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The purpose of this paper is to study the effect of a surface on the spin susceptibility of
simple models of paramagnetic metals. We first formally derive the form of the random-
phase-approximation (RPA) equation satisfied by the dynamic susceptibility of a single tight-
binding band of electrons that interact via a local intra-atomic Coulomb interaction. We then
find an explicit expression for the dynamic susceptibility appropriate to a simple cubic metal
with a (100) surface, in the absence of interactions. Special limiting forms of this function
are studied, and in particular the magnitude of the magnetic moment induced in the surface
layer by a static, spatially uniform field is calculated as a function of the position of the Fermi
level. In a final section, we use a simplified form of the RPA equations to obtain analytic ex-
pressions for the static, wave-vector-dependent susceptibility in the limit that exchange en-
hancement of the host becomes large. The static correlation length between spins in the sur-
face layer remains finite in our model even when the Stoner factor 1-Tvanishes. The form
of the static correlation function is weakly dependent on (1-T) when this parameter is small,
but we find a rather strong dependence on the strength of the intra-atomic Coulomb interaction
in the surface layer. A number of features of this result are discussed and compared with an
earlier molecular-field theory of static spin correlations near the surface of the Heisenberg
paramagnet.

I. INTRODUCTION

A number of theoretical studies of the effect of
a surface on the magnetic properties of crystals
have been carried out. With one exception, ' these
papers have confined their attention to materials
described by the Heisenberg model of ferromag-
netism and antiferromagnetism.

At low temperatures, spin-wave theory may be
employed to explore the effect of a surface on the
excitation spectrum and the thermodynamic prop-
erties of the crystal. More recently, ' molecular-
field theory has been used to obtain an approximate
description of the temperature dependence of the
magnetization near the surface when the tempera-
ture is close to the ordering temperature, and
also the behavior of the static spin-correlation
function (S,(1)S,(l ) ) when T and 1 are in or near
the surface. These studies show that the presence
of the surface modifies the behavior of the spins
in or near the surface in important qualitative
ways. For example, as the temperature T ap-
proaches the ordering temperature To of the bulk
material, it is well known that the static correla-

tion length in the bulk becomes infinite. However,
at least within the framework of the molecular-
field theory, the static correlation length associated
with the function (S,(1)S(1 )) remains microscopic
and insensitive to temperature as T- T, from
above. ' The spins in the surface are forced into
order by the effective field which arises from the
ordering of the bulk spins, and no long-range
spatial correlations appear within the surface layer
near To. At low temperatures, as well as just
below the ordering temperature To, ~

' the mag-
netization in and near the surface is much smaller
than in the bulk of the crystal.

So far, we know of no study of the effect of a
surface on the magnetic response of an itinerant-
electron gas. In particular, in itinerant-electron
materials that are strongly paramagnetic either
because the exchange enhancement is large, or be-
cause the temperature is near the magnetic order-
ing temperature To, one might expect the behavior
of the material near the surface to be very differ-
ent from that in the bulk, if the itinerant-electron
gas exhibits behavior similar to that described
above for the Heisenberg model.
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The purpose of this paper is to explore the ef-
fect of a surface on the properties of an itinerant-
electron material that is strongly paramagnetic
by virtue of strong exchange enhancement in the
bulk of the material. We begin by deriving an

equation for the dynamic susceptibility of the sys-
tem by means of a random-phase-approximation
(RPA) decoupling scheme. This is done for a
model which describes a single narrow band of
electrons, which may be described by the tight-
binding picture in the one-electron approximation.
Two electrons interact only when they are in the
same unit cell of the crystal. For the case where
the interactions between the electrons are ig-
nored, and the crystal is taken to be simple cubic
with a (100) surface, we derive a form for the dy-
namic susceptibility. If a static, spatially uniform
magnetic field is imposed on the system, the mag-
netization induced by the field, as a function of
distance from the surface, is given by a simple
analytic expression that may be calculated readily
from tabulated functions. We then turn to the case
where the exchange enhancement in the bulk is
large. We are not able to solve the full RPA
equations for the dynamic response. However,
we modify these equations and produce an inte-
gral equation which may be solved in closed form
for the static correlation function. We allow the
strength of the interaction between electrons to
differ from the bulk value when they are in the
surface.

The form of the static correlation function we
obtain from our model bears a close resemblance
to the results obtained earlier for the Heisenberg
ferromagnet and antiferromagnet, when the tem-
perature is close to the ordering temperature.
The surface has a pronounced and qualitative ef-
fect on the nature of the static correlation function
and on the response of the surface region to an
external field. As the quantity (1 -f ), the inverse
of the exchange enhancement factor, is allowed
to approach zero, the static correlation length re-
mains microscopic in the surface layer, while in
the bulk it diverges as (1 I) '~ . The-form of the
static correlation function is more sensitive to
the parameters that characterize the surface en-
vironment (in our case, the change in intra-
atomic Coulomb interaction near the surface) than
to the value of I.

Recently, a theory of chemisorption has been
advanced by Schrieffer and Gomer. ' This theory
relates the chemisorption energy to the local sus-
ceptibility of the metal at the surface. Our re-
sult suggests that the Schrieffer-Gomer expres-
sion for the chemisorption energy should be in-
sensitive to the presence of bulk exchange en-
hancement. To the extent that one may replace
the parameter 1 -I of the paramagnon theory by

(T —T,)/T„ the results also suggest that the
chemisorption energy should notexhibit ananomaly
as the temperature of a ferromagnetic substrate
passes through T,. We also note that Suhl and
co-workers' have presented a theory of spin-fluc-
tuation-induced desorption in nearly ferromagnetic
metals. A central approximation used in this
work is that the dynamic wave-vector-dependent
susceptibility near the surface is taken to be the
same as that in the bulk. We cannot make direct
contact with this work, because we have not ob-
tained information about the frequency dependence
of the susceptibility near the surface. However,
we feel our results for the static susceptibility cast
some doubts on the validity of the approximation
used by Suhl et al. , since we find the local static
susceptibility is insensitive to I, as mentioned
earlier.
II. RPA EQUATIONS FOR THE SEMI-INFINITE MATERIAL

In this section we sketch the derivation of an
equation for the dynamic susceptibility of a semi-
infinit~ gas of interacting electrons. The model de-
scribed in Sec. I will be employed, and the decou-
pling scheme we use is the random-phase approx-
imation (RPA). Since the use of the RPA is by now

a standard procedure, we only provide a brief
sketch of the procedure. This section serves pri-
marily to establish notation and define the model.

As we stated earlier, we consider a single band
of electrons. We assume that the electrons move
in an energy band that may be described by the
tight-binding picture. Then the kinetic energy T of
the electrons may be written in second-quantized
form:

T= Z t(5)c;,~,cf, ,
T5ty

where c;„cy,destroy or create electrons of spin
o on the site l of the lattice. The quantity f(5) de-
scribes the hopping rate between site 1 and 1+ b
The sum over sites in Eq. (1) is presumed to ex-
tend only over a semi-infinite solid. An electron
at a site in the surface layer thus can "hop" to
fewer sites than an electron in the bulk. In gen-
eral, one expects the transfer integrals t(5) to as-
sume values in the surface layer different from
those appropriate to the bulk. Since little is known
about these changes at the present time, we assume
that the hopping integral between sites in and near
the surface is the same as in the bulk. The form of
the formal results of this section are not affected
by this assumption, and the effects of changes in
t(5) near the surface are easily incorporated into
the discussion of Sec. III, although the results pre-
sented there will then assume a more complicated
algebraic form.

The electrons interact with each other by means



SURFACE EFFECTS ON THE S P IN. ~ ~ 4639

of the intra-atomic Coulomb interaction in the
model. We write the Coulomb term in the Hamil-
tonian in the form

I'c=~r U(I.)&r &r~

The strength of the intra-atomic Coulomb integral
is allowed to vary with the distance l, of site l
from the surface. Particularly in nearly ferro-
magnetic metals, one expects that changes in the

strength of the Coulomb interaction near the sur-
face will play an important role in determining the
magnetic response. The total Hamiltonian is thus

H=T+ Vc .

We wish to study the correlation function

s(iiipipi4; t)=&e(t)([cr ~(t)cr, ~(t), cr, (0)cr ~(0)l) .

(4a)
Attention will be focused on the particular combi-
nation

x(11;t) = S(1, 1, 1,1;t)

= ie(t) ([sf (t), sr. (0) ]) . (4b)

In Eq. (4b), sr and sr. are the spin raising the low-
ering operators for the site l. If a transverse
magnetic field of frequency ~ is applied locally to
site l' of the system, then the amplitude of the spin
density induced at site l is proportional to

x(11 '~)=
2

~ x(1 l, t) . (6)

To derive an equation satisfied by X(l 1', t), one
begins by computing i &S(1,Ip Ip 14, t)/&t in the standard
manner. The resulting equation of motion contains
terms that arise from the Coulomb interaction.
These terms involve a more complicated correla-
tion function of the form

e(t)(['r... (t) -, ;(t) r...(t) r...(t) ', (o), (0)f&.

The RPA consists of approximating the sequence
of four operators at the time f, by the following
form:

Cf C JCkC I (ClCg

)COCCI

—(Cl C l ) gCCg
t

x(1 I', ~) = xp(»'; ~)

+ + Xp(1, 1', ~)U(1". )X(1" 1,~). (6)

The sum over l' extends over the semi-infinite
crystal. The function xp(1 1'; ~) is the dynamic sus-

+ (CpC))C(Cg —(Cpc) )C(C ( .
From the truncated equation of motion, one may
then derive a closed equation for the Fourier trans-

«pform X(l 1, &u) introduced above. The equation
assumes the form

ceptibility of the medium, calculated from one-
electron theory. This function is not the same as
the dynamic susceptibility of the Bloch electrons
for the infinitely extended crystal because of two
effects that modify the single-particle wave func-
tions. The wave functions of the crystal must be
calculated in the presence of the Hartree potential,
which is modified by the presence of the surface.
An electron in the unit cell l with spin a sees the
Hartree potential U(l, ) (nr, ). For the model the
Hartree potential is a constant in the bulk of the
crystal, but it clearly varies near the surface, be-
cause U may change there, and the surface will
induce variations in the number density in its
vicinity. The wave function of the electron is also
changed by the fact that a site in the surface is
coupled to fewer sites by t(F) than a site in the bulk.

The function Xp(11, u&) is well approximated by
the bulk response when I and l lie well within the
crystal. However, from the preceding paragraph,«I
when either l or l lies in or close to the surface,
we see that X,(1 1,&u) will differ from values ap-
propriate to the bulk. Since X,(11,~) is the re-
sponse function appropriate to the one-electron
problem in the semi-infinite medium, one does not
expect large changes in go unless l or l lies in the
surface layer or within a short microscopic distance
the order of the Fermi wavelength from it. '

In the presence of a free surface, the crystal re-
mains periodic in the two directions parallel to the
surface. ~ This fact may be used to simplify Eq.
(6). Let the surface layer be parallel to the x-y
plane, and denote vectors which lie in the x-y plane
by use of the subscript II. Then X(11,&u) and

Xp(1 1 (0) depend only on the difference 1 1 al
though they depend on l,, and l, separately. One may
then make a partial Fourier transform and write

X(1 l, p)= — ~ s'""""'"'X(& p I., I'.), (&)
S Xi(

with a similar transformation of Xp(11, &u). In this
expression N, is the number of unit cells in the sur-
face layer. Upon insertion of Eq. (6) into Eq. (7),
one obtains

x(& ~;I,I.) =xp(&„~;I,I',)

+ Z xp(x ~(d'I I ) U(l ) x(x (d'I I )

(8)
The result in Eq. (8) will form the starting point

for the approximate theory discussed in Sec. IV.
First, in Sec. III, we turn to a study of the kernel
xp(x „(u;I,I,) .

III. STUD Y OF THE FUNCTION X,(X „;I,I,')
In this section we obtain an expression for the

kernel Xp(x„~;I,l,) that appears in Eq. (&). It is
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a difficult matter to do this for a general surface
geometry even for a system described by the sim-
ple Hamiltonian of Eq. (3). We therefore restrict
our attention to a particularly simple model, al-
though the techniques described below may readily
be adapted to a more realistic situation. The pur-
pose of this section is to attempt to estimate the ex-

I
tent to which the response function go(X„&u, l, l,)
deviates from its bulk character when l, and/or l,
lie near the surface. While the initial remarks in

this section are quite general, we soon restrict at-
tention to a simple cubic crystal with a (100) sur-
face. We also neglect the effect of the change in
the Hartree potential near the surface, so the
modification we find in go(X„~;l, l,} comes about by

the fact that an atom in the surface layer has one
nearest neighbor less than an atom in the bulk.
We also confine our attention to paramagnetic
metals.

Suppose y„(1 ) is the nth electronic eigenfunction
appropriate to the semi-infinite solid, in the pres-
ence of the surface. Let S„be its energy. For
the moment, we need not imagine that the Hartree
potential is ignored. Define a spectral-density
function p(11, Q) as follows:

p(1 1;A) =Z„y„(1)q& „*(1 ) 5 (A —8„) .
It is a straightforward matter to show that

Xo(11;o) =I dA$ dAo [f(Q$) -f(Ao)]
n2- a& -u -~q

xp(11;Q)p(1 1;Q), (10)

where f(Q) = (e "+1) ' is the Fermi-Dirac function.
The problem is thus to compute the spectral-den-

sity function. This may be done by introducing the
Green's function

g(z) = 1/(z -Hg),

where H& is the Hamiltonian of the one-electron
problem. Let G(11, z) denote the matrix element
of the operator g(z) between the Wannier states
associated with sites l and 1 . We write

G(1 l, z) =(1 g(z) ~l ') .
Then we have

p(l 1, Q) =(1/lz) lm[G(11, Q —tt})] .

We now compute the function G(l 1,z) by a
technique that has proved of value in closely related
problems. It will be useful to specialize the dis-
cussion to the simple case mentioned above. We
imagine we begin with a large macroscopic cube
with sides of length I . The cube is assumed to be
a perfect simple-cubic crystal, and we apply
periodic boundary conditions to the large cube.
Then form two free (100) surfaces normal to the

z axis by setting to zero in the Hamiltonian all of
the hopping integrals that connect a site on the
plane I,,= 0 with sites on the plane /, = 1. In effect,
this creates an extended planar defect in the other-
wide perfect crystal. The form of the Green's
function may be obtained by the methods of defect
theory. If we were to consider a more realistic
model, we could at this point add to the Hamiltonian
the terms that describe the change in the Hartree
potential near the surface.

In our case, if t is the nearest-neighbor hopping
integral, the Hamiltonian H, may be written

H1 =Ho+ V,

where Ho is the Hamiltonian of the perfect macro-
scopic cube,

Ho= t 2 c (1+5}c(l),

and V subtracts from Ho the contribution from the
bonds that connect the surface at L, = 0 and $,=1:

V= —t 2 [c (1„,0)c(1, 1)+c (1, , l)c(1„,0)],
1„

(13)

where we use a more explicit notation c(l „l,) to
denote the destruction operator appropriate to the
site l = 1. , +zl, . We use units where the lattice
constant is taken to be unity, and omit explicit ref-
erence to spin. Define the Green's function
Go(11,z) of the infinitely extended crystal:

G,(1P,z)=(1~(z-Ho)-'~P) .
Then the full Green's function of the cut crystal
satisfies

G(1 1,z) = Go(1 1, z)

G (11, )(1 ~V~1 )G(1, ) .

(14}
We now introduce Fourier transforms with respect
to the two spatial variables parallel to the surface,
as we did earlier. Let

G(11 ', z) = (1/tt, ) Z g(k„z; l, l,) e '" ' "
~

' ' .

For the present simple model Eq. (14) then be-
comes

g(ktt zi lgl c) =go(kn zi la —l ) —tgo(g~ z; l )g(g& z; 1, l )

—tgo(k„z; l, —1}g(k„z;0, l, ) . (15)

Equation (15) is readily solved in closed form.
To exhibit the form of the solution, we omit the
common factor k„z that appears in each of the
quantities in Eq. (15}. Define

go(+) = go(1}+go(0}
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where go(1) =go(k„z;1 g) I, = 1. Thenthe solution to
Eq. (15) is

x Z e".". ' (1 -e" og"}6(Q-E(k,gk.)) .

g(l, l', ) =g (l ~ -l, )

, t I g (l*}-g (l .—1}][go(l.) -go(l. —1)1

2 1+tgo(-)

It follows that

1
Xo(&go)~ l.l. ) =

(21)

t [go(l.)+go(l. —1)i[go(1.}+g.(t. —1)]
2 1 + tgo(+}

Then go(l, ) may be written in the form

~1+(l&l(,) =
—, (17)

We are interested in the form of g(l„l,) for the
case where l„ l, lie on the same side of the one
surface. Let l, and l, lie above the surface at
l, = 1. For this case, Eq. (16) reduces to the re-
markably simple form

g(l„l,) =g (l, —l, ) -g (l, +l, ), l„ l, &1 . (18)

We now return to the computation of the spectral
density. We Fourier transform the spectral den-
sity, as we have other quantities that have entered
the theory:

p(1 1,Q) = 2 p(k„A; lg, }e""'"~~

(19)
From Eq. (18) we see that

p(k~~Q& l l ) = po(kgQ& l l ) po(kgQ& l +l )

(20)
If we define

E(k) = 2t(cosk, + cosk, + cosk,),
the energy of a Bloch electron of wave vector k in
the perfect crystal, then one easily finds

po(kgAj lglg) = — Z e' g"g 'g) 5(Q E(kgkg})
a,

so that the explicit form of p(k„A; l, l, ) becomes

p(k„Q; l, l, ) =—

The solution in Eq. (16) may be simplified using
some relations from earlier work. We wish to
know the Green's function near the real axis, for
z= 0-ia. We choose units in which the lattice con-
stant is unity, and define a variable

A —2t(cosk, + cosk, )
2t

and let

e- )(gg- g'g)(l - ) g) [1 e)og l ] [1 e)zg' l~g]

iF„KP'

f(E(K„+X„,li )) f(E-(K„, K )) (22)

m(l) =h Z Xo(11,0) cos(q ~ 1 +p) . (23)

The sum over 1 in Eq. (23) is confined to the half-
space l, & 1, of course. Upon replacing the sum
g, »exp(ikl, }by o5,,oL in the limit as L-~, we
find for l, & 1

m(1 }= [cos(q ~ I+ P) + cos(q „~1+@)]

x Z (1- cos2~, 1,)8(77, )7+q)
K

+ [sin(q ~ 1+p) + sin(q„~ 1+P)]

x Z sin(2z, l,) 8(Pc, p7+q) . (24)

In this expression V=L is the volume of the orig-
inal cube, q„=q}}

(- - - f(E(~})-f(E(~+q))
E(p7+ q) —E(~) (24a)

The result in Eq. (22) is the principal result of
the present section. The surface effects in the
response function are contained in the factors

and ~' " '~ inside the square brackets. If
these factors in Eq. (22) are ignored, then the ex-
pression reduces to the usual formula for the dy-
namical susceptibility in the bulk. One can see
that the effect of the surface on the response is
localized to a distance the order of the Fermi wave-
length from the surface. When k~l, »1, the ex-
ponential factors oscillate rapidly as ~, and ~, are
summed over, so the contributions from the cor-
rection terms are small. At large distances from
the surfaces these corrections will oscillate like
(cos2k), l,)jl, in the manner appropriate to Ruder-
mann-Kittel oscillations in one dimension.

To obtain a feeling for the nature of the correc-
tions to the bulk response contained in Eq. (22},
suppose a static spatially varying magnetic field
as applied to the system. Let the field that acts
on site 1 be given by

h(1) = h cos(q ' 1 + P),
where h and the phase angle Q are real.

The moment m(1) induced at the site 1 is given
by
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Define the functions

= —Z 5(Er —Eg),
1

){(lg) = —Q (1 —c o2sxl, ) (5E r- Eg) .1

Then the ratio

r(f.) = ){(I.) /X.

provides a measure of the importance of surface
effects in the response of the medium to a static
spatially uniform magnetic field. This ratio is the
ratio of the magnetic moment induced in layer l,
to that induced in the bulk by a static spatially uni-
form field.

This ratio may be expressed in terms of tabu-
lated functions. Def ine

G;{E)=-Z
N g E-Eg -i&

Numerical values of some of these functions have
been tabulated in a number of papers. " The ratio
r(l, ) then assumes the form

( )
Im[Gu, (EF)]
Im [Gp(Er)]

(25)

Recall that our convention places the surface at
l, =1.

There is only one parameter other than l, in Eq.

The method we have employed to derive the sus-
ceptibility gives a form applicable to a slab of
thickness L. The first line of Eq. (24) indicates
that the exciting field, chosen to be a plane wave
of vector q, excites first of all a standing wave
inside the slab. The factor of cos(2x, l,) shows that
the amplitude of the standing wave varies near the
surface. On the second line a set of terms ap-
pears that arises specifically from the presence of
the surface. The terms of the second line describe
a standing-wave response 90' out of phase with the
driving wave. The amplitude of this wave is zero
except near the surface, since the factor of
sin(2x, f,) will cause the amplitude of the wave to
decay rapidly as one moves into the crystal.

Now we take the limit of Eq. (24) as the wave
vector q - 0. This will give us an expression for
the spatial variation near the surface of the mo-
ment induced by a static external field that is uni-
form in space. The terms proportional to sing
drop out, since lim; p e(x, x+q) is an even function
of x,. In the limq- 0, m(1) also depends on l,.
Then

m(l, ) =h cosP —Z (1 —cos2x, l,) lime(x, Tc+q)
K a-o

h cosQ Z (1 — c2oslx, )5(E rEq) .

(25), and that is the position of the Fermi level
relative to the bottom of the band. If W is the
bandwidth, let P=Er/W. Then as the band pro-
ceeds from full to empty, P varies from 1 to 0.
It is straightforward to show that Eq. (25) is sym-
metric about P= &.

In Fig. 1 we plot the ratio of the moment in-
duced in the surface layer to the value in the bulk
[the quantity r(1)] as a function of P. If the band
is nearly empty or nearly full, the moment induced
in the surface is very much smaller than that in
the bulk. When 0. 2&P&0.8, the effect of the sur-
face on the response is a 10 or 15' effect; i.e. ,
it is a rather small effect. This lends support to
the procedure employed in Sec. IV, where the
function gp(l I, &u) in Eq. (6) is replaced by that
appropriate to the bulk.

IV. EFFECT OF ELECTRON-ELECTRON INTERACTIONS
ON RESPONSE; NEARLY FERROMAGNETIC LIMIT

In this section we discuss the effect of host ex-
change enhancement on the response of the semi-
infinite medium.

In Sec. III we studied the function yp(l I, &u) for
a very specific and simple model of a semi-infinite
paramagnetic metal. Even for this simple model,
the form of gp(1 I, ~) is not easy to deal with.
Thus there seems to be little hope that one can
solve Eq. (8) for a realistic model without an ex-
tensive program of numerical studies. In this pa-
per we begin with Eq. (8) and then make a series
of modifications until we reach a form that may be
solved analytically. While we make important
and serious approximations to Eq. (8) to do this,
we feel that the essential features remain, in the
limit that the exchange enhancement in the bulk
becomes very large.

In fact, we only consider the case where the ex-
change enhancement of the bulk becomes very
large. This means, in the conventional notation,
that (I -I) «1, where I = Up&(0). The parameter
Uo is the Coulomb interaction strength in the
bulk and N(0) is the bulk density of states at the
Fermi level. An essential feature of the limit
(1 -I)«1 is that the static correlation length $ be-
comes very large, since g

—(1-T) '~2 in the RPA.
If the crystal is subjected to a static perturbation,
then the magnetization produced will vary slowly in
space, and appreciable variations in the magnetiza-
tion can result only in the length ). Thus we ex-
pect the variation produced by the surfa, ce in the
response function g(X „~;I,l,) of Eq. (8) to extend
into the crystal a distance $, in the limit of small
~ and small X, . For fixed l, and l„ the sum over
l, thus will include a set of planes that extends
over the distance $, in this limit. We have seen
in the preceding section that gp(X„u, l, l,) differs
from the bulk value only when l, or l, lies within
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X(p"I(X,(p;l, -l', ) = Z e 'x " ' 'X,'"'(l-l ';(p),

(2'la)
where

Xp '(1 —1;(p) = —Z Xp"'(k, (d) e'"" ' ' . {27b)
N

Our procedure will be to assume a model form
for XII '(k, &u) in Eq. (27b), then obtain an analytic
formula for xp '(X„(p;l, —l,) in Eq. (27a).

We confine our attention only to the static ((d = 0)
response, and for xp"'(k, 0) we choose the simple
model form

(28)

0.2-

O.l

! I I I I I 1 I

O, I 02 09 0.4 05 06 0.7 03 0.9 IQ

p

FIG. 1. Ratio ~(l) as a function of the reduced Fermi
energy I' for the model discussed in Sec. III of the text.

one or two atomic layers of the surface, since the
Fermi wavelength is the order of the lattice con-
stant. Thus, when ( is very large compared to
the lattice constant, we should not make a serious
error by replacing xp(X„(p'l, l,) by the infinite-
medium response, which we denote by the symbol
Xp"'(X„pI;l, -l,). Thus our first step is to replace
Eq. (8) by the approximate form

In Eq. (28), x, is the unenhanced (one-electron)
static susceptibility of the bulk and o is a micro-
scopic length, presumably the order of the Fermi
wavelength.

This form for xp"'(k, 0) provides only a crude
representation of the bulk response function, since
it is characterized only by the two parameters Xo
and the range parameter 0. The wave-vector de-
pendence of Xp"'(k, 0) in a real material is much
more complex than this. In particular, the form
in Eq. (28) does not reproduce the Ruderman-
Kittel-Kasuya-Yosida (RKKY) oscillations in real
space, since the singularity in the slope at k = 2k~
is not present in this simple form. We choose this
form because it does crudely represent the prin-
cipal over-all features of the bulk response, and we
can proceed with the remainder of our discussion
by the use oi analytic methods. It is then straight-
forward to show that

X(XppI, l I,) = X(I (X „(d;l, -l,)

x U(l", ) X(X„(d;1, l,) . (26)

We allow U to vary near the surface. Variations
in U may become particularly important when the
bulk is nearly ferromagnetic. At the same time,
one expects one can mimic effects of the variation
in Xp(X„(p, l,l,) near the surface by varying U(l, ).
An increase (or decrease) in U near the surface
enhances {or suppresses) the response of the sur-
face region over the value appropriate to the case
where U assumes the bulk value near the surface.
This effect is quite similar to that produced by an
enhancement (or decrease) in the one-electron re-
sponse function Xp(X „pI;l,l,), at least in a qualita-
tive sense.

Equation (26) still cannot be solved in general,
without a specific form for go '. We write

}t(3: I &+ Q -x(
~~

IIIg-Iz I X(X 0.l I )r''

2O' &&x i(f
(30)

where I = Up Xp and &I= (U Up) Xp.
We now make one final approximation which is

closely related to the approximation we already
made for X(I"'(X„O,l, l,). The sum over l, in the
right-hand side of Eq. (30) will be replaced by an
integral. Since we have already washed out the

X( (X„0 I I ) — ~ -i(x „II I, I;I -{2S)

where X(X„)=(T '(1+ oPXP)'~'.
If we insert the form in Eq. (2S) into Eq. (26),

and assume that the Coulomb interaction in the
surface assumes a value U, different from the bulk
value Uo, then we need to solve
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details of the bulk response function at short wave-
lengths by the approximation in Eq. (28), to retain
the sum in Eq. (30) would add little to the validity
of the theory presented here, without at the same
time improving Eq. (28).

Thus, we finally arrive at the approximate inte-
gral equation that will form the basis of the re-
mainder of this section. We suppress repeated
reference to the fact that ~ = 0, and write

Xo 8-))(X q) I ( r' I-
2o')((x „)

I
2o'l((X, )) ., df" -1( )))I ( (I (X . f f )

+
2 a~(g )

&
" "' "X(x„;Of ) ~ (31)

Recall that the lattice constant has been chosen to
be unity.

The virtue of Eq. (31) is that it may be solved
exactly by a variety of methods. We proceed by
noting the following identity:

One finds

P(X„,f') = r(—X „)e 2('"-"' .
The static correlation function is thus given by

(36)

(3'7)

(X .ff )
Xo

[ t(a -))I)( ('I-(X ) -((x)))()+)')]
X l)t 2 2~(x )

e " -r 1, e

(38)

The result in Eq. (38) is the principal feature of
the present section. We conclude the section with
a discussion of a number of features of Eq. (38).

First of all, suppose 1 and 1 lie deep in the
bulk of the crystal, much deeper than the correla-
tion length) (X )) The second term in Eq. (38)
may then be ignored, and X(x „;fl ) thus depends
on l l . Then w—e can deduce the value of g(k)
predicted for the bulk by the theory from Eq.
(2Va) and Eq. (27b). One finds

interaction near the surface. Then define a quantity

2t(X„)

Q2

Q$
2

xi)-)'I 2g5(f 1)) + )
2 -xl! v ) (32)

Xp

(1 I) '}t' (38)

We then consider Eq. (31) for l &0, and operate
on each side with s'/sf' Afte. r employing Eq.
(32) and rearranging the equation a bit, one obtains
an inhomogeneous differential equation satisfied by
X(X„:ff'):

Q
2

s 12 + ] (X))),l X(x)) &f ) =
%I 5(l f ) (33)

where the quantity $(x„) is defined by

t(x„)= —[(1-I)+c'X']"'1
(34)

When X„=O, then )((0) =1/o (1-I)'~~. This is just
the inverse of the bulk correlation length mentioned
earlier in the section. The general solution of Eq.
(33) has the form

Xp
x(xi);&~& )=

2 ). ( )o' $ X}i

x (e(f f) [&+((R~))(( (') + p(x -f ) &
((x „) -)]( )-

+e(f -f') [1+P(x„,af')]c-"" "'-"j (35)

Recall that

* [~(x„)+g(x„)](1-p[)((x„)-)(x „)]j '

(4o)

x(X„)= (1/o)[1+ (ox„)']'"

For I close to unity, this is the usual expression
for the wave-vector-dependent static susceptibility
of a material with strong exchange enhancement.
In particular, it is clear that the static correlation
length is g/(1 -I )'~ . Thus, so long as 1 and 1

lie a distance $(0) ' away from the surface, the
static correlation function is unaffected by the
surface.

Next suppose that 1 and 1 lie in the surface
layer. The static correlations within the surface
layer are drastically different from the correla-
tions in the bulk, within the framework of the
present discussion. One may see this by letting
l and l approach zero in Eq. (38). Define

g,(x „)= l((X „;00). Then we have

where

e(x)=1 if z&O
=0 if x&0 .

The function p(X „,l ) may be determined by re-
quiring Eq. (35) to be a solution of the original in-
tegral equation, (31). Define a parameter

p = AU/Uo,

the fractional change in the intra-atomic Coulomb

5(X „)= (1/o) [(1 —I)+(«,)']"'
Also note that X,(X„)measures the static cor-

relations between two sites within the surface
layer:

(s'(f„, O)s-(I,'„0))= —+ X.(x„)e'" '" '-'
8 kj)

The basic difference between the static correla-
tions within the surface and the bulk may be ap-
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preciated by noting two features of the form in

Eq. (39): (i) g(0)- ~ as I- 1. The response of the
bulk spins to a static spatially uniform magnetic
field becomes infinitely large as I- 1. (ii) As
I- 1, g(k} peaks more and more sharply around

k =0. The range in k space of g(k) shrinks down

to zero. Of course, this is just another way of
saying that the static correlation length becomes
very large in the bulk. Neither of these features
is present in y, (X „). Even when I= 1, g—,(0) is
finite. In par ticular,

Xo
XJ ) [1~ (1 I)$/2][ p[1 (1 I)$/2)}y ( )

and this function is perfectly finite at I= 1. Fur-
thermore, there is no tendency for y, (X „) to ac-
quire a peak near X „=0 as I- 1. This means that
within the surface layer the correlation length re-
mains microscopic, always the order of o.

It is useful at this point to make an analogy with
earlier work on a molecular-field-theory descrip-
tion of the behavior of the surface region of the
Heisenberg ferromagnet and antiferromagnet near
the ordering temperature. Equations (38) and (37)
are virtually identical to the result for the static
correlation function obtained for the Heisenberg
model, provided one replaces (1-I) by (T —T,)/
T, and p by the fractional change in the exchange
interaction in the surface. Thus the static corre-
lation length in the Heisenberg model also re-
mains finite in the surface. In the earlier work it
was also possible to solve for the temperature
dependence of the spontaneous magnetization in the
surface below T, . In fact, as one expects, the
surface magnetization vanishes at the bulk ordering
temperature, although it is smaller than the bulk
magnetization by one power of (T, —T) /T,
The physical picture that emerges from this work
is that at T, the surface spins order only because
they see an effective molecular field generated by
the bulk spins. The static correlation length in
the surface thus remains microscopic at T,.
While we have not studied the ferromagnetic phase
of the metal in this paper, the results we obtain
for the static correlation function suggest that the
same physical picture obtains for the metal.

There is one unreasonable feature of the re-
sponse function we obtain. If p is large and posi-
tive, then g, (0) can become negative. One can see
this from Eq. (41). This means that if the Cou-
lomb interaction in the surface is larger than in
the bulk, then the surface spins may order even
though I &1. One would then have a long-range
ferromagnetic order within the surface region of
an otherwise paramagnetic metal. This is equiv-
alent to the presence of long-range order in a
two-dimensional system, since, unless p is very
near the critical value, the ordered region will

1.00
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FIG. 2. Plot of X,Q„) for two values of T for the case
where the Coulomb interaction in the surface is the same
as in the bulk. The host range parameter 0 has been
chosen equal to unity.

have a thickness the order of the microscopic
distance 0. Since long-range ferromagnetic or-
der in two dimensions is not expected for very gen-
eral reasons, the appearance of this singularity
in y,,(0) is a feature of our approximate theory.
We ascribe the presence of the singularity to the
use of the RPA description of the response, rather
than the model form of the equations that leads
to Eq. (38}, since the RPA is a form of molecular-
field theory. The presence of this singularity,
which also occurred in the earlier work on the
Heisenberg model, suggests that if U, & U„ there
may be long-range correlations between the spins;
an investigation of this question would require a
more sophisticated theory, however.

The principal conclusions of our discussion are
the following: The static correlation length in the
surface remains finite as I- 1. In fact, the func-
tional form of y, (X „) is remarkably insensitive
to the value of I. We illustrate this point in Fig.
2, where for p = 0 and o= 1, we plot y.,(X„) for
I-=1 and I= 0. 9. The qualitative shape of the func-
tion is very similar in both cases, except for a
small difference for X„o& 0. 5. On the other hand,
the form of y, (X„) is quite sensitive to the details
of the surface environment. We illustrate this in
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2.0

x, (~„j

the surface layer the characteristic frequency as-
sociated with spin fluctuations should be comparable
to that of a noninteracting electron gas, rather than
the much lower frequency associated with bulk
paramagnons.

We conclude this section by computing the mag-
netization induced by a spatially uniform magnetic
field. If m(l) is the magnetization induced in layer
l, then to within an over-all constant of propor-
tionality we have

I.O

m(l) =h (t(00;ll )dl
)0

(43)
Far into the bulk, where ol/( I I) ~'»-1, we have

the usual expression for the magnetization in an
exchange-enhanced metal:

m(l) =Xoh/(I I) . -
However, in the surface we have

0.0
I.O 2.0 m(0) = — ' —ll - y(0)] .

2 1-I
For I close to unity, this becomes

FIG. 3. Plot of X, (X(() for I=O, for various values
of the Coulomb interaction Us between electrons within
the surface layer. The parameter P= (Us —Uo)/Uo and
the range parameter has been chosen equal to unity.

Fig. 3, where for I=1 and o= 1, we plot (t, (X „) for
p=0, +-,', and -~. The static correlations are
clearly more sensitive to the value of p than whether
or not the bulk material is near the ferromagnetic
instability.

We have not been able to successfully study the
frequency dependence of X(X „&u;00) in our model,
although in principle one may do this in a straight-
forward manner. This problem is still under in-
vestigation. However, since ((,(X „) is nonsingular
at X „=0 as I- 1, and since the correlation length
remains microscopic in this limit, we feel that in

oh 1
(I-I)"' (I-p/o) '

The magnetization in the surface layer is much
smaller than that in the bulk, by the factor
(1 -I )

~ . This result is also very similar to that
obtained for the Heisenberg paramagnet, ' within
the framework of molecular-field theory.

Within the framework of the present model, the
results of this section show that the local suscepti-
bility, static correlations, and magnetic response
of spins in the surface of a nearly ferromagnetic
metal differ qualitatively from the bulk behavior.
We feel this casts doubt on the ability of the
Schrieffer-Gomer theory to relate trends in the
chemisorption energy to bulk magnetic properties
of the material, and on the theory of Suhl and co-
workers on spin-fluctuation-induced desorption.
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