that the field outside the crystal
is larger by a factor e than that used in the boundary
condition.

The dynamic system we are interested in, then,
is the sea of degenerate conduction electrons which
are free to move under the influence of various
forces, and the fixed, uniform background of ionized
donors, which are not. The forces acting on a con-
duction electron are basically of two types. The
first is the electrostatic force arising from the
charge density of other conduction electrons, the
uniform background of ionized donors, and the ex-
ternally imposed uniform fields. The second type
is the exchange and correlation force. This latter
may be regarded as arising from two sources. One
is exchange and correlation with other conduction
electrons. The strength of this force, relative to
the electrostatic force, depends on g,. Although

x, is generally large for a low density of electrons,
the combination of small effective mass and large
dielectric constant found in the narrow direct-gap
semiconductors leads to small values of z, at even
very small conduction-electron densities. It is to
these materials that we expect our work here to
apply. Typical values of z, might range from 0. 1
to 0. 5 (InAs with a conduction-electron Fermi en-
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ergy of 0. 4-0. 02 eV). Under these conditions, ex-
change and correlation forces between conduction
electrons themselves can be ignored relative to the
Coulomb forces between them.

Exchange and correlation forces also arise be-
tween a conduction electron and the valence elec-
trons. It is this which gives rise to the contact po-
tential, and here, typically, we have potentials
which change by 5 eV over distances of a few ang-
stroms. The appropriate energy unit for the prob-
lem is the Fermi energy of the conduction electrons
and the appropriate length unit is their inverse
Ferr. ii wave number. Gn these scales, the poten-
tial arising from exchange and correlation between
a conduction electron and all the valence electrons
can be well represented as an infinite potential step
at a=0, the surface of the semiconductor. We are
still left with the problem of determining the Cou-
lomb potential self-consistently, but we are spared
the nasty feature of calculating self-consistent ex-
change and correlation, a feature which enormously
complicates similar investigations in metals.

The system of equations which describe the model
is the following: Schrodinger's equation for the
states of the conduction electrons, a constitutive
equation giving the charge density in terms of the
occupied states and the uniform-background charge
density, and Poisson's equation giving the potential
in terms of the charge density.

We shall restrict our attention to the accumula-
tion-layer situation, and in Fig. 1 we have sketched
the potential energy an electron might experience
in this case. It is convenient to let the potential
be zero at large g, in the depths of the semicon-
ductor, so that its value at the surface, at g = 0+,
is negative. The Schrodinger equation for this sit-
uation is separable. The energy associated with
the electron's motion in the z direction may be
negative, in which case we speak of it as a bound
electron, or it may be positive, in which case we
speak of it as a mobile electron.

It is convenient to introduce a magnetic field in
the z direction at the outset and to use the appro-
priate states associated with it, since the transi-
tion to zero magnetic field is easy enough to ac-
.complish. Accordingly, the equations of our model
are those presented in Secs. IIA-IID.

A. Schrodinger's Equation for Bound States

iI.. .s(t)=(L,)
"' e"' q. (x-xo)X (z), (2. 2)

where L, is a normalization length in the y direc-
tion, y„(x)is the nth normalized harmonic-oscilla-
tor wave function

u2 d' mo)2 't

(2. 3a)
(2. 3b)J dx p„(x)q) (x) = t)„„,
(2. 3c)

(2. 3d)

The total energy of the state,

E„„„=(n+ —,') R(o, + e„, (2. 4)

(
A2 d2

+ &(&)) X (&)=& X (&)
2m dg

x„(o)=0,

x.( )=o.

(2. 5a)

(2. Sb)

(2. 5c)

B. Schrodinger's Equation for Mobile States

We take a quantization length L in the z direc-
tion, treating the states as though their eigenvalue
spectrum is discrete, and normalize the states in
this quantization volume. At the appropriate point
in the calculation, we let L become infinite. This
procedure might seem needlessly pedantic, but in
the course of this work we encountered questions
involving terms of order 1/L whose integrated ef-

VACUUM

SEMICOND UCTOR
&-TYPE

Ey

and the bound-state wave function x„(z)are deter-
mined by the one-dimensional Schrodinger equation

y(a=0)=O,

(2. la)

(2. lb)

MAGNETIC
FIELD

(2. 1c)t(z=")=0,
where A is the vector potential for a uniform mag-
netic field in the z direction, namely, A= (0, Hx, 0).
The states )have the form

FIG. 1. Schematic representation of the potential in
the neighborhood of an ~-type semiconductor-vacuum in-
terface in an electric field strong enough to support one
bound state at energy -E~. Dashed lines represent filled
states of positive energy.
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d , + X(x)) x,(x) = x, x,(x),
2m dz

(2. 6a)

(2. 6b)

feet could not be ignored, and this admittedly
pedestrian approach was the one which most satis-
factorily answered these questions for us.

The x and y dependence of the mobile states is
the same as for the bound states. The z-depen-
dent part of the states will be labeled by a sub-
script j, and is determined by the one-dimensional
Schrodinger equation

d U 4zp(z)
dz

Boundary conditions on the potential are

U(z= )=0,
—(d U/dz), 0= Ep .

(2. 9b)

(2. 10a)

(2. 10b)

Condition (2. 10a) serves to determine the zero level
of the potential, and Eq. (2. 10b) corresponds to a
given value of electric field at the surface of the
semiconductor. Note that a condition at infinity,
such as (2. 10a), also implies that

(2. 6c) (d U/dz), „=0. (2. 10c)

() &.0 .
C. Constitutive Equation for Charge Density

(2. 6ci) Hence, if we integrate (2. 9b) from z = 0 to z = ~, we
obtain

The charge density p(x) which appears in Pois-
son's equation is composed of three parts:

p(z)=-2eZZ Zf(p E)g*P-
k n m

+Z f ( x —&) X'"
X)

+ xx'o .

The first term here represents the bound states,
the second represents the mobile states, and the
third represents the uniform background. The
factor of 2 is the spin degeneracy and the function

f (p, —E) is the probability that the state of energy
E is occupied when the Fermi energy is p, . We

consider only the zero-temperature limit and

ignore lifetime broadening, so that f= 1 if p )E,
and f= 0 otherwise.

Returning to (2. 7), we replace the sum over k

by an integral using periodic boundary conditions
over the length L„

dk.Ly

k

Replacing the integration over k by an integration
over xo which is carried out by using (2. 3b), and

using expression (2. 4) for the energy, we obtain

p(z) =
2 @a k~, Z Z f [u —(~+ z) k(d. —& ]X'„(z)

7T n m

J, p(z) dz= —eEO/4v, (2. 11)

E~=h k~/2m,

a„=E„Eoz (bound-state energy),

c& = E& E z (mobile-state energy),

p, = EI„EI, (Fermi energy),

k&u, = E„E~ (magnetic energy),

V(z) = P(z) Eoz (potential energy),

z=zkz (unit of length) .

(2. 12a)

(2. 12b)

(2. 12c)

(2. 12cl)

(2. 12e)

(2. 12f )

(2. 12g)

Then, we express the charge density in terms of
the number density appropriate to this unit of
length:

p(z) = en(z) k'„—. (2. 12h)

The wave functions are also renormalized to be
compatible with the new unit of length:

a condition on the charge density which must be
imposed if boundary condition (2. 10) is to be main-
tained.

Before proceeding further, it is convenient to in-
troduce the dimensionless units which we shall
employ for most of what follows. All energies will
be expressed as multiples of E~, the Fermi energy
at zero magnetic field, and all lengths will be ex-
pressed as multiyles of k~', the inverse of the
Fermi wave number. That is, we have

+ 2
' f (g —(n+ —,') Kw, —x&] X&(x)) + e&~ . (2. 6) X(z) = X(z)k~" (2. 12i)

D. Poisson's Equation for Potential

(From this point on, we suppress the caret above
z and y. ) Schrodinger's equations (2. 6) and (2. 6)
now take the form

V(z) = —eU(z), (2. 9a)

We assume that the potential energy V(z) ap-
pearing in Schrodinger's equation is just the energy
of an electron in the electrostatic potential U(z).
The electrostatic potential satisfies Poisson's equa-
tion:

l(-„,.+ X (x ))x (*)= @ x (x),

X (0)=0

X (~)=0,

(2. 13a)

(2. 13b)

(2. 13c)
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J, X'„(z) dz = 1

da
* ~ ( (*))x,(*)= &,x,(*),

dg

x,(o) = o,
x,(L) =0,

J, X',(z) dz = 1 .

The constitutive equation (2. 8) becomes

(2. 13d)

(2. i4a)

(2. 14b)

(2. 14c)

(2. 14(i)

(3. ia)

and that

8E)=k~ . (3. lb)

In order to satisfy boundary condition (2. 14c),
we shall have

follow are implicitly or explicitly in the standard
literature on the Friedel sum rule. We have not,
however, encountered a fully satisfactory deriva-
tion in the literature of the results we need.

At large values of z where (t)(z) is negligible,
Eq. (2. 14) for the mobile charge states tells us
that X&(z) has the form

X&(z) = C(k&) sin[k& z+ q(k, )]

.( )=," 2 Zf[E, -("-.')E.-E.]x'.(.)
n fn

k L+ q(k ) = (M+ j) w, (3 2)

+Qf(E, —(n+ —,')Z„-E,]l',(z)) —m, . (2. 15)

Poisson's equation (2. 9) becomes

=en(z),d'(f) (z)
dg

(2. ie)

where

K= shame'/eh'k~ = 87(nr, ,

u = (4/9z) i ' = 0. 52 .

(2. I%a)

(2. IIb)

The boundary conditions and constraint on the
charge density become

y(z= ~)=0,

("„)=x(),

(2. 18a)

(2. 18b)

J, n(z) dz = q . (2. 18c)

The symbol "infinity" used in (2. 18) means "as
deep in the medium as we care to go, keeping in
mind that the medium has a thickness I., estab-
lished for quantization purposes, that is still lon-
ger. " We shall always interpret an expression like
(2. 18c) to mean (

&k L+ dq/dk
~j w

(3. 4)

where M is some integer which we hold fixed. The
quantity C(k&) is a normalization constant, and is
ultimately determined by (2. 14d).

From (3. 2) we see that successive values of k&

differ by order 1/L, so that as L becomes large,
k can be treated as a continuous variable and the
wave functions can almost be treated as continuous
functions of jp. The "almost" proviso arises here
because the wave functions can be treated as con-
tinuous only if the argument k&z+q(k&) changes in-
finitesimally in going from one allowed value of k

to the next. This restricts us to values of z such
that z/L- 0. However, this restriction allows all
values of z which we will encounter in integrals
such as (2. 19).

With this proviso understood, we can make the
standard replacement for going from a sum to an
integral in the j summation in (2. 15):

( ) g („). ~ f(k )&k f(k)dk
~k/bj b.k/~ j

(3. 3)

where hk/hj is the change in allowed values of k&

in going from one value of j to the next. Because
g can be regarded as a continuous function of 4, we
can evaluate this quantity from (3.2), obtaining

Q= lim f n(z)dz .
R/L» p p',

(2. i9)
Hence the mobile-state contribution to (2. 15) is

n .„(z)= ", Q f[E,—(n+-,')E„-k']
n' p

III. ONE-DIMENSIONAL FRIEDEL SUM RULE

We now derive a Friedel-like sum rule for a
planar system in which bound states occur. The
problems here are not associated with the presence
of the bound states but rather with the one dimen-
sionality of the potential, which introduces terms
of order 1/L whose effect is negligible in the cor-
responding point-impurity situation. Parts of what

x I-+
~ y~zdk

Nfl

where

k„=EJ) —(n+ 2) E„

=l "s Z f (I.+~&&) X!(*).dl, (3. 5)

(3. 8)
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g, (z) = 2'~'sin[kz+g(k)] . (3.V)

Comparing the two asymptotic forms (3.V) and
(3. la) gives

and the sum goes over all values for which k~ & 0.
There is a useful relationship between the factor

L+ d g/dk and the normalization of the states which
niarkedly simplifies the evaluation of (3. 5). Re-
call first that y, (z) is normalized according to
(2. 14d). Let us consider another function, g~(z);
which is proportional to g~(z). That is, it satisfies
the same equation (2. 14a) and boundary conditions
(2. 14b) and (2. 14c) as does y~(z) but its normaliza-
tion is different, being set by the condition that at
large z, where the potential p(z) vanishes, $~(z)
takes the asymptotic form

f &', (z) dz= r. +

or, using (3. 9),

L + d q/dk = 2/C (k) . (3. 12)

(3. 13)

Inserting this into (3. 5) and using (3.8) gives

...,()=, ", Z
n 0

a result which has the advantage that neither the
factor L+ dq/dk nor the normalization of the states
y~ need be computed.

Now, consider the charge density (2. 15) at val-
ues of z large enough that the potential is negligi-
ble and that the bound states have decayed away.
We use the asymptotic form (3. V) and have

y„(z)=2' 'C(k) $,(z), (3. 8)

which, inserted into the normalization condition
(2. 14d), yields

—,
' C'(k) J, ~', (z) dz =1.

The integral here can be evaluated using a minor
variant of the mathematics which is usually em-
ployed in deriving the sum rule. We write

(3. 9)

J, („'(z)dz = J, („'()zd +zf„~,'(z) dz, (3. 10)

where R is chosen large enough so that $~(z) has
already taken on its asymptotic form (3.V) at z = R
but small enough so that R/L-0. This can always
be done if L is taken large enough. The second
integral on the right-hand side of (3. 10) may be
evaluated using the asymptotic form (3.V) and using
boundary condition (2. 14c). In the first integral,
because R/L- 0, we are permitted to treat g„(z)
as a continuous function of 4 so that we may dif-
ferentiate it with respect to k. Hence, we are al-
lowed to write the Schrodinger equation for $, ,

d , + y(z) -k' g, (z) = 0,
dz

to differentiate this equation with respect to k, to
multiply from the left by g~(z), and to integrate
from 0& z & R. We can also multiply this equation
from the left by d$~(z)/dk and integrate from 0&z
& R. Subtracting the two integrals from each other
gives

R

2k'
y 8 dz=—

=2A. R+——sin2 kR+g . 3. 11
d'g

dk

The terms on the right-hand side have been evalu-
atedusing boundary condition (2. 14b) and the
asymptotic form (3. 1). Combining (3. 11) with the
evaluation of the second integral on the right-hand
side of (3. 10) gives us

g(z) = z ~ (I —cos2[kz+q(k)]] dk no . —

(3.14)

The charge density contains an osciliatory term
and the sum of two constant (z-independent) terms.
The constant term is forbidden, for a constant
charge in a one-dimensional system of length L
leads to a potential of order L . Hence, the two

constant terms must cancel against each other to
at least order L . That is,

, Q k„=no.Ee
7T

The background charge density n0 is fixed. Hence
(3. 15) and (3. 6) together determine the Fermi en-
ergy in the presence of a magnetic field (see Ap-
pendix A). These are, to be sure, exactly the
same as the equations usually written down for the
bulk problem where the potential is zero every-
where. The point here is that even though there
exists an oscillatory potential of order 1/L, the
Fermi energy is unshifted from its bulk value to
al. accuracy at least of order L

Making use of (3. 15) and (3. 13), we can now re-
write the charge density (2. 15) as

.(.) = —,
" Z ~(E.-E.) X'.(.)

2m

+2 z Q dk [$',(z) —1], (3. 16)
n 0

where

N(Ez -E ) -=2 f [Ez —(&+ 2) EH —E~]

= integer part of ~ —+ — . (3. 1V)E, -E 1
Ea

Note that N(Ez —E ) is the number of occupied
Landau levels associated with the bound state whose
energy is E .
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Finally, we wish to evaluate the total charge Q,
given by (2. 19). Using the form (3. 16) and the
normalization of the bound states, we have

Q= —Q N(E», -E )+ ", Q lim dz

R/L «0 0

, +y(z) -k'I g(z) =O,
dz

~+(z) &»(»)s+n(»)&lf (z)

f,(z - ) = 1 .

(4. la)

(4. lb)

(4. 1c)

x dk ', & 1 . 318
0

We may interchange the order of integration
here, and, using (3. 11), the second term becomes

)im (
——(2k) sinR()R+q)) d). .

n R" & 0

(3.19)

At large 8, the sine integrand oscillates rapidly
and the only contribution is from the neighborhood
of k= 0. We can then expand q(k) as

q(k) = q(0)+ kq', (3. 20a)

g' = (d g/dk), , (3. 20b)

At this point, we invoke Levinson's theorem,
namely, that if the phase shift q(k) at k = ~ is taken
to be zero and if q(k) is taken to be a continuous
function of 0, then

rl(o) = wm, , (3. 21)

where Mb is the number of bound states which the
potential mill support.

Using (3. 21) and (3. 20) in (3. 19) allows us to
perform the integral, take the limit, and finally,
for the total charge Q, we arrive at

Nb

Q= —Q N(E —E„)+ " Q [»I(k„)—q(0) ——' ] .
(3. 22)

The sum over m is over the bound states, and the
sum over n is over the occupied Landau levels of
the mobile electrons. The number of terms in the
n summation is clearly N(Ez) [cf. Eq. (3. IV)] and
hence an alternative statement of (3. 22) is

b

Q =—Q [N(E„—E ) N(E„)]-
2m .=1

(3. 23)

Both (3.22) and (3. 23) are statements of the
Friedel-like sum rule which will play an important
role in our calculations.

IV. RUNNING-WAVE SOLUTIONS

It turns out to be more convenient to calculate
the running-wave solutions for the mobile states
than the standing-wave solutions. Accordingly, let
us write g~(z) for the outgoing running wave; that
is~

Since the complex g' satisfies the real equation
(4. la), its real and imaginary parts must separate-
ly be solutions. Comparing the large-g behavior,
we conclude that

5 (z)=~2lmg(z)

The boundary condition $„(0)= 0 becomes

Ime»" f»,(0) = 0

or

f (0) ft »))(k)-

(4 2)

(4. 3)

where B~ is a real number (of either sign). Equa-
tion (4. 3) determines q(k) up to an additive multiple
of z. That multiple of m is fixed uniquely by Levin-
son's theorem (3.21) and continuity of the phase
shifts.

V, (z)= —
1

' (e" Pe""'). —Vp (5. 1)

One of the parameters, P, can be expressed in
terms of V0 and X by the requirement that the para-
metric form have the correct slope at the origin,
i. e., that it satisfy (2. 18b). We require

(5. 2)

In Fig. 2, we show how, with a fixed Vo (a fixed
well depth) and P determined by (5. 2) (a fixed
slope), varying A, changes the shape of the well from
attractive to repulsive. The ~= 0. 2 curve is repul-
sive in that it moves charge away, inducing a defi-
cit of charge. The X=0. 8 curve is the most at-
tractive one shown, in that it moves the most
charge inwards, inducing the largest surplus of
charge. With t)'0 fixed, we then sweep X, running
through a family of potentials such as that shown

V. PARAMETRIC APPROACH

Although the analysis to this point has been exact
within the model, our procedure in carrying out the
calculation and in analyzing the problem further
mill make use of a parametrized potential. We
shall solve Schrodinger's equation, calculate charge
densities, and use this charge density to compute
a potential, making no approximations. The re-
computed potential, when fitted by the parametric
form, leads to new values of the parameters.
Self-consistency then demands that the new pa-
rameters and the old be equal.

The form which we choose to represent the po-
tential depends on three parameters:
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FIG. 2. Typical shapes of the para-
metric potential for fixed values of
well depth and slope at the surface.
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in Fig. 2, selecting that potential for which the
total induced charge is indeed the value we have
chosen in (5:2). This step, demanded by Eq.
(2. 18c), guarantees that the iterated potential will
also have the same slope at the origin. To evaluate
the induced charge, we need only calculate the
bound-state energies E„andphase shifts g(k„). We
then use these in the sum rule (3. 23). This leaves
us with one parameter to adjust, namely, V0, the
depth of the parametrized potential at g = 0. The
fitting procedure we choose is to adjust V0 so that
the parametrized potential and the recomputed po-
tential agree at z = 0.

Before going into any detail about how this is
carried out, it may be useful to demonstrate just
what sort of self-consistency is available by the
use of this rather simple scheme. In Fig. 3, we
have plotted the parametrized potential and the re-
sulting potential (with the parameters determined
self-consistently) for two of the cases we have
studied. One sees agreement which is good enough
to ensure that the potential determined by our para-
metric scheme is an excellent approximation to
the potential which would satisfy the fully self-con-
sistent Hartree equations.

There are likely to be other three-parameter
forms which do as well, or better, than this one in
achieving self-consistency. This form was chosen
solely because of the simplicity of its eigenfunc-
tions. For its bound states, we obtain

To calculate the coefficients a&, we insert (5.3a)
and (5.3b) into the Schrodinger equation (2. 13a) and
obtain a simple recursion relationship for the co-
efficients:

a, = -P a,/(z'+ 2X„x), (5. 4a)

P(a, , —Pa,~)a, (5. 4b)

STARTING POTENTIAL Vp (Z)

RESULTING POTENTIAL

-2

(5. 4c)

The coefficient ao(K ) is fixed by the normalization
requirement (2. 13d):

with

E = —K (5. 3b)

L Vp{Z)

IAL

The energy is determined by applying boundary con-
dition (2. 13b), which here becomes

(5. 3c)

FIG. 3. Comparison between the self-consistently
determined parametric starting potential (dashed line)
and the iterated resulting potential (solid line) to which it
gives rise, for two typicaI. cases.
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, p 2K„+(r+s)x (5. 4d)

y+( )
el(»»+») Q b (k) jx-»

y=0
(5. 5a)

The solution for the running-wave states is equal-
ly simple. Here, we have (cf. Sec. IV)

(-t(z)=K f, z'X(z+z')dz'. (5. 10)

Note that the calculation of Q(z) is identical to the
calculation of P(0) except that z+ z' replaces z' as
the argument of the density and, hence, of the wave
functions. This substitution is equivalent to replac-
ing

b) = —Pbp/(y —2ikk),

I'(bg ( —Pbg z)
X2j2 -2N jX

(5. 5b)

(5. 5c)

a, (K„)by a,(K„)e*'" '"',
b)(k) by b)(k) e ~ ',

(5. 1la)

(5. 11b)

and the coefficient b0 is also fixed by normalization,
in this case by (4. lc):

b0=1.
The phase shift rl is determined using (4. 3):

b (k) E e (»(»&-
)=0

(5. 5d)

(5 6)

1 g (('g cos2 Yf(k„)
m

„

4 4k„

~n

k —sin2 q(k) dk
1 " gdq

dk

&n

+ —Q k(k) dk,
n

(5. 8)

where q' = (dq/dk)» p, and where k(k) is an expres-
sion (again see Appendix B) involving the expansion
coefficients b, (k) and phase shifts q(k) of the mobile
states.

The self-consistency condition of course is

-(b(0)= V, . (5. 9)

Assume that the parameters have been adjusted
so that self-consistency has been achieved; i.e.,
we have satisfied (5. 2), (3. 23), and (5. 9) in that
order. It is now a simple matter to evaluate P(z)
for any value of z. Again, we integrate Poisson's
equation twice, and arrange the result in the form

Let us turn now to the evaluation of the potential.
First, of course, we need its value at the origin.
Integrating Poisson's equation (2. 16) twice gives us

—$(0)=Kf z'N(z') dz' . (5. V)

It is now just a matter of using (3. 16) for the den-
sity, using (4. 2), (5. 3), and (5. 6) for the wave
functions, and collecting together the terms which
result. All the spatial integrals can be done in
closed form, most of them trivially, one with a bit
more work (see Appendix B), and the result is the
expression

-2zy(0) + a„(K.)a, (K„)
KEz " „p[2K +(r+s) X]

s=0

r((k) by q(k)+kz . (5. llc)

Hence, the same numerical program which evalu-
ated g(0) also serves to evaluate P(z) if we first
make the replacements (5. 11). The potentials ex-
hibited in Fig. 3 were computed in this way.

Finally, there is the matter of transition to the
limit of zero magnetic field. It is easy to see that
this limit is accomplished via the replacement of

E„N(~) by e,

Ez + f (k) by 2 f kdk f (k),

(5. 12a)

(5. 12b)

E„&„f, "k(k)dk by f, (I-k')k(k)dk.
(5. 12c)

VI. KOHN-MAJUMDAR THEOREM

Kohn and Majumdar' have proved that the den-
sity matrix for a system of noninteracting fermions
is an analytic function of the strength of the exter-
nal potential, even at those values of the strength
where the number of bound states changes. In the
model we are using here, the electrons interact
via a Hartree self-consistent potential which, for
the Schrodinger equation part of the problem, is
the same as having noninteracting particles in an
external potential. Thus, one might expect that
the properties of th model system here would also
be analytic, even as the number of bound states
changes. In particular, this would mean that the
expulsion of a bound state from the well produces
no sudden change in the shielding properties of the
semiconductor.

Without going into the question of analyticity, it
is easy to investigate whether our model does in
fact exhibit continuity when the number of bound
states changes. Suppose that the external condi-
tions, e. g. , density of conduction electrons, elec-
tric field, and magnetic field, are such that there
is a bound state whose binding energy is particular-
ly small. We let the external conditions vary in the
direction which further decreases the binding of
this state. The internal parameters t/'0, A., and

P determined by solving Eqs. (5. 2), (3. 23), and

(5. 9) will change, indicating a change in the shape
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of the self-consistent well in response to the change
in external conditions. Eventually the binding en-
ergy of the state goes to zero. Note that even under
these conditions there is a finite amount of charge
bound by this zero-energy state because the trans-
verse states associated with it are still filled up
to the Fermi level. With further change, the zero-
energy bound state disappears, and with it goes a
sizable amount of bound charge. Thus, potentially
at least, there is the possibility of a sudden re-
arrangement of the system, a sudden change in the
shape of the well and of the distribution of the
mobile charge, to compensate for the loss of the
bound-state charge. If this indeed happens, then
there will be a sudden and discontinuous change in
the internal parameters Vp, ~, and P, caused by
the loss of the bound state. We want to know wheth-
er or not such a discontinuous change occurs.

Let us examine the self-consistent equations then.
First consider (5. 2). The external conditions here
are embodied in K and Q and these change continu-
ously. There is nothing in the structure of this
equation to give rise to a discontinuity when we
lose a bound state; so we pass on to (3.23). Here
we have the external condition Q on the left-hand
side changing continuously. On the right-hand
side, we have a potentially discontinuous piece,
namely, the sum over bound-state contributions.
When the number of bound states is reduced by one,
there is one less term in the sum. Note, however,
that the term which is deleted, namely,

N(EF —Ep) —N(EJ, )

(where it is Ep, the energy of the Bth state, which
goes to zero), is itself zero when the state is ex-
pelled. There is therefore nothing in (3. 23) to
cause a discontinuity, and we pass on to Eq. (5.8).
Here, we find a bound-state contribution to P(0)
which is discoritinuous and is even singular as the
number of bound states decreases by one, namely,

( ) ~ ~ a„(Ke)a, (ECp)

p ~ p [2Ks+(r+s) A.j

where again it is E~ = -K~, the energy of the Bth
state, which is going to zero. However, a careful
investigation of the mobile charge contribution to
g(0) (see Appendix C) reveals that it too is discon-
tinuous, and in just such a way as to cancel the
apparent discontinuity caused by the bound contri-
bution above. None of the three equations deter-
mining the shape of the potential is discontinuous
when a bound state is expelled from the well. It
follows, therefore, that the shape of the self-con-
sistent potential is also continuous even when a
bound state is expelled from the well, even though
the mobile charge density and the bound charge
density separately change discontinuously. The
analysis in Appendix C makes it evident that the

To calculate the potential in the absence of ex-
ternal fields, we solve the self-consistency equa-
tions (5. 2), (3. 23), and (5. 9) for Q = 0 and E„=0.
In Fig. 4, we have plotted the parametrized poten-
tial and the iterated potential for the value z,
= 0. 325 for the purpose of conveying some idea of
how good the parametric self-consistency is when
Q= 0. Although the self-consistency is not as im-
pressive as it was for the cases illustrated in Fig.
3, it is still reasonably good. In Fig. 5, we have
plotted Vp and X as functions of x,. These two fig-
ures illustrate that even at zero external field, the
requirements of self-consistency give rise to a
potential well at the surface. We can account quan-
titatively for the existence of the well and for its
y, dependence by using a model based on the fol-
lowing simple considerations.

Note addedin proof After th.is payer was ac-
cepted for publication we were made aware of an
earlier paper by O. V. Konstantinov and A. Ya.
Shik, Zh. Eksyerim i Teor Fiz. 58,.1662 (1970)
[Sov. Phys. JETP 31, 891 (1970)] which also treats
the effect of the large work junction in causing the
wave functions to vanish at the surface, establish-
ing a deficit of shielding charge. There is great
similarity between their reasoning and results and
our reasoning and results for the field-free situa-
tion discussed here and in Ref. .2. We are sorry not
to have been aware of their work.

Consider the electron density in the neighborhood
of an infinite potential step, assuming that the elec-
trons are in a uniform potential V= 0. The elec-
tron states are the products of sine waves in the
z direction and the usual exponentials e" ' ', where
R is parallel to the surface. All states whose en-
ergy is less than the Fermi energy E~ will be oc-
cupied, and the electronic density will be the famil-
iar"

sin8 cos8 1
Pet, = 3Np e 3

—
gp

where

(7. la)

continuity arises because there is a hole carved
out of the mobile charge distribution, of just such
shape and magnitude as to neutralize the charge
contained in the bound state. (The hole arises be-
cause the bound states and mobile states are or-
thogonal. ) When the bound state is expelled, the
charge it contains is no longer counted, but the or-
thogonality hole then disappears from the mobile
charge. This leads to a situation where, if we in-
advertently overlook the existence of a weakly bound
state and also neglect to have the mobile states or-
thogonal to it, very little error results.

VII. RESULTS AND DISCUSSION

A. Potential for No External Fields
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FIG. 4. Comparison between the self-consistently
determined parametric starting potential E'dashed line)
and the iterated resulting potential (solid line) to which
it gives rise for no external fields.

No= k„/3m

u, = (27V~ Z,'/n')"' .
('7. lc)

(7. ld)

(In this section we shall use conventional units. )
If we add to this the background charge density, the
total density becomes

sin8 cos8pz = oe 3
—

z8 8
(7. 2)

This expression, plotted in Fig. 6, shows that there
is a charge density at and near the surface of the
semiconductor. This charge density arises be-
cause the uniform background is not neutralized by
conduction electrons. (The conduction-electron
wave functions vanish at z = 0.) This unneutralized
charge creates an electric field which the mobile
electron in the interior must screen. The spatial
extent of the charge region is of order A~, the
magnitude of the charge density is of order k~3, and
so the magnitude of the charge to be shielded is of
order kz, which increases as z, is made smaller.
Hence, the well deepens as ~, is reduced. (This
trend may not be obvious in the shape of Fig. 5 until
one recalls that the unit of energy in Fig. 5 is E~,
which goes as x, .)

The essential features of this model are (a) that
the electron density near the surface is assumed
to be dominated by the requirement that the wave
functions vanish at the surface and (b) that deeper
in the interior the density is controlled by the
necessity that the uncovered charge at the surface
be shielded.

To make the argument quantitative, consider the
semiconductor divided into two regions, g & D and
z & D. For 0 & z & D, the conduction-electron density
is less than that of the background, so that D marks
the edge of the region where the unneutralized back-
ground is found. That is, p(z = D) = 0. The conduc-
tion-electron density vanishes at z = 0, and the
charge density there is that of the unneutralized
background; that is, p(z =0) =eNO. The simplest
possible approximate description of the charge den-
sity in this region is a linear interpolation:

Beyond z = D the electron density will exceed that of
the background because of the presence of a poten-
tial energy to which the electrons respond. Ne as-
sume that the response is local, and we use the
linearized Thomas-Fermi description of it. In
such case, the total charge density decays expo-
nentially,

p(z)= -Ae " '~', z D (7. 4)

where A is a constant to be determined and a is the
Thomas- Fermi shielding length.

The constant A. is determined by the condition
that the total induced charge be zero, corresponding
to no external electric field:

q= j p(z)dz=0.

This gives

A= eNOD/2a .

(V. 6)
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FIG. 5. Self-consistent potential parameters Vo and
A, plotted as a function of w~ for no external fields.

We may insert the charge density, Eels. (7. 3) and
(7. 4), into Poisson's equation (2. 9b) and, integrat-
ing, we find that the potential energy for an elec-
tron Rt g =0 is

V(0) = —eU(z=0) = —(4me No/e) (.& D + 2 aD) .
('7. 6)

It is clear from Fig. 6 that when V= 0, D =2/kz.
Now suppose that the Fermi momentum in the bulk,
where V= 0, is k~, but that there is a region near
the surface where V has the value V(0)= —Vo Near
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FIG. 6. Charge density in a
region of zero potential in the neigh-
borhood of an infinite potential step.
Electronic states are filled to a
Fermi energy determined by the
condition that the unif orm-back-
ground charge density is unity.
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the surface, an electron at the Fermi energy will
have a momentum k~ equal to

u*„=a (1+ VJEO)~/'. (V. Va)

We assume that D scales like an inverse momen-
tum; that is, we take

D= 2/kr (7. Vb)

4~g'Xp 8
p p

= Q ~
—6Q (7. sb)

[cf. (2. 17)], while the standard expression for the
Thomas-Fermi shielding length gives

Therefore, (7. 8) takes the form

Combining (V. 6) and (7. 7) gives

4ze Np 3 akim Vp
4

eX~k~ 1 V~/E (I+ Vo/Z )' ) 8
(7. sa)

Note that

1+ Vo/Er 1+ Vo/Ep EF
(7. 9)

which is easily solved for z~/2 vs Vo/Eoz. This
solution is plotted in Fig. V. Also plotted in the
same figure is the result of the parametric self-
consistent calculation, a result which has already
appeared as Fig. 5. The agreement between the
two results suggests that the simple model is in-
deed a reasonable description of the situation. This
provides a paradox, because the self-consistent
potential we have calculated is of such range and-
depth that it supports a bound state, as we show in
Fig. 8. Here, we have plotted the binding energy
of the state vs x, as obtained from the parametrized
self-consistent solution. The paradox arises be-
cause the reasoning on which the simple model was
based was appropriate to a situation with no bound
states, and ignored both the possible existence of
a bound state and the severe distortion of the mo-
bile-state wave functions which will accompany its
formation. It is likely that the success of the sim-
ple model rests on the cancellation of the bound
charge by the orthogonality hole which we noted
earlier in our discussion of the Kohn-Majumdar
theorem.

1.0— B. Shielding of External Electric Field

The simple model we have just described is

0.20

0.5

0 gE

0
I

0.5
I

1.0 1.5 00 0.5
I

1.0 't
~ 5

FIG. 7. Self-consistent potential parameter Vo plotted
as a function of z~ for no external field. The circles are
the solutions to the model expressed by Eq. (7.9).

rs

FIG, 8. Energy of the bou. nd state supported by the
self-consistent potential well in the absence of external
fields.
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FIG. 9. Self-consistent well-
depth parameter Vo plotted as a
function of the total screening charge
Q (which is proportional to the ex-
ternal electric field) for r, = 0.1.
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easily extended to the case of finite electric fields
merely by altering the Q = 0 condition of (V. 5) and
carrying through the derivation just as before.
Results calculated in this way appear in Fig. 9 for

y, =0. 1, in Fig. 10 for y, =0. 5, and in Fig. 11 for
y, = 1.0, and are labeled "Linear Model. "

The well depths obtained are such that one won-
ders about the validity of linearized Thomas-Fermi

O lL.
hJ

O

II

O

FIG. 10. Self-consistent well-depth
parameter Vo plotted as a function of
the total screening charge Q (which is
proportional to the external electric
field) for x~=0.5.
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theory in describing the response of electrons in
the region g & D. Accordingly, let us digress to
show how the model is altered by the use of non-
linear Thomas-Fermi theory in the region where
8 & D.

Again, we return to the dimensionless units of
Eq. (2. 12). The Thomas-Fernu density

n(z) = n„~(z)—no = (1/3w') ([1—y (z)]'~' —1],
inserted into Poisson's equation, Eqs. (2. 16) and
(2. 17), gives the Thomas-Fermi equation for the
potential,

n(z) = —(1/3n') (1 —z/d), (v. 12)

and, by integrating Poisson's equation, we have

and Q will be expressed. By using x-=z —d as an
integration variable, and

Q=ce
as a condition at large x, we can integrate (V. 10)
numerically inward to x= 0, which gives us both
p(d) and P'(d) -=(dp/dz)~ for any starting value of c.

In the region 0& z & d, we have the linear charge
density (7. 3), now expressed as

, =6n'P, [(1—&f))'i —1] .
dzz (v. lo)

p(0) = p(d) —dp'(d) + n'x, d',
y'(0) = y'(d) —3o.'~, d .

(V. 13a)

(V. 13b)

~(z) e-&(a-d&

where

(V. 11a)

At large z, where g(z) - 0, this equation becomes
the linear Thomas-Fermi equation p"= 9n4~, p,
whose solution we write as

The equation for d, (V. V), is

d= 2/[1 —g(0)] I',
which, combined with (7. 13a), yields d in terms
of the known values of g(d) and p'(d). Using this
value of d in (V. 13) gives us

(V. 11b)

(V. 11c)

and c is a constant in terms of which both p(z = 0)

v, -=—y(z = o),

q=- n(z) dz =
y' o)

0 8WnP,
'

(V. 14a)

(7. 14b)
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FIG. 11. Self-consistent well-depth
parameter Vo plotted as a fo.nction of
total screening charge Q (which is pro-
portional to the external electric field)
for z~= 1.0.
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By running through various values of e, the Vp-vs-

Q curves labeled "Nonlinear Model" in Figs. 9-11
were obtained.

The "Linear Model" calculation and "Nonlinear
Model" calculations of course agree best with each
other at small values of Q, where the potential
throughout the well is small enough that lineariza-
tion of the Thomas-Fermi equation is a mathemat-
ically valid procedure. The interesting question,
though, is how well either of these simple models
agrees with the results of the self-consistent cal-
culation. The answer to this question also appears
in Figs. 9-11, where the results of the self-con-
sistent scheme we have been describing are labeled
"Parametric Calculation. " From these curves it
appears that at small Q values agreement is ex-
cellent and that at large Q values the fractional er-
ror between the nonlinear model and the parametric
calculation decreases. The difference between the
two calculations is greatest at intermediate values
of Q. Although it is not evident from the curves,
the Q values where the fractional difference is
greatest corresponds to well depths supporting be-
tween one (deeply bound) state and about three
states. For well depths smaller than this, the
single bound state is weakly bound or absent, and so
the Kohn-Majumdar theorem is probably validating
the model. For well depths larger than this, the
number of bound states is large enough that the
statistical reasoning on which the Thomas-Fermi
theory rests does, in fact, apply. This is not to
say that nonlinear Thomas-Fermi theory alone
describes the shielding, because the region where
g & d plays an important role in determining the
shape of the potential. To show that this is so, we
have also plotted in Figs. 9-11 the results of a
nonlinear Thomas-Fermi calculation in which the
surface region is ignored, i. e., where the non-
linear Thomas-Fermi theory is assumed to hold
all the way up to the surface. [This is accomplished
by setting d=0 in Eq. (7. 13).] The resulting curves,
labeled "Thomas-Fermi" in Figs. 9-11, are evi-
dently in poor agreement with either of the models
or the parametric calculation.

C. Effect of External Magnetic Field

The magnetic field influences the potential through
two separate mechanisms, both mechanisms arising
from the quantization of the transverse motion into
discrete Landau levels. The first mechanism is the
quantization of the amount of charge associated
with each bound state and the second is a change in
the distribution of the mobile charge. Let us first
consider what happens because of the bound states.

It appears from (3.22) and (3. 17) that the amount
of charge Q„associated with the mth bound state
must be an integer multiple of E„/2m, the integer
being equal to the number of occupied Landau lev-

els. The amount of charge changes only when one
of the Landau levels E(m, n) = E„+(n+ —,') E„sits
just at the Fermi energy E~. In what follows, we
shall see several examples of how the potential
well deforms in just such a way as to cause a
bound-state Landau level to dwell at the Fermi en-
ergy. This will allow that particular level to fill
or empty gradually in response to a continuous
change in the external conditions, rather than fill
or empty abruptly as it would do if it moved con-
tinuously through the Fermi energy.

The proper mathematical way of handling the
case of a Landau level dwelling at the Fermi energy
is to consider f (p, E), -the occupation factor which

appears in (2. 7), as the zero-temperature limit of
the finite-temperature occupation factor. One ar-
rives at the following prescription: Let Q(Vp, X)

be the amount of charge induced in the system when
the parameters of the potential are Vp and ~, and
where P is given by (5. 2). [In this notation, Eq.
(3. 23), which expresses our effort to adjust the
parameters to give the correct amount of induced
charge, is Q= Q(Vo, X).] Suppose that as we sweep
X, the well deepens in a way that an extra Landau
level fills at A. = Ap. Then we shall have a discon-
tinuity in Q(Vo, x) caused by the sudden filling of
one Landau level:

Q( Vp gp —0) —Q(Vp A.p+ 0) =EH/2''
If it turns out that the two values above bracket the
value of charge we are trying to induce, i. e., if

Q( Vp, Xp —0) & Q & Q(Vo, Xp —0),
then we are to regard that topmost Landau level
as being partially filled, the filling fraction x being
given by solving

Q=xQ(Vo~ &o 0)+(1 x) Q(Vo~ ho+0) ~ (7 15a)

In computing the potential at the origin, Eq. (5. 8),
we are then to treat the topmost Landau level as
being fractionally filled by the same amount, i. e.,

y(O) = ~y,(V„y,-0)+ (I - ~) y,(V„y,+ 0),
(7. 15b)

where pp(Vp, A) is the potential at the origin, es-
sentially the right-hand side of expression (5. 8).
This value of P(0) is to be used in (5. 9).

We can now describe how increasing the external
electric field alters the well in the presence of a
fixed magnetic field. Suppose that initially there
is one bound state and that its Landau levels are
either well above or well below the Fermi energy.
As the electric field increases, the well deepens or
broadens or both, so as to induce more charge.
This change in potential alters the phase shifts
q(k„)and the induced mobile charge [the second
term in (3. 22)] increases. The bound-state energy
decreases (its binding energy Eo = —E increases)
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but the amount of charge in the bound state cannot
change. As the bound-state energy decreases, the
associated Landau levels also move downward in
energy. Eventually one of the Landau levels
reaches the Fermi energy. As that Landau level
starts to fill, the charge it acquires tends to alter
the potential. in the direction of weakening the well,
raising the bound-state energy and preventing the
Landau level from filling further. This is the
mechanism responsible for the tendency of the
Landau level to dwell at the Fermi energy. Thus
the downward motion of the bound state ceases
during this dwell period, and the well deforms in
such a way as to keep the bound-state energy fixed.
In the example we shall exhibit, this will occur by
having the range of the well become shorter even
though the mell becomes deeper as the field is in-
creased. Eventually, the Landau level fills com-
pletely and the downward motion of the bound state
resumes until the next Landau level reaches the
Fermi energy and starts to dwell there. Finally,
the well becomes sufficiently deep to support a
second state. There are then two sets of Landau
levels to try to follow; so the structure is more
complicated, but the principle is the same. All of
the features described above appear clearly in Fig.
12, where we have plotted Vo, A, and E~ vs Q for
E„=,'E~ and r, =-0. 5. The range of Q extends from
Q = 0 to just past Q = 0. lv, where the onset of the
second bound state occurs.

The tendency of a bound-state Landau level to
dwell at the Fermi energy is also useful in under-
standing the effect of changing the magnetic field
when the electric field is held fixed. As E„in-
creases, the amount of charge which resides in a
single bound state increases, being given by [cf..
Zq. (3.22)j

Finally, the Landau level empties completely and
there are no longer any occupied levels near the
Fermi energy. The system then reverts to the

1.0
rs =0.5
EF/EH= 4.0

4J 05—

1.0—

Eventually, a Landau level reaches the Fermi
energy. As before, the abrupt emptying of a Lan-
dau level cannot occur. Instead, the Landau level
must dwell at the Fermi energy, emptying gradual-
ly as the magnetic field increases. This emptying
of the state means that charge relatively close to
the surface is removed; hence the well tends to
deepen, lowering the energy of the bound state.
The rate at which the bound-state energy drops
must exactly equal the rate at which the energy dif-
ference between it and the Landau level increases,
in order that the dwell can occur. Hence, during
the dwell period the binding energy depends on mag-
netic field as described by (V. 1V), namely,

Q =N(Ep —E ) ~E/2w . (V. 16)
05

When the field increases enough to force a Landau
level through the Fermi energy, N(Ez —E ) drops
by unity. This is shown in Fig. 13, and it occurs
at magnetic field values such that

E„=(E, —E„)/(N+—.') .

Consider a magnetic field value such that there
is no Landau level at the Fermi surface. An in-
crease in E~ increases the amount of charge which
resides in the bound state. This charge, being
relatively c1.ose to the surface, alters the shape of
the potential in the direction of making the well
shallower. The binding energy of the state de-
creases and the energy of the Landau levels then
rises with increase in magnetic field for two rea-
sons; the energy difference between the Landau
level and the bound state is increasing and, in ad-
dition, the energy of the bound state itself is also
rising.

3.0—

O0
2.0

1.0

0 I I

0
i i I 1 i I 1 I ( I I I 1

0.05 0.10 0.15 0.20
Q

FIG. 12. Self-consistent well parameters Vo and A, and
the binding energy E& of the state which that well supports
plotted as a function of the total screening charge Q (which
is proportional to the external electric field) in the pres-
ence of a strong magnetic field of strength Ez —-4EJ;.
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FIG. 13. Ratio of the charge, at
magnetic field EH, to the charge at
zero magnetic field as a function of
magnetic field for a single bound state
of energy E~ (binding energy E~=-E~)
and a Fermi energy of Ez.

0.2—

0 I

0.2
I

0.4
I I

0.6 0.8
EH~REF-Er ~

I

1.0 1.2

previous behavior in which an increase in EH de-
creases the binding energy.

The above behavior is apparent in Fig. 14, where
we have plotted the well parameters t/'0 and g, and
the binding energy E, = —E, as a function of E~/E„for ~, = 0. 5 and @=0. 15, values which were
selected so as to produce a single bound state. Also
appearing in this graph is a horizontal bar which
is blackened only over those ranges of E~/E„
where a Landau level is exactly at the Fermi en-
ergy. We direct attention away from the values
E~/EH=-2, -'„and ~, where, seemingly there are
discontinuities (to be discussed below), and we
point out the oscillatory behavior of the binding en-
ergy E,. Note that the binding energy increases
with E„/E„(i.e., decreases as E„increases),
where there is no Landau level at the Fermi sur-
face, and decreases with E~/E„(i.e., increases
as EH increases), where there is a, Landau level at
the Fermi surface. The effect of the magnetic
field on the potential well is thus described in terms
of the magneto-oscillations of the bound charge
(which arises from counting considerations) as. de-
scribed graphically in Fig. 13 and the dwell feature
(which arises from the self-consistency aspects of
the potential) by which an emptying or filling of a
Landau level alters the potential in such direction
as to oppose that change.

The seeming discontinuities in Fig. 14 are arti-
facts of the method of plotting against Ez/E„as an
abscissa: They would not appear if the curves were
replotted against the physical variable E&. The
cause of the seeming discontinuities is that at EF/
E„=-,', —,', etc. , E~ changes rapidly, so that E„does
not depend smoothly on E~/E„. Near these special
values of Ez/E„, there is a large range of E„
compressed into a tiny interval of Ez/Ez. The
quantities exhibited really depend on E„,and where
there is a change in EH, there is also a change in

these quantities, but this change is compressed into
a very small region of Ez/EH. This is clearly
shown by comparing Fig. 14 with Fig. 15, where
we have replotted E„the binding energy exhibited
in Fig. 14, vs E„,instead of vs Eo/E„. The near-
vertical portions of Fig. 14 have been stretched into
gentle slopes in Fig. 15 and there is no discontinu-
ity at the special values of EH, marked by arrows,
where E~/E„=-'„-'„etc.

The special values of E~ marked by the arrows
are the values for which there is a bulk Landau
level at the Fermi energy —a value for which one
of the k„tEq. (3. 6)j is zero. At these field values,
there are discontinuities in some of the bulk re-
sponse properties of the mobile electron system
which arise because the bulk density of states be-
cornes infinite. ~ (These singularities are often
suppressed from theoretical calculations by in-
cluding damping or broadening effects of various
sorts. ) Hence, one might expect that in the present
calculation (in which there are no damping or broad-
ening effects) the effect of the magnetic field on the
mobile electrons might have marked consequences
at these special field values. A close inspection
of Fig. 15 does, in fact, reveal a slight change of
slope at these field values. This is not a major
structural feature of the curve and, with any rea-
sonable broadening, would probably pass unnoticed
altogether.

This feature does arise from the effect of the
magnetic field on the mobile charge. There are,
in fact, two aspects to consider here. The first is
operative in the region very close to the surface
where the mobile electron density is decreasing
rapidly. In this region, the system of mobile elec-
trons behaves like a collection of one-dimensional
fermion gases, each gas with its own Fermi mo-
mentum k„. As the magnetic field varies the size
and number of these k„,the electron density in
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this surface region undergoes magneto-oscillations.
This is most easily seen by considering the zero-
potential limit of (3. 14), which we expand at small
z assuming the phase shifts are zero. The result
is

where

(7. Iea)

(7. 19b)

A plot of C vs E~ is given in Fig. 16 and it is clear
that cusps appear at special values of E~ for which
a bulk Landau level goes through the Fermi en-

FIG. 14. Self-consistent well parameters Vo and X

and binding energy of the state which the well supports
plotted vs Ez/Es for a fixed external electric field.
In such a plot, oscillatory effects caused by bulk
Landau-level effects will appear to be periodic with a
period of one unit in Ez/E&, with extremal points at
Ez/Es=a, a, T, etc. Oscillatory phenomena with a period
other than unity and extrema at values other than these
have to be attributed to some other phenomenon, in this
case, to the Landau levels associated with thebound states.
The horizontal bar at the top of the figure is blackened
over these ranges of Ez/Es for which a bound-state
Landau level is dwelling at the Fermi surface. Note how

the blacked portions correlate with the regions of negative
slope in the binding-energy-vs-Ez/E„curve.

ergy.
These magneto-oscillations in n(z) will cause

corresponding oscillations in the potential. A

large density of charge near the surface tends to
shield an attractive field and so the depth of the
well is lessened at those values of E~ for which
the cusps in C appear. Hence, we may expect this
effect to contribute slope discontinuities in a plot
of well depth or binding energy vs magnetic field,
with the direction of the break always being toward
lesser energy.

The effect we have been discussing is analogous
to a magneto-oscillation of the driving charge in
the region z & d which we defined in the model de-
scribing the shape of the potential in the absence
of any external field. That model also made use
of the idea that screening occurs in the region z & d.
Here, in the presence of a magnetic field, we can
well imagine the screening length to be dependent
on magnetic field and, if the bulk theories are any
guide, the screening length should also show cusps
as a function of E~, with the shortest screening
length at the cusp position. This effect should also
contribute slope discontinuities in a plot of well
depth vs magnetic field, with the direction of the
break again always being towards lesser energy.

Again referring to Fig. 15, the slight breaks in
slope are in the proper location and in the proper
direction, but the effect is clearly far less im-
portant in determining the structure of the curve
than are the magneto-oscillations which arise from
the emptying and filling of a bound-state Landau
level.

The final comment to be made about the magnetic
field dependence of the potential concerns the ex-
treme quantum region a &EJ,/E„&a, where there is
but one occupied bulk Landau level. t This region
covers fields greater than E„=(g )

~a= 0. 763.] At
the onset of this region, there may be several filled
bound-state Landau levels. As the magnetic field
increases, these will empty in turn, giving rise to
magneto-oscillations in the way we have described.
Finally, at the highest fields, there must be only
a single bound-state Landau level occupied. (Al-
though the energy of that level increases indefinite-
ly with field, it is always less than the Fermi en-
ergy, which, to provide a bulk density of carriers,
must always be greater than the energy of the first
bulk Landau level. ) Hence, the amount of charge
which the bound state then contains, E„/2w, in-
creases linearly with E~. This causes the well to
become shallower. Both the well depth Vo and the
binding energy E~ tend toward zero.

D. Comparison with Linear Screening Calculations

In Ref. 1(a), the effect of a magnetic field on the

energy of a surface bound state was calculated in

three ways, using three different approximations
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FIG. 15. Binding energy E&
from Fig. 14 plotted vs magnetic
field strength EH. The arrows
are placed at values of EH for
which a bulk Landau level is at
the Fermi energy, and the four
shown correspond to the values
EJp/EH=y, y, 2, and 2. The9 7 5 3

well supports a second bound
state (not shown) in the range
1.0 &E„&1.4.

for the treatment of the mobile charge. All three
approximations were made within a linear-response
formalism, and were compared with each other.
It is of some interest to compare the results of
those calculations with what we have obtained here.

The first approximation was the bulk Thomas-
Fermi approximation. In that case, we obtained
a high density of states when Ez/EH= n+ ~. This
led to better shielding, hence a weakening of the
binding energy at these values. However, the
weakening of the binding energy was arbitrarily
strong in the sense that the well would have disap-
peared altogether at these field values if we had
not included lifetime broadening to limit the shield-
ing. In the bulk Thomas-Fermi approximation, a
high density of states occurred in the extreme
quantum limit and hence, at very high magnetic
field, screening by both surface states and mobile
charge improved with magnetic field. Here, on
the other hand, screening at high magnetic fields

is provided mainly by the bound state. The well
does not become as shallow nor does the binding
energy drop so fast at high field as the bulk Thom-
as -Fermi approximation predicted.

The second approximation was the surface
Thomas- Fermi approximation. It differed from
the bulk Thomas-Fermi approximation in having
zero mobile charge density at the surface. This
gave rise to a response charge density which, very
close to the surface, was independent of magnetic
field and, further from the surface, exhibited the
same sort of oscillations as did the bulk Thomas-
Fermi approximation. In the extreme quantum
limit, the mobile charge had a recovery distance
which lengthened with field so that the mobile
charge becomes less helpful in screening at high
fields, leaving the screening to be done by the
bound charge. The behavior of the mobile charge
in the surface Thomas-Fermi approximation cor-
responded more closely to what we have described

0.3—
bJ
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FIG. 16. Coefficient C
of Kq. (7. 18) plotted vs mag-
netic field EH. In the limit
of low fields, C goes to the
value &.
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APPENDIX A: CALCULATION OF FERMI ENERGY

From (3. 15) and (3. 6) we have

(Al)

E~ here is a function of EH. Let EH-0. The sum
becomes an integral which can be readily carried
out, yielding

(1/3~') E, (0)"'=n, , (A2)

where E»(0) is the Fermi energy at zero magnetic
field, i. e. , 1 in the units we use here. We can
combine (Al) and (A2) as

in the present work. One therefore expects the
surface Thomas-Fermi approximation to yield re-
sults very similar to what we find here. Comparing
Fig. 15 of the present work with Fig. 6 of Ref. 1(a)
(and dividing E„there by E»= 1.06 to yield the units
we use here), one does find close agreement (aside
from the lack of low-field oscillations which were
damped by the lifetime broadening introduced into
the earlier calculation).

The third approximation of Ref. 1(a) was called
the nonlocal screening approximation, and it ap-
parently severely overestimates the effects of
driving charge away from the surface in the ex-
treme quantum limit. Its use, in the example
chosen, leads to much poorer results than the sur-
face Thomas- Fermi approximation.

x [(m~X' —4k') cos2q(k) —4m& sin2ti(k)],

where
(Bla)

A„(k)-=g (F., r, ~X„,X,)+2X„, (BU )

8 (k)=2 Q 1',X, +2&„, (Blc)

C (k)= Q (F,Y -X X~) —2X (Bid)

and the X and F are the real and imaginary parts
of the expansion coefficients appearing in (5. 5).
That is,

f, (k)=x, (k)+f r, (k) .

The terms included in (Bl) all arise from short-
range parts of the mobile charge density, that is,
from parts which decay like e "', or faster. There
is a long-range part which arises because

(Ble)

g~ (») —1 = —cos2(k»+ ti) + O(e ~ ),
and its contribution to the right-hand side of (5. 8)
1s

+ 2kR sin2(kR+ q) —cos2q],

which, upon integration by parts, becomes

] An 1
zdz cos2[k»+ ti(k)] dk —= ——g y„(~).

n 0 0 n

(B2)
The infinite upyer limit here is to be interpreted in
the sense of (2. 19). Let us first replace the infinity

by R, interchange orders of integration, and we

obtain

y„(R)= z [cos2(kR+q)
dk

i(3
(n+ 2)

n H H
(A3) cos2(kR+ ti) —cos2q&i ~~

y.(R) =
4k

That is, given E»/E», we evaluate the left-hand
side of (A3), solve for E», and with that value of
E„andE»/E» we have E».

APPENDIX B: EVALUATION OF P(0)

We are concerned here with the evaluation of
the integral on the right-hand side of Eq. (5. 7).
The bound-state contribution and that part of the
mobile-state contribution which we have called
k(k) in Eq. (5. 8) is trivially obtained. We merely
state the result that

k (k) Q 2 2 + Q 2g 4k a 2 [4mkz cos 211(k)A.(k)
" a„(k)mX, g m

+(m X —4k ) sin2ti(k)]+ p 2 p 2 2
C.(k)

m-i m X +4k

q(k)»Mg+ k rt

where

q'-=(dq/dk), 0.

(B4a)

(B4b)

Thus the integrated term is of order k as k 0 and
there is no difficulty at the lower limit. At the up-
per limit, one of the integrated terms depends on

R, and as R is taken to infinity, this term must be
replaced by its average value, namely, zero.

Within the integral on the right-hand side of (B3),

[sin2(kR+ tt) —sjn2rt] . (B3)1 " dk dg
2 0 k dk

In the integrated term we use Levinson's theorem
again to write that, as k-0,
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the term which depends on R may be considered to
be

k 'sin2(kR+q),

which, at large R, oscillates so rapidly that it ef-
fectively limits the region of integration to the
neighborhood of k = 0 where we can make the re-
placement (84a). That is, as R-~, we have

f dk — k sin2(kR + q)
0

A~

dkq' k sin2k(R+q')=-, 'mg' . (85)
0

Putting these results together, we are left with

( )
cos2rl(k„) wq' I " dk dq .

2 ( )4k„4 2 0 k dk

(86)
which completes the evaluation of (5. 8).

APPENDIX C: CONTINUITY OF $(0)

In order to continue the discussion of the Kohn-
Majumdar theorem, we must develop a relation be-
tween the small-k behavior of the phase shifts q(k)
and the binding energy of the weakly bound state.

We have already made use of Levinson's theo-
rem,

Writing

= (k —i K„)F' (iK„).

k-iK„=Be"

E'(iK„)= We-",

where A, 8, y, and $ are real, we have

ri(k) = y+ $ = P + tan (K,/k), (c4)

and p is independent of k. Let k-0+. Then, since
K„&0,tan (K„/k)--,'w and q(0) = y+ ,'n, w—hich,

using (CI), means that

y=(M„——,') w .

a solution to Schrodinger's equation which grows
exponentially with g, hence violates the condition
P(z - ~)- 0 and is therefore not an eigenstate.
Nonetheless, the solutions to (C3), whether or not
they correspond to an eigenstate of Schrodinger's
equation, are of interest to us.

Suppose now that the potential is of such form
that we have a weakly bound state. Then F(iK„)
= 0 for a value of K„which is small and positive.
For k also small, we can expand E(k) to first
order, and, using (C2), we have

R„e'"' '=E(k) =F(iK„)+(k—iK„)F'(iK„)+~ ~ ~

q(k = 0) = ~M„ (cl)
Hence,

where M, is the number of bound states. Now re-
call that the phase shifts themselves were cal-
culated from (4. 3), which, using (5. 5), means
that

or

q(k) = (M, ——,') ~+ tan-'(K„/k)

g(k) = M~m —tan (k/K„),
tang(k) = —k/K„.

(c5)

(c6)
(c2)

There is a relation between the bound states and
running-wave form of mobile states which arises
from the fact that they both satisfy the same
Schrodinger equation, in one case with E= -E
& 0, in the other case with E= k & 0. If we replace
k in (5. 5), the recursion relation for the running
waves, by iK, we arrive at (5. 4), the recursion
relation for the bound states. Thus, we have, to
within a constant, that

F(iK )=0. (c3)

The form of (5. 3a) makes it apparent that K must
be non-negative. It may happen that (C3) has a
solution for K & 0. Such a solution would result in

E(iK)=- P b, (iK)=g a,(K),
y=0 /=0

so that the eigenvalue condition (5. 3c) which gives
the bound-state energies can equally well be
written

tanri(k) = —k/K„,
dg/dk= K„/(K,+k ), —

q' = —I/K„.

(era)

(cn)
(c'Vc)

The form is to be used only for k and K„both
small. Now suppose that the potential changes in
such a way that the binding energy of the weakly
bound state is reduced. Then K„approaches zero.
Further change of the potential in the same direc-
tion takes K„to zero, whereuyon the bound-state
energy becomes zero and the spatial extent of the
state becomes infinite. Still further change of the
potential in the same direction drives K„still
further in the same direction, i. e., onto negative
values, but as we mentioned earlier, there is no
eigenstate corresponding.

The number of bound states is one less than be-
fore, i. e., M, -M, —1, but the same sort of analy-
sis as before holds (even with K„&0) and we are
again led back to (C5) and (C6). Thus, whatever
the sign of K„,we have for small k and K„
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We now turn to the study of Eq. (5. 8) in the neigh-
borhood of a region where the number of bound

states changes. Suppose first that we have a weakly
bOund state and that we are changing the external
conditions in such a way that the potential weakens,
reducing the energy of this state still further, The
normalization condition (5. 4d) for this state (call
it the Bth state) can be written

ao(K~) ~ a„(K~)a, (K~)
2K~ „+s& 0 2K~+ (r+ s ) A.

which gives us

lim ao (Ks) = 2 K~ as K~ - 0 .

I ~~ N(EJ, )

l4z, I
„

l4z, I
' (Clo)

In (C8)-(CIO), we have isolated all the pieces of

(5. 8) which are either discontinuous or singular as
K~ - 0. The sum of these three pieces is

1 & dkZ Kz (I k2/K8 )2

1 ls /K~l

I wK~ l „(I+u')'

As K~-O, the integral goes to —,'g, and this singular
contribution to (5. 8) is

Accordingly, the contribution of this state to the
right-hand side of (5. 8) is, in the limit,

N(E ) N(E, ) N(E, )
2z, 4z, 14' l

(Cl la.)

I v, I N(E~) (co)

Unlike (C8), this piece is present for both signs of
Ke. The other singular term in (5. 8) is the inte-
gral involving dq/dk. The singularity in the in-
tegral occurs at its 0 - 0 end, and hence we can use
the small-k form, Eq. (CV), for the purposes of
evaluating that singularity. Thus,

" sin27i(k) dk
n

[ —2vp(0)/KE„]~= N(EJ, )/2KB, K~ & 0 . (C8)

That is, as the binding energy of the state drops
and it becomes more and more spread out, the
electrons on the average are further out and con-
tribute more to the potential. In the limit that K~
-0, this piece becomes singular. All other parts
of the bound-state contribution to (5. 8) are con-
tinuous as E~ 0. However, there are mobile-state
contributions to (5. 8) which are also singular when

K~-0. The first of these, using (C'7c), is

N(E~) N(EJ )
4z, 14m, i

(Cl lb)

which shows that as the parameters of the potential
are changed infinitesimally in such a way as to ex-
pel a bound state from the well, the iterated po-
tential (i. e., the first moment of the charge den-
sity) suffers no singularity or discontinuity.

Let us dwell for a moment on the implications
of (Cll). In (Clla), there is an near-infinite con-
tribution associated with the bound state (the first
term), a contribution which clearly arises because
the electrons contained in the bound state are lo-
cated further from the surface as the binding weak-
ens. Yet this near infinity is canceled by a mobile
charge contribution [the sum of the last two terms
in (Clla)], which implies a corresponding deficit
of mobile charge, i. e., a hole carved out of the
mobile charge distribution. The hole arises, pre-
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The band structures of Ge, Si, GaAs, GaP, GaSb, InAs, InP, InSb, and A18b have been
studied in reflectivity in the energy region 1.6-5.0 eV at temperatures ranging from 80 to
300 K. Utilizing a double-beam, single-detector wavelength-modulation system, and en-
suing Kramers-Kronig analyses, experimentally unambiguous line shapes have been obtained
for the real and imaginary part of the dielectric constants, permitting the identification of
the types of critical points involved in an optical transition, and the determination of the
existence of hyperbolic exciton interactions. Such an interaction has been verified in all
materials, except Si, as an M~ critical point located at A in the Brillouin zone. The location
and energy of the interband transition in these semiconductors correlates with existing band
calculations. The interband transitions in Si are dominated by structure from a large region
of the Brillouin zone. The high-energy E2 transitions in all materials give evidence of a
multiplicity of critical-point structure.

I. INTRODUCTION

The band structures of Ge, Si, GaAs, GaP,
GaSb, InAs, InP, InSb, and A1Sb have been stud-
ied in ref lectivity in the energy region 1.6-5. 0
eV at temperatures ranging from 80 to 300 'K.
Utilizing a double-beam, single-detector wave-
length-modulation system and ensuing Kramers-
Kronig analyses, experimental line shapes have
been obtained for the derivative of the real and
imaginary parts of the dielectric constant. These
analyses enable the identification of the types of
critical points involved in the optical transition as
well as the existence of hyperbolic exciton inter-
actions.

Ref lectivity derivative data using wavelength
modulation' have been previously used to obtain
interband transition energies of several of these
semiconductors. ~ 6 Shaklee et al. ' observed the
reflectance derivative spectra of InSb in the neigh-
borhood of the Ej and Ej+ ~q structure; by studying
the line shapes of the spectra, they obtained evi-
dence for the contribution of exciton effects to the
observed transitions. Evidence for the existence
of hyperbolic excitons in GaAs by means of the
polarization-dependent splitting of the Ej and E&
+ 4& structure was obtained by Rome et al. Wave-
length- modulated reflectance measurements on the
InAsq „P„alloyswere studied by Thompson et al. 4

in the spectral region of the Eq and E&+ &q transi-
tions. Zucca and Shen' observed the wavelength-
modulation spectra of GaAs, GaSb, InAs, InSb,

Ge, and Si and correlated the spectra with existing
band calculations for these crystals. From the
sharpening of the spectra with reduced tempera-
ture due to the reduction of lifetime broadening,
it was indicated that hyperbolic excitions are as-
sociated with the Ej peaks. Since Kramers-Kronig
analyses were not performed on these reflectance
data to obtain the derivative of && and &2, a direct
comparison of line shapes with theory was not
possible. Further evidence for excitonic effects
on the Ej and E&+ &z transition in InAs was ob-
tained by Antoci et al. by studying the tempera-
ture dependence of the line shapes of the Ej and

E&+ ~& structure using thermoreflectance. The
band structure features of Ge, Si, GaAs, GaSb,
GaP, InAs, InSb, InP, and AlSb were studied by
the present authors in the spectral region 1.62-
5. 08 eV as a function of temperature using a
double-beam single-detector wavelength- modulated
reflectance system. Structures corresponding to
various critical points were seen and related to
existing band calculations. The above observa-
tions using wavelength-modulation techniques have
all indicated that the reflectance spectrum in the
Eq region cannot be explained within the frame-
work of the one-electron approximation with life-
time broadening corrections, and suggest that Cou-
lomb interaction should be included to explain the
observed structure. The prior work on these sub-
stances have involved either a number of sub-
stances in a restrictive spectral region or in most
cases have reported only the derivative of the re-


