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We isolate the part of the interaction responsible for energy transfers between reacting
chemicals adsorbed on a solid from the part that gives the potential-energy surface familiar

in the description of the bonding of adsorbates.

I. INTRODUCTION

Chemical reactions are generally described by
rate equations. If the reaction is of the so-called
“adiabatic” kind, these are differential equations
for the numbers of the various participating species
which, at a given time after the onset of the reac-
tion, find themselves in the various quasistationary
energy levels appropriate to the various wells of
the energy surface calculated by assigning fixed
values to the core coordinates, neglecting the core
kinetic energy, and solving the Schrodinger equa-
tion for the motion of the outer electrons. The
energy so calculated is a function of the core co-
ordinates. It is represented by a hypersurface in
the space of these coordinates and acts as potential
energy in the next stage of a so-called Born-Op-
penheimer calculation of the motion of the cores.

A reaction corresponds to the transfer of the
system from one minimum on the hypersurface to
another, via a saddlepoint. Quantum mechanically
the process can be described by a rate equation
describing the occupation numbers of the various
(quasistationary) levels inthe minima as a function
of the time.! Its solution generally leads to a re-
action-rate formula of the type given by Eyring
et al.?

The general problem of the establishment of rate
equations was discussed by Van Hove, * who noted
that special care is required when the Hamiltonian
of the system does not obviously split into an un-

perturbed part and an extremely small perturbation.

Other criteria then determine the decomposition.

This question is especially acute in the case of
chemical reactions. The same forces that mold

the effective potential well in which the reagents
find themselves are presumably also the forces
responsible for the reaction. We here focus atten-
tion on the case in which some or all of the reagents
are chemisorbed on the surface of a metal.

This metal substrate is approximated, for sim-
plicity, by a semi-infinite uniform fixed background
of positive charge pervaded by conduction electrons.
This approximation precludes phonon processes in
the reaction and focuses attention on the effects of
electron charge and spin fluctuations as the opera-
tive dynamic factor in the reactions of chemisorbed
species. Generalization to the case in which pho-
nons, too, are operative is not difficult, however.

In searching for a “small” perturbation for use
in the calculation of the transition coefficients that
occur in the rate equation, one must clearly go
beyond the straightforward expression for the in-
teraction of the adatoms with the metal. That in-
teraction is responsible for the very level scheme
within which it induces transitions, and is thus
hardly to be regarded as perturbation.

The appropriate decomposition of the Hamiltonian
into a perturbed and unperturbed part is determined
by a physical hypothesis as to which variables in
the problem are slowly varying. For example, it
is reasonable to suppose, at least in some cases,
that the nuclear motion of the adatoms, as governed
by the level scheme of the Born-Oppenheimer well,
is described by level occupation numbers that
change slowly compared with the rate of charge or



5 PSEUDOPOTENTIAL FOR
spin fluctuations of the electron gas. The “unper-
turbed” Hamiltonian will be that part 3¢ of H which
commutes with all such slowly varying quantities,

and the perturbation will be U=H —-%C. An expres-
sion for U somewhat reminiscent of that of pseudo-
potential theory in band-struture calculations can

be derived by a consideration of the probable form
of the spectrum of H.

II. ENERGY SPECTRUM OF TOTAL SYSTEM

Inanisolated reasonably small molecule, there is
one energy function Ei(ﬁ) for eachelectronic eigenstate
calculated for a fixed core configuration (here R
stands for all the nuclear coordinates). In most
cases, the separation between different E;’s is of
the order of a volt or volts. When there is a metal
substrate, the gaps between successive E;’s are
filled with a continuum of excitations, and so the
E;’s lose their precise meaning. However, let
Eo(R) be the ground-state energy. This Ey(R) acts
as aneffective potential well for the adatom cores,
and there will be one continuum sequence of excita-
tions for which the shape of this well does not
change materially. At an excitation energy of a
volt or so, an additional continuum sequence will
begin, with a quite different well shape [corre-
sponding to E,(R)], and so on. Here we restrict
ourselves to the first class of excitations. The
well shape is insensitive to these excitations since
they are described by wave functions characteristic
of the infinite substrate, either in the sense of
wave packets remote from the adsorption sites, or
in the sense of plane waves extending everywhere,
but with amplitudes of order 1/volume!/2, and cor-
respondingly small overlap with the adatom. This
suggests that the exact energies (for fixed R) in
this first spectral series be written in the form

E(R, €)=Ey(R)+€ -¢,+6E (R, ¢, (1)

where Ey(R) is the exact ground-state energy of
the total system, €, the exact ground-state energy
of the pure semi-infinite substrate, € one of its
excitation energies, and SE( ﬁ, €) a small energy
shift. In general, OF and E will not only be a func-
tion of R and €, but also a function of other quan-
tum numbers of the substrate, depending on exactly
which of the many states of energy € is under con-
sideration. At first glance, 6E would seem to be
of order of the reciprocal volume. However, this
is questionable in view of recent work on the so-
called infrared catastrophe in the response of an
electron gas to a fixed potential. * As should by
now be evident, we are planning to use an operator
representation of 6F as a kind of perturbation, and
we shall suppose that the problem of the infrared
catastrophe is resolved either through nonadiabatic
recoil effects, or, even if these are neglected, as
the result of integrability in the final sum over
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electron states.
II1. DECOMPOSITION OF HAMILTONIAN

Next we must find the unperturbed Hamiltonian,
that is to say, the Hamiltonian whose eigenvalues
are

E=E, (R)+e-¢,. (2)

Let 10) be the exact ground state of the total sys-
tem. Consider the eigenstates |€) of the substrate,
with only the adatom cores but not theiv outer elec-
trons removed from the scene. (Thus, for the pres-
ent, the substrate is negatively ionized. )

Then the states

le) =|ey-|0)(0]€) (3)

are orthogonal to |0), but not among themselves.
However, they can be orthogonalized, and in such
a way that the order of the labeling € is preserved.
Let {¢) be the complete orthonormal set formed in
this way, the state {€¢,) (derived from |€,), the
ground state of the substrate alone) being omitted.
Consider

1=[0)Eo(R) (0|+2 {€) [e +Eo(R) - € ] (€} . (4)
e#o

The eigenstates of i are (10), {€¢)) with eigenvalues
precisely given by the set (2). The perturbation to
be used for working out the transition coefficients
in the rate equation® is now U=H -1%. Since H,

=Y |€) €(e | (including the term € =€) and since
10)(0] +3 exeql€) (€} is the unit operator, we get

V= V-E(R)+ E) e(lexe] —{exeh
€%

+€o| €u><€0| +€y 2z {€><€}
e>g

V- [E°<§)_<o]+§ (e - €9 (Jexe| ={e)¢eh),

(5)
since |€,)(€ql =1 = Tereq |€)(e|. Should there be
further quantum numbers ¢, besides €, the sum
extends over these too, the states |€), etc., being
then denoted by |€, a), etc.

The form (5) has a certain resemblenace to the
pseudopotential encountered in band-structure cal-
culations. Evidently, because of the very last term
of (5), VU is nondiagonal in the configuration space
T of the electron variables but remains local in
R space.

If the reaction and desorption processes are slow,
it is sufficient to use a Fermi’s “golden-rule” cal-
culation of the rate coefficients. Neglecting non-
adiabatic effects altogether, the eigenfunctions of
the total Hamiltonian (U+ the nuclear kinetic ener-
gy) are

WWRV(R, F ¢ a), (8)



4666

where ¥(R, F, €, @) is some one of the wave func-
tions (¥10), (Ffe, @), and x,(R) are the nuclear
wave functions in the well E,(R). The probability
of making a transition from the nth to the (n +1)th
level of the well is then in Fermi’s golden-rule
approximation:

Wnaney = Z) f X;::l(R)w*(ﬁ, .I.', €, a’)<FIU|F'>

a,€
a’,e’

X x,(R)¥(R, ¥, €, )
x 6(EY

mi —Ep +€ =€) o-BEN)re-eq)

XdF,dTy. - dTydTy« - dﬁxdﬁz ooy n

where E!" is the energy of the nuclear level # in
the well Ey(R).

Practical evaluation of the pseudopotential U must,
of course, draw on some form of approximate
theory; however, the portion of V responsible for
the quasistationary-level scheme will no longer be
included in the evaluation of the transition proba-
bilities.

IV. RAPIDITY OF CONVERGENCE

The utility of the above scheme hinges on the
question of whether very few terms in the sum for
U suffice. For definiteness, consider the case of
desorption of a hydrogen atom. When in the ground
state of the well, its electron is essentially shared
with the metal. It is then reasonable, as above, to
consider the states |€) to be the ny +1 electron
states of the metal, where n, is the number of
electrons of the pure metal. In the highly excited
states of the well, however, the electron has al-
most entirely transferred to the hydrogen, prepa-
ratory to departure of the whole hydrogen atom.
The above procedure then remains formally cor-
rect [provided terms such as [1)E,(R) (11+ further
suitably orthogonalized projectors are added to 7]
but becomes inconvenient. A “natural” form of
the wave function analogous to (6) would then be

Ax(ﬁv F1) d)(ﬁ’ Fa e ) ’ (8)

where ¢ is only an ny-electron wave function and
A the antisymmetrizer for the electron coordinates.
The problem is that at sufficiently large values of
R (correspondingly to a highly excited but still
bound state of the H atom), E,(R) becomes doubly
degenerate or very nearly degenerate (owing to the
two spin orientations of the electron of the nearly
neutral H atom). For such states a simple pro-
cedure is to no longer mention the electron on the
hydrogen atom, except insofar as it leads to the
spin degeneracy. In place of |0), one now has

10, m), m=+%, and in place of the {€), one con-
siders the states {¢, m) obtained by orthogonalizing
the states
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le,m)—|0,m) (0, m|em) . (9)

Here l€,m) is the direct product state €)X |m),
but now |€) is one of the ny-electron states of the
metal. The approximate form of the potential well
is shown in Fig. 1.

There is a crossover point R..4¢, which, in the
sense of the Hartree-Fock approximation sepa-
rates the nondegenerate (i.e., nonmagnetic) from
the degenerate (or “magnetic”) regime. Actually,
for R >R, the very lowest states may still be
nondegenerate in the sense of Kondo compensation, 5
but the states whose energies exceed that of the
lowest ones by the Kondo condensation energy will
be degenerate. In this sense, one might say that
as R increases through R..;, the Kondo conden-
sation energy decreases from a large to a small
value.

As for the pseudopotential U, it evidently acquires
a spin-dependent part for R>R.4,. We may pur-
sue the same analysis that led to expression (5),
but we now base it on state vectors such as (9).

We note that both (+ 3 |0, ) are nonvanishing. Con-
sequently, the contribution to U which equals

-7.(€ - €g){€) (¢ }is anondiagonal matrix in the spin
space of the electron on the hydrogen atom.

In general, both the spin-independent and the
spin-dependent parts of U will not only be nonlocal
but will also be a many-particle potential. In
special cases, such as the Newns-Anderson model,
it can be approximated by a single-particle poten-

FIG. 1. Approximate form of potential well for ionized
and neutral hydrogen. For R>R,, the ground state ac-
quires twofold degeneracy.
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tial. For R>R .y, the spin-dependent part then
takes the form of an “S.3” interaction.” These
and related matters will be discussed in a forth-
coming paper.

V. DISCUSSION

To further clarify the role of the pseudopotential
in a surface reaction, we consider a purely sche-
matic model of such a reaction. Suppose that two
atoms A, adsorbed on a substrate, are capable of
unrestricted motion parallel to the surface and
furthermore that the same atoms in free space
have a vanishingly small cross section for the re-
action

A+A-A,.

(The cross section can be inhibited due to an in-
adequate mechanism for disposing of the binding
energy of A,.)

Consider two atoms A at equal distance Z from
the surface. The energy contours, as shown in
Fig. 2, can be divided in three regions. Region I
(Z large and the relative distance 7, small) cor-
responds to free A,. Region II (Z of order Z,,,
the distance of the isolated minimum in the energy
surface, and 7, still small) corresponds to ad-
sorbed A,. Region III (Z small and 7, large)

corresponds to two dissociatively adsorbed A atoms.

Region IV corresponds to free 2A.

Consider now a head-on collision of the two A
atoms, moving parallel to the surface and confined
to the free-atom region IV. (This confinement
only negligibly affects the possibility of their mov-
ing exactly parallel to the surface). In region I,
there will be a semicontinuous spectrum (continu-
ous with respect to motion normal to Z and dis-
crete otherwise), and in region II there will be a
few discrete levels. If Uwere zero, the incident
wave representing the two free atoms would re-
emerge from regions I and II with unchanged total
flux (though some scattering will have occurred).
Stated otherwise, the occupation numbers of the
various states (continuum or otherwise) will be
constants of the motion. There is also some mild
quasistationary character engendered by the exis-
tence of several minima, with separately derived
approximate level schemes. Tunneling between
these destroys the stationary nature of the levels,
but in general, this effect will be small compared
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FIG. 2. Energy contours in Z — »p plane for two atoms.

with that due to V. Then the reaction 24 - A, can-
not occur. On the other hand, if VU is finite the
initially empty levels of regions I and IT will gradu-
ally become populated, according to the master
equation (or its generalization to continuous in-
dices). In this way the reaction 2A - A, does take
place, U acting as a means of damping.

It is evident that one can dispense with a quan-
tum-mechanical description of the atomic motions
of the adatoms altogether, given the energy surface
E(R). The master equation turns into the Boltz-
mann equation, with dn/dt becoming the total
time derivative (including the change due to the
“systematic” part of the effective potential en-
ergy). The transition terms calculated using
U turn into the collision terms.

A detailed derivation of such a description (in-
cluding application to the inverse case of A, dis-
sociation on the surface) will be given in a later
paper.
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Measurements were made of electromagnetic generation of ultrasonic shear and longitudi-
nal waves at liquid-helium temperatures in several single crystals of bismuth for each of the
three principal crystallographic axes. Measurements were made over the frequency range
5—50 MHz. In addition to giant quantum oscillations (GQO) in the generation efficiency, which
were observed in all cases, detailed studies of a pronounced low-field (30—300 G) peak in the
generation efficiency are reported. This peak is seen both for shear- and longitudinal-wave
generation and is found to depend strongly on a number of parameters, including temperature,
rf field strength, frequency, and crystallographic orientation. The frequency dependence of
the shear-wave measurements is compared with the recent helicon-phonon interaction theory

of Quinn,

I. INTRODUCTION

The generation of sound waves directly from elec-
tromagnetic radiation incident upon a metal surface
in the presence of a static magnetic field was first
discovered by Larson and Saermark.! The classi-
cal explanation for this effect derives essentially
from the Lorentz force on the eddy currents induced
in the rf skin depth of the metal and is consistent
with the dependence of the observed sound polar-
ization on geometry as well as the strictly linear
field dependence up to 140 kG. A number of ex-
periments? have been carried out on a variety of
metals, both in the classical limit and at liquid-
helium temperatures. A reasonably general theory
of electromagnetic sound generation in a free-elec-
tron metal has been given by Quinn.® The results
of this calculation are in good agreement with mea-
surements on potassium at helium temperatures
by Turner et al.?

All of the early experiments on electromagnetic
sound generation in metals were performed in sit-
uations where quantum effects were comparatively
unimportant. Following the intuitive notion that
the same electron-phonon interaction responsible
for the attenuation of a propagating wave is also
fundamentally the source of the sound generation
at the metal surface, Dobbs et al.* observed giant
quantum oscillations (GQO) in the generation of
shear waves in Bi at liquid-helium temperatures.
Since then, GQO have also been reported in the

generation of longitudinal sound waves in Bi.°® Fur-
ther observations of these quantum effects in Bi
are summarized in this paper.

In addition to the Landau-level effects in Bi which
had been anticipated in the generation efficiency
from simple reciprocity arguments, a very unusual
large peak was also observed in the generation of
shear waves along a binary axis at low fields. A
similar peak was later observed in the longitudinal-
wave configuration.® These effects have also been
reported independently by Gantmakher and Dolgopo-
lov, ® using cw techniques and have no apparent
counterpart in the attenuation, which varies mono-
tonically in the field region 30-300 G for which the
low-field peak in the generation occurs. A detailed
experimental study of this low-field peak for all
possible sound modes along the binary, bisectrix,
and trigonal axes is presented in this paper.

II. EXPERIMENTAL TECHNIQUE
A. Samples

In this study six primary samples from different
sources were used (see Table I). Four samples are
oriented single crystals, the other two polycrystal-
line with large-size grains. The nominal starting
purity ranged from reagant grade to zone refined
(99.99995% pure); the thicknesses of the samples
were from 2-20 mm. Orientations were found to
be within 2° of a binary, bisectrix, or trigonal axis
(hereafter refered to as X, Y, or Z, respectively).

Just prior to making measurements, the sample



