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It has heretofore always been assumed that the magnetic susceptibility of a crystal could
be written X = X3i° + XL +x33l,, where x$E® is the contribution of the core electrons, X5l is
the contribution of the orbital motion of Bloch valence or conduction electrons completely

val

neglecting spin, and xg, is the Pauli spin paramagnetism but with the free-electron g factor
replaced by the effective g factor. The entire effect of spin-orbit coupling is assumed to be
included in the effective g factor. We show that this is not the case and that there is a large
fourth contribution to X, the effect of the spin-orbit coupling on the orbital motion of the
Bloch electrons x4. We construct a many-band Hamiltonian using the Bloch representation
and derive the susceptibility directly from this Hamiltonian avoiding the ambiguity of the
usual decoupling transformations. Our result agrees with the expression derived by Roth but

is in a much more transparent form.

I. INTRODUCTION

The pioneering work on the quantum theory of
diamagnetic susceptibility of free electrons was
done by Landau' who showed that for a degenerate
electron gas the diamagnetic susceptibility per
unit volume is

xr=—-elky/121%mc?, (1.1)

where k&, is the wave number at the top of the
Fermi surface. The expression for the spin sus-
ceptibility of free electrons obtained by Pauli? is
three times larger than Landau diamagnetism and
is of opposite sign. Therefore, a degenerate elec-
tron gas is always paramagnetic. However, the
periodic potential in a solid changes the magnitudes
of the diamagnetic and paramagnetic effects and
also causes a coupling of the two effects through
spin-orbit interaction.

The first step in understanding the diamagnetism
of Bloch electrons was made by Peierls.® He con-
structed an effective Hamiltonian using wave func-
tions obtained in a tight-binding approximation and
obtained three terms for the magnetic suscepti-
bility, the leading term of which reduces to the
Landau formula in the case of free electrons and
is called the Landau-Peierls susceptibility. How-

ever, in this theory, both the interband effect and
the many-body effect had been ignored. Further,
the tight-binding approximation is not valid for
many solids.

Adams* stressed the importance of the interband
terms in the effective Hamiltonian when the energy
gaps are small. He gave a general treatment of
the interband effect and then examined a simple
example of two bands separated by a small energy
gap produced by the Bragg reflection of a weak one-
dimensional cosine potential. He considered two
particular cases. The first is the case where the
number of electrons in the upper band is small and
so all of these electrons are influenced by Bragg
reflection. The second case is that where the up-
per band contains a large number of electrons and
so only a smaller fraction of the electrons are
affected by the periodic potential. However,
Adams’s expression for the second case has the
defect that in the limit of a vanishing periodic po-
tential it gives a divergent result.

Wilson® obtained the density matrix directly as
a power series in the magnetic field in terms of
the solutions of the Schrodinger equation when the
field is zero. The calculation of the susceptibility
then becomes a computational problem, but in
practice the computation becomes so intractable
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by the appearance of large numbers of complicated
interband matrix elements that no satisfiactory ex-
pression could be derived by him. However, Heb-
born and Sondheimer® have calculated, in a com-
plicated way, an expression for the orbital mag-
netic susceptibility by using the density-matrix
method.

Kjeldaas and Kohn” have applied a generalization
of the Luttinger and Kohn® version of the effective-
mass theory to the orbital susceptibility by taking
into account fourth-order terms in K -k, (they
put EU= 0). However, their result has only limited
usefulness since it is valid only for parabolic en-
ergy bands.

Blount® and Roth!® have independently derived
expressions for the magnetic susceptibility of
Bloch electrons (including spin) by essentially
equivalent methods. In their theories, the Hamil-
tonian of the Bloch electron in a magnetic field is
first transformed into an effective many-band
Hamiltonian by extremely complicated methods.
The many-band Hamiltonian is then transformed
into effective one-band Hamiltonians by successive
similarity transformations through nonunitary op-
erators. The Peierls effective Hamiltonian is ob-
tained from their one-band Hamiltonian as the
lowest-order approximation. However, apart from
being very complicated, there are several diffi-
culties in such decoupling procedures, which limit
their usefulness. First, as Blount® has shown,
this method of diagonalizing the Hamiltonian is only
asymptotically convergent. In Roth’s paper, the
question of convergence was not answered. But
Fishbeck!! has shown that Roth’s decoupling pro-
cedure is also asymptotically convergent. There-
fore, as the magnetic field strength increases,
these asymptotic solution methods gradually lose
their validity. Second, there is reasonable doubt
as to whether the interband matrix elements can be
removed exactly in the case of bands whose energies
are nearly equal and occasionally overlap (apart
from the twofold degenerate bands due to spin
which has been treated explicitly in the above de-
coupling procedures). Third, the decoupling pro-
cedure of the many-band Hamiltonian is not unique.
A certain amount of arbitrariness is introduced in
choosing the diagonal matrix elements of the non-
unitary operator. Fourth, these theories require
the use of a particular gauge and while the results
must be gauge invariant, they have never been ex-
plicitly demonstrated to be so. Finally, there is
no simple way to understand these results since
they can be put in many apparently different but
actually equivalent forms. There has been no at-
tempt to calculate x from these extremely long and
involved results because of formidable computa-
tional difficulties.

Recently, there have been many attempts to
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calculate the magnetic susceptibility by making
simplifying assumptions. Glasser'? has derived
an expression for the magnetic susceptibility in a
nearly free-electron model. However, his result
has the undesirable feature that the expression
for susceptibility blows up when the Fermi surface
touches the zone boundary. Fukuyama and Kubo'?
have calculated the magnetic susceptibility of bis-
muth by using the k- P perturbation model of
Wolff, * which assumes two bands separated by a
small energy gap. Buot'® has calculated the mag-
netic susceptibility of bismuth-antimony alloys by
using a similar two-band model.!® These pa-
rametrized models have proved successful for
bismuth and its alloys but it is desirable to have
more complete calculations.

Due to the lack of a suitable theory of magnetic
susceptibility with proper interpretation of the re-
sults, there exists some confusion!” in the litera-
ture. Usually, it has been the practice to regard
the total susceptibility as a sum of three terms:

(1.2)

where val refers to valence or conduction elec-
trons. It is well known'® !® that due to spin-orbit
interaction, the g factor of valence or conduction
electrons can differ from the free-electron value
of 2.0023. In fact, in the presence of very small
band-gap energies, the effective g factor becomes
orders of magnitude larger than that of free elec-
trons. Therefore, it has become the usual prac-
tice to includethe effect of spin-orbit interaction
by substituting the effective g factor for the free-
electron g factor in the Pauli spin susceptibility
and to assume that the effect of spin-orbit interac-
tion is completely accounted for. For example,
the experimental orbital susceptibility® is de-
termined by subtracting the theoretical value of
the ionic susceptibility and the value of spin sus-
ceptibility (computed from the g factor which is ob-
tained from electron-spin-resonance experiments)
from the experimental value of the total suscep-
tibility (measured directly). This value is then
wrongly compared with the theoretical value which
is calculated from the dynamics of the purely or-
bital motion of the Bloch electrons.” There is no
reason to expect the spin-orbit interaction to affect
only the g factor, and indeed we shall see that it
yields an important additional contribution as well.
It is clear from the foregoing remarks that there
remained a need for a theory of magnetic suscep-
tibility of solids, which can be derived from first
principles in a much simpler way than the present
methods, would be free from the ambiguity of the
usual diagonalization procedure, and would be valid
for high magnetic fields. The present work was
carried out as an attempt in this direction and we
believe that we have been able to derive a satisfac-

_ core val val
Xtot = Xdta + Xd1a+ Xspin ’
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tory theory.

Our approach is different from the methods of
Blount® and Roth!® in the sense that we construct
a many-band Hamiltonian in a simple way using
the Bloch representation. Then, instead of con-
structing effective one-band Hamiltonians which are
valid asymptotically in the magnetic field, we cal-
culate the magnetic susceptibility directly from the
many-band Hamiltonian. Thus, we contradict the
usual notion!® that the Bloch representation cannot
be used to calculate the magnetic susceptibility.
Our theory has the advantages that our derivation
is much simpler, the ambiguity of the decoupling
procedure is avoided in our method, and our re-
sults are valid for arbitrary magnetic fields since,
as we shall see, when an expansion for different
orders of magnetic field is made, it has infinite
radius of convergence. Also, in our theory we do
not use any particular gauge. Further, since our
results can be interpreted clearly, the prevailing
confusion in the theory of magnetic susceptibility
has been clarified.

The expression for the magnetic susceptibility
of Bloch electrons, which we shall derive, is of the
form

X=Xo *Xg + Xso0 » (1.3)
where x, is the expression for diamagnetic suscep-
tibility derived by Misra and Roth® by considering
purely orbital motion of Bloch electrons, X, is the
effective Pauli spin susceptibility which is obtained
by replacing the free-electron g factor in the Pauli
spin susceptibility? by the effective g factor, ® and
Xso 1S an additional contribution of the spin-orbit
interaction to the susceptibility.

However, we have adopted the Bloch picture of
electrons in solids and thus we have not considered
the electron-electron interaction terms except in-
sofar as they can be approximated in a one-electron
band calculation. However, the many-body effects
can be shown to be small for x, and X4, as long as
we do not have superconductivity.? For Xg, the
exchange enhancement effect will be very similar
to that for free electrons except that the free-elec-
tron g factor is to be replaced by the effective g
factor.

The planning of the paper is as follows. In Sec.
II, we derive an effective many-band Hamiltonian
using the Bloch representation. In Sec. III, we

n’,k’,p’

h—z

=y 2
2 {ﬁ(ﬁ+e?(r)> +V(1")+4——2—2—mﬁc 3.[VV><<'5+

1 Bz ikr.p g
*BmeT viV+ 28s Mz B‘G-E} e T Up g o b, r (K)=0.
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derive an expression for the magnetic susceptibility
from our effective many-band Hamiltonian, in a
form from which numerical calculations can be
made. In Sec. IV, we summarize and discuss our
results. In Appendixes A-C, we have proved cer-
tain identities which we have used in our derivation.
In Appendix D, we show that certain terms in our
expression for magnetic susceptibility can be
lumped together to yield the effective Pauli sus-
ceptibility. In Appendix E, we show that our re-
sult is equivalent to Roth’s result.!®

II. MANY-BAND HAMILTONIAN

The Hamiltonian for an electron in a periodic
potential V(¥) and an uniform magnetic field B is

1 (. eAY - no. (, ex>]
- — = . X ekl
H 2 <p+ C>+V(r)+—2—5| » cr[VV B+ =

n® 1 -
2 il -
+8m202 VV+2gs“BB g, (201)

where A(F) is the vector potential, g, is the free-
electron g factor (g =2.0023), up is the Bohr mag-
neton, G is the Pauli spin operator, and the other
symbols have their usual meanings. The eigen-
functions of the unperturbed Hamiltonian (B= 0) are
the Bloch functions

Pni,o=e* T, (2.2)
where U,z , is a periodic two-component function,
n is the band index, K is the reduced wave vector,
and the index p, p =1 or 2, distinguishes the two
independent eigenfunctions ¢, i, and ¢, , Which
belong to a general wave vector K and energy
E,(K) if the crystal has inversion symmetry. Since
the Bloch functions form a complete set, we can

expand the wave function for an eigenstate of our
problem as

2 eii.? Un,i,o wn,ﬂ(E) ’

nk,p

()= (2.3)

where ¥, ,(k) is periodic in k. Substituting Egs.
(2.1) and (2. 3) in the Schrodinger equation

HY(F) = Ey(¥) , (2.4)
we obtain
eA()
") ]
(2.5)
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We have for the coordinate operator

)

5. -
e ?U,{ g0t Vo (k)
n,x,o

= .Z; [(—iV,,:)em';]U,(';:’, ll),{'pl(El) .
o, ¥,
(2.6)
When we integrate by parts, the surface term
vanishes since the expression is periodic in k.

J

n, k.0
h—z
T Bmict
where the operator ¥ is defined as
R=nk+(e/c)AGV,) , (2.9

and is the momentum space equivalent of the opera-
tor p+eA/c. Multiplying Eq. (2. 8) on the left-hand
side by U,:;', % and integrating over the crystal,
we obtain

Id? T Ui, ®e" O HE, &) -E)
n’,k,0"

X Un',f’.p'(ﬂ wy{,n'(f) =0, (2.10)

where

H(F, B+7)= % B+R2+ V(D + m”,? & [vvx(E+7)]

[ 1 = ..
+W V2V+?gsugB'0. (2.11)

Since U, ,,(¥) and H(F, p + &) are periodic in ¥, we
can break the integral in Eq. (10) into integrals
over the unit cell and we obtain

* e £ £
> f di'U,,';',e“i £) ?Zn; etE-b)R

n,B,0 Ccell
X [HE,F+&)=ElUp g oo (B) Yy 4 (K')=0.

(2.12)
Since the K’s form a discrete set of points in the
first zone, we have

Egeui'-i)-ﬂ =Nog g . (2.13)

From Egs. (2.12) and (2.13), we obtain

I Jat U BB+ ~E) Uy 2,00 o0 ®) =0,

(2.14)

where the integration is over the crystal. This is
a many-band Schrodinger equation which can be
written in the alternative form
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ol (El; G472 VE)+ gy - [V X (B
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Thus, we have

f X

y: e‘i"'U,{'p,,.;xp,{,J (E,)
"l .,

= ;Z),- e P iV Up v o e #(K) . (2.7)

Therefore Eq. (2.5) can be written in the alternate
form

)]

V2V+%g,u3-]§-3—E> Up i obe,» &)=0, (2.8
I
H@) p(k) = Ey(B) (2.15)

where H(K) is the effective Hamiltonian defined by
Hpyp po®)= [aF U JHE B+ Up 5 o . (2.16)

This is an effective many-band Hamiltonian. The
usual procedure® !° is to diagonalize the effective
Hamiltonian by successive similarity transforma-
tions using nonunitary operators. However, this
procedure, apart from being very complicated, is
only asymptotically convergent in the magnetic
field. Further, the decoupling procedure is not
unique since there is ambiguity in choosing the
diagonal matrix elements of the nonunitary opera-
tor. Therefore, we shall derive an expression for
the magnetic susceptibility from the many-band
Hamiltonian,

III. MAGNETIC SUSCEPTIBILITY OF BLOCH ELECTRONS

We shall now derive from first principles an ex-
pression for the magnetic susceptibility of Bloch
electrons. The magnetic susceptibility is de-
termined from the free energy by the relation

3%F
X== 32 » (3.1)
where F is the free energy

F=Ng - % 2 In(1 +e®Er0); (3.2
¢ is the chemical potential which can be regarded
as a constant to the second order in magnetic field;
B=1/kT; where k is the Boltzmann constant; 7T is
the temperature; and H is the external magnetic
field.

Let

F(B)=F -Nt- - % Tin(l+e®E0) | (3.3)

If we expand F in different orders in H, it has only
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a small radius of convergence which vanishes at
T=0. Therefore we make use of the Laplace trans-
form of F since ¢*‘® has an infinite radius of con-
vergence. F(B) can be related to the classical par-
tition function by the method of Wilson and Sond-
heimer.® 2 For our purposes, this can be ex-
pressed in the form

F(B) Z;; B) Z; Tg(s)e sE'_Te (S) Tr<I>(k') (3.4)

where T;(s) represents the inverse Laplace trans-
form and

d(R)=e R | (3.5)

Let &(K) be the operator such that &(¥) can be
formed from it by replacing #k with ¥ in a sym-
metric manner. [&(K) would of course depend ex-
plicitly on the magnetic field.] We show in Appen-

dix A that®
Tr&(%) = Tré(K) . (3.6)

We shall now evaluate (k). From Eq. (3.5), we
have

as® _
ds

Using the multiplication theorem of Roth, !° we ob-
tain

-H({K) (%) . (3.7

d@(E) - _e-n'.-v,,ka' k) @(k )l (3.8)
ds
where
. eB eB -
B e = e -9

X is a unit vector in the direction of the magnetic
field and H(K) is the operator from which H(%) can
be formed by replacing 7K with ¥ symmetrically,
i.e.,
H(®) =

(H+rK) 2+ V(F) + %——h:g-c-g F+ [VVX (P +7K)]

=

2

1
+ 57 V¥V +2g,ua§ g.

I (3.10)

We write H(K) in different orders of the magnetic
field

H(K)=Hk)+H,, (3.11)
where
n
Hy(k) = 5~ (p+ﬁE)2+V(r)+ T - YVx (B ehR)]
+ ﬁ—zﬁz vy (3.12)
8mc *
and
Hi=3g,upB-5. (3.13)
Let
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@(E) = Qo(E) + 4’1(1-;) ) (3. 14)
where

By(K)=e oD | (3.15)

From Egs. (3.8), (3.11), (3.14), and (3.15) we
have

ddy(k) d<1>1(E )
ds ds

—H, [®(K) + &,(K)] +ihas V:HO(E) Vi [8,(K) + @,(k)]

= = Hy(K) ®4(K) - Hy(K) &, (k)

+ 5 hoag hys [ VE VL H((R)] VA V2 [8(K) + ®,(k)] +

(3.16)
where

hag = €apy W ’ (3.17)

€,8, 1S the complete antisymmetric tensor of the
third rank, and we follow the Einstein summation
convention. We note that the expansion in Eq. (3.8)
and, consequently, the expansion in Eq. (3.16) has
an infinite radius of convergence. However, in

Eq. (3.16) we have neglected all terms higher than
second-order terms in the magnetic field since for
steady magnetic susceptibility (zero field) we need
terms up to the second order. From Egs. (3.15)
and (3.16), we have

da,(k)

15 - —Hylk) 8,(K) +{ihag [V3 Ho(K)] v} - H,

+5 haphys [VE V H(R)] V3 V3 &4(K) + &,(K)] .
(3.18)
Treating the second term on the right-hand side as

an inhomogeneous term, this equation can be solved
for ®,:

&,=¢" %o fo * ds’ e 0 [ihgp(VEH) V2 - Hy

+3 hog hys (VE VL H)VEVE] (80+ ®;) . (3.19)

We can now iterate this expression to obtain, up
to the second order in the magnetic field,

~ =sHy (S s'Ho[: a 8
@1—6 ofo ds e o[lhaB(VkHo) Vk—Hl

+5 hog hy(VS VIHG) V3 V5 e H0

+e"”0f0s ds' e¥ "0 [ih,s(VEH) Vo —H ] e 0

X[" ds'" e*" o ihyo(VyHo) Vi~ Hy]e™ 0. (3.20)
In order to evaluate Tr&,(k), we simplify Eq.
(3. 20) by using the following operator expansion
theorems [Eq. (5.18) and (5.19) of Misra and
Roth? ]:
vEe o= —e""oj: ds' eSFo(VEHp) e "o (3.21)

and
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Ve Ve o=

- S ’
+e‘""f0 ds

We shall now take the trace of Eq. (3.20), with
the help of Egs. (3.21) and (3. 22), with the function
U,z (). We first introduce some notations and
some preliminary algebra. We write

"n,p mp* = fdl‘ Un,x o (r)(VkHD) Um,i.p’(F)

n

(p+h’k)
m 41:mzc2

=n fatut;,(F )( axvv)

X Upip(F), (3.23)

where 7/7 is the velocity operator without the field
and

Guoymet = J AT U3 J(F) G U, 5 ,0(F) . (3. 24)

It can be easily shown that®
Tno,i5=0 s (3. 25)
where p is the state conjugate to p. We also write
®(E,) =e™F (3.26)
®y(E,) = —se™En (3.27)
|

- . 2®,(E
Tréy(k) =23 ihyg n‘,’,‘,,mp.nﬁ’"p.'m< —E°-(3—“2 5
k mn mn

L

ﬁznu

6m

3
"ﬁ ,me "ma',no(
T,

nt

+hashyc[_ 0gs ®o (E,) —

III

0 (En) 2% (E,)

+’7npm7iwm

. 4<I>D(E 8 O(En)

- s - - s ' g
-e ’HOIU ds'e""“(V:V:Ho)e””°+€‘H°fo ds e

. s
e HO(V:HO)e-s’HOfo ds"
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. s . ¢
Ho(ve Hy) e® ”ofo ds''e? o (Vi Hy) e "Ho

¥ " Ho(VveHY) e ""Ho, (3.22)

[

&y (E,)=s%e"%n (3.28)

and

1

q’o (En)= 3 =-sE

-S e n.,

(3. 29)
We also use Vg VAH = (1%/m) 6,4 and the identity
which can easily be proved®

P By oM E MMM S+ MS MYM 3 M)

= Nog hysMT MGMEMS , (3. 30)

where M,, M, M,, and M, are any matrix elements.
We now take the trace of ®; with the functions

U, :.,(F), which for a fixed k form a complete set
for periodic functions. We note that &,(K) is peri-
odic in ¥ since Hy(K) and H, are periodic in ¥. We
also adopt the convention that any running index
means that the sum over all the bands and all the
spin indices shall be taken, except that all band
terms equal to » have been explicitly separated

out. Then after considerable algebra, we obtain

®y(E,)
__O_n_) Zg.! 5] B\ o’r’lp,np (I>:)(E")

e, (E,)
—E';Tn‘ Ouy Ogs

)

mn

6<I>Q(En)

7%,

®,' (E,) .

E n)’“

ma‘,np(

ne,mp’ Z 3
mn Emn E'ﬂ'l

)

&y (E,)

8y(E,)

m

8<I>Q(En)

o 6
= Tnp, me* "znp',np" ”ew",qn“' Tap* ** '"D<E E
mn qn

L 28(E,)

+ 7

+

"B E,,

434(E,) 48y(E,)

np,mo’ 'mp’,qp"*

n,a 5
’ ! ElnEan

o [L2B0(E,) 2®,(E,)

o
+ Tno,ne n’m,ma' ”Bmp

+ 5T
mn EmnElnEqn

+
Elzﬂ E’M EG")

_43y(E,)  49(E,)

t,q0" Mgt 4 3
’ ! EmnEqn EmyrEq"

+ A7 )@(gs [29:] B>2 (Uyﬂ,m' 0,,"4 0
2 2

&y (E

)

Emﬂ Eqarnl- E?n’l EG"

Y 6
q,'o’ (E,) - Onoume’ Tme’ 1m0 q,:)(E")>

mn

38(E,) 4d,(E

11‘5

mo’’ ,np

1.
+ 2 thas&s kB BA’[: 0:a,rw'”:0',m” E

(

2<I> olEp

mn

$y(E,)

n)
+

)
£z * E,,,g,,

mn

)

- 7 ‘I"(E) 28,(E,) 28y(E,)
¥ . e O < ) o . o ..1r8,, <_O_.n_+ 0\"n 0
np,mo’ “mpo’ a0’ Uqp’’, no E pE EZ ne,mo' Ume’ a0’ * Mqp’? ,no E, E,, Eman“ + EE,,E .
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|en

' ’

20,(E B(E,)  28((E)

-o':p mo’ ﬂ?nn’ e’ ﬂip" ”(M + _?E'Q(_f')> + ﬂ:v.nﬂ O’M,"w’ ﬂem".m( + 5
! ’ ! EanEmn EmnEdn E"m Emn

-ﬂ:n.np"?w,mp' ma‘,no(g’é-(gl)*%nélm>] , (3.31)

where, as indicated earlier, sums will be taken over all indices n, m, ¢, I, p, and p', but n#m, g, . In
the above, we have also used the notation

En,=E,(RK) -E,K) . (3.32)
In Appendix B we derive the following identity:

@ Y 6 a 6 @ , 6
E[h“hﬂ( o Moeune Trp.me* Tt oot 'n’”.. _o T e"ﬂne no' Tt 1a0t* Mgo'* no —4 Mo T ” 118“ mo’ Tt nE)
i Em'lEqn Em"Eqn Emﬂ
1. ol o T T Thot 1% o Coprmp T )] '
5 Toeune Tagemet Orotne _  Treene Ongeme' T une ) | g (E
*3 thapgsp BX (2 B 2 EL. olE)
T T o oo met Mo Al A LA
= Z}_{:{ hag h,,o[ﬂ JM%MM—&MEM +8 m ‘M‘MLEJEMM"M 0gs

2 1
_4‘”0:19,1::# ”{np’,no" ﬂﬁm”.ao"' ﬂ:p"',m( ES_E_ + W)

mn—aqn mn-—aqn

1 1

6

+477:p,mp’ n{rm',qa” nin“,lp’"‘”lp"',rw( Ef. E, E + ﬁ Em E )
n n qan n n an

1 1
_4";:,:10 7’yrw,mnf "ﬁma',qo" ":d',m< E E. "B E ):I
mn qn mn an

1 . 7‘ J ,ﬂa: ool 02 m o T uO’ N
2 lhaag, IJ.BBA Emn 2 EmnEqn

1 1 0" ma’ﬁa ‘, lﬂﬁll’
= 2T mo? T, o+ ﬁn".m(ﬁ + W) ~2 Tneume Tmp'aag?* Tgp' s np

mn an qn~mn Eﬂ"l EG’I

ﬂa 0’7 . 1|ﬁ Tfa TTB g O’ g
—neew —noume’ “me'amp —neenp —no. me’ “me’ pnp. . .
-2 Tae e 2 faeue T { ®(E). (3.39)
It can be easily shown from time reversal symmetry that?
7 no,mer (K) = & Tz p(=K) (3.34)
and19
Fro, oK) = = 013, (=) . (3. 35)

Using hqp = — hg and the above we have for nonferromagnetic crystals

. 20y(E,) ®y(E
Z:; . thap Moy, mpr ﬂfnﬂ',’"’( E( ) * JEL—HZ>+ Z)- 28 kp BY (fm,rw@'o(En)zo . (3. 36)
n,m,p,p' , k mn mn n,p,k
n¢m
From Egs. (3.31), (3.33), and (3. 36) we obtain
- A 4 n'ey (E
Trdy(k) =hqg hrb?[ “_‘”_%7”‘” Os5 5 (E,) —ﬁl("nl Oay 8gs

n

$y (E) 285 (E) 284 Bg (E,) 49y(E,)\ 704
+ ”gp.na ﬂ{m,np ‘”:n,mp' ":p' , "9(4%E o=+ Eo‘z( ") + E&z—n'( ) + 7!:‘,',,.,,: TITM""‘,< E( ) + —JQ—J-E( )>
mn mn mn mn mn m

n ’ B 6
— e ﬁ',' ¢Q (Ell) 61’ (E ) na!lE’mE' ﬂymgl lEu’l]’ 't 1 d " TT!EIII’ o ]
Mo, me* ‘"’Zna'.no" 77?:# va0’ Moo .np( EnnEqn + E?"J;-E—:: +2 E,E_E,, <I’n(En)
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_2_ua_m_wmﬂ’%ez'.mi'_¢_me ®y(E,) +2 J&L&ng‘_”énuf'_uime. ®)(E, )]

Emn qn mn qan
2 5
o )\°( ) (gmmL__neLnL &) (E,) - d.um%’m&.:.m @:,(E,,))
mn
L1 o9 (B) , 8y(E)) _ Tmer m ot Tot oo
2 thasgs s B [O’:m,m‘ "np ,mo’’ ﬂ':w‘ ',np(JE_L +3 %“ZJL éO(E )
mn mn G ﬂlﬂ

. ¢ ap’! 0, 0’ ¢ o N . ’
_ T T, mo’ T’ 0% Moot *1m Teume' Tme'sqo’" T *une () - _m_mp_lmg_z%_"gm &y(E,)

- " : ’ a TTa smp’ oA ‘s, 4
- Enz.mﬂ’naiz?n:_ﬁuz &,(E,) +—77MLM—ME—’2:"—MLJE q:o(E”)] . (3.37)

We note from Eq. (3.4) that

oF .
a_E'f = = Tgse™*Fi= Ty Y (E,) ,
and from Eq. (8. 3) that

zf(El) 9

the Ferm1 function. Thus we obtain F(B) by operating on Eq. (3.37) with T; which causes every factor
' n
3y(E,), &, (E,), &, (E,) to be replaced by f(E,), f'(E,), f" (E,).
Then from Eq. (3. 1) we obtain the expression for the magnetic susceptibility of Bloch electrons®

2 o iIl
X= 2hashre Z;[-J&Lﬁ W”I&';M Osbf (E) Lal 62 f (E) no"np ne "fm mo’ U:;p',m< 3E(E : f 2 Zf(E >

“( 6f(E
"np,mp “{nn' rm(L_L _Lfn')Ez—LJr" 0, mp’ ‘”mp’ rw""B o'“":p"' <_—!Q' _];(_n)_)

E,.E E;.E

ﬂ’a . TT': ll"ﬂll' u:ﬂbu:

ElrlEanmn

’ ’,

-2 f(E)+2 o T L f(E,)

E

] 6
-2 M_%;mégm'_q.uaf(); )] - (gs )2 <9.’mn&'_§n&nEf’(E“) _L‘.{m.mﬁ”zlnz_'nef(lgn))

—i% PRy [O'Ip,m' 1 ot wf,,,::',.‘,(f—(g")— _g_&)_> _na.mﬂg_e:_m“_grzt_znfw")

qan

_":2'!!2' o,me'vlg""‘zeﬁ'vng f(E) E z me 1get ‘n’zgu "ef(E)

EEp, E¢nEmn
o o
_ Moo Creung T e (5)  Taeuse Troung: Ornerore f(E,,)] . (3.38)
EZ, E o
[

This is the general expression for magnetic sus- tion (3. 38) is in a suitable form to make numerical
ceptibility of Bloch electrons. As mentioned ear- calculations except that f " terms should be con-
lier, the summation is over all bands except that verted to f " terms by partial integrations. How-
m, q, l#¥n, since such terms have been explicitly ever, it does not lead to an understanding of the
considered. Thus there are no divergent terms in different terms nor is it expressed in a familiar
the expression for X. We shall show in Appendix form. We shall now express x in a form in which
E that this expression is equivalent to the expres- the various terms will have clear physical
sion obtained by Roth.!° However, we note that meaning. This will also clatify the prevailing con-
this expression can be written in many different fusion in the literature. !’

ways by making use of partial integrations. Equa- We show in Appendix C that
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h“h”;( _md’m%ﬁﬁ:‘um %Mb)f"(E”)

’ -1
+% (ﬂ:p’w: T[:;w: 'w:,ﬂﬁp' *q0'’ TI':‘/ ".'IP+ ":p,mp' 1l’:|p"m,l . 1!:{ PPy 1I’:po o, ,,p)f (En)(EmilEqn)

_B n,,gr,’:.g' Tt e Suf ' (E,) + E_E_r.;iu_f (E )] “—"lﬂ— Z} VeVLE, VAV E, f' (E,), (3.39)

and in Appendix D that

a L] 2 ,
Paglse Toomer Tt o Tttt () _ryo(£a2) g7, ot L (8,)

- %&g’““’ iﬂﬁ;ﬁ&”f'(E,) == -g 2,2¢'(E,), (3.40)

mn

where g is the effective g factor. It can also be shown by a partial integration similar to that shown in Ap-
pendix B for Eq. (3.33) that

a v 4 o
Dtos rys 2 Emm_"nma.lgeémr_”mﬁ..uf'w")
i

::-1'[ 1[ N X vee
= 2 Mm{nz;m_u 2 __z.m_mn‘_m.z_u_Lu___m
haahro k [ mn qn EmnEcil
] r ] 8 1
- ‘ﬂnn'"’ ﬂ"n’mao ﬂ""'qpn ﬂqp",na Esm Eq" - EE" E,,m
'ﬂ'a L :1T n1l'6 ‘e, +TT“ 1[’, . e, n1l’° v
- £, E, E,,,! E,,

TT“' ,”7' 17" ',"6 . ﬁgﬂa' ""6'
-2 E;, — 2 EE ﬁay]f(E,.). (3.41)

From Eqs. (3.38), (3.39), (3.40), and (3.41), we obtain the expression for magnetic susceptibility of
Bloch electrons:

X= ?HL;AEV VIEVEVSE,f'(E,) - Z} g’ugf'(E)

2 > 0 00 o000 00 u1T ) ul‘lT oy
+2 [_ﬁ_u_ (m_umi_mmﬁu+2_mn_m_im_ﬂe_;u_"n.__m _m.m_m_:.!e._m_xwz
: mn d’l M qn
) ol nT[ 0 n:"l' 00 ™ 7! l‘lT6 U u‘ll" 0o lﬂ o,
- JME—M—LIP—II—LL_IL_LM. JMLJIELMTME_LIL_EL__M ..nuf_nz!m_uz_ur___u_n
ElnE E EmnEqn EmnEqn
. h 07 l‘”ul v ﬂ" o ﬂ :1[‘ uo oo
1 A)'xﬂ a ng mp omﬂ ;np -1 TaB n \? 3 ne:me’ “mp’.gp’* YVgp?t.np
(gs u'B) Emn H gs B Em‘n Eanmn
u1f ) n‘n' 0 T 07 117‘ 0 o 1]" o7, )]
JMR_MML _nn.:.u.__m_mp_.u_mp_ _nmn_n!;m_m_:m. _m.:.nn_nﬁmL_mn_mz. E .
E_E,, E_,E,, EL, * EZ, FEy)
(3.42)
l
This is the general expression for magnetic can be referred to as the effective Pauli spin sus-
susceptibility of Bloch electrons. The first term ceptibility. The contribution of this term for crys-
is the Landau-Peierls susceptibility® which would tals having large effective g factors (like Bi) would
be the expression for the orbital magnetic suscep- be very large but it would be always positive. This
tibility in an effective-mass formalism. The then is the “paramagnetic” contribution to mag-
second term is the Pauli spin susceptibility, ex- netic susceptibility. The other terms have been
cept that the free-electron g factor g, has been re- written in terms of Fermi functions for convenience

placed by the effective g factor g. This term then of numerical calculations.
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(3.42) in the alternate form
(3.43)

We can write Eq.
X=Xo+Xg+ Xao »

il

2—%T—Z)<

x0=—L21—hEHh &2 VRVLE, VRV,E,f'(E
k

2 L‘l! ymo’ ﬂme IE“" 't 100" ‘"l!”' \np
- EppE g E

X is the effective Pauli spin susceptibility

xe=_ ;%gzp’gf,(En) ’

and X, is the additional spin-orbit contribution to
the magnetic susceptibility,

. h
xao:E [_1_3‘12g3“3)\7(
k

ﬂ' lmu’ﬂ'

O'YM mg‘ﬂ:;g', g0'’ ‘Hﬂnn' np
Eanmn
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where x, is the orbital contribution to the sus-
ceptibility

u‘ﬂ' o n:ﬂ'

g_rzmp_z_m_zm 556+24M:Eéan_nL¢L_auz

u‘lT 0,

npen nzme g 20 o' np . | a o E..ﬂgu ?>f(E ,

(3.44)

(3.45)

"E np’ ﬂB! g0'’ OIE"’EE EE’"'E mg IE“T[ 0’ np
E_E,, E nE mn

_ H:g'ngo‘;}'z mp’ ﬂsmgl mp 17:2 nzﬂnﬂezme’ 0';!1,!2 )
E""l Emﬂ

[

o
4h_£2_L°I‘1h° JLMEI;ZL&E"JM'_'JV'_'”:L‘LEL,rEVAO (g, 1o ne%g' mo? “]f(E") . (3.46)

It can be easily shown that our expression for
Xo is the same as the general expression for dia-
magnetic susceptibility obtained by Misra and
Roth® ® [their Eq. (5.36)] if we replace 7
with B/m.

IV. CONCLUSION

In this paper we have derived, in a reasonably
simple fashion, an expression for the magnetic
susceptibility of Bloch electrons. We first con-
structed an effective many-band Hamiltonian using
the Bloch representation. Then we derived an
expression for the magnetic susceptibility directly
from the many-band Hamiltonian. Thus our method
of derivation is simpler and we have avoided the
ambiguity of the usual decoupling procedures and
have not worked in a specific gauge. We made an
expansion in different orders of magnetic field in
the course of our calculation, but this expansion
has infinite radius of convergence. We have thus
contradicted the usual notion'® that Bloch represen-
tation cannot be used to calculate the magnetic
susceptibility. We have also shown that our re-
sult agrees with the earlier results!??! for the
cases which they have treated.

Our result, which is expressed in a form such
that numerical calculations become practical, can
be expressed as the sum of three terms. The first
term is the susceptibility obtained by considering
the purely orbital motion of Bloch electrons, 2!

The second term is the effective Pauli spin sus-
ceptibility®® which is obtained by replacing the

mn

r

free-electron g factor in the Pauli susceptibility?
with the effective g factor.!® The third term is
the additional spin-orbit contribution to the sus-
ceptibility. Although this term may contain con-
tributions of either sign (as indeed does x,, the
purely orbital term?°), it should be considered a
spin-orbit correction to x, and distinguished from
the spin-orbit contribution to the effective g factor
for the following reason. There are two types of
contributions to the magnetic energy of a one-
electron eigenstate, terms linear in B which split
the spin degeneracy and terms quadratic in B which
do not, (Both terms, of course, contribute qua-
dratically to the free energy.) The linear terms
are all included in the g factor!® and are always
paramagnetic independent of the sign of the g fac-
tor, i.e., independent of the sign of the splitting
of the spin degeneracy. The quadratic terms
which arise from a perturbation of the one-electron
wave functions by the magnetic field are generally
diamagnetic?® and are responsible for both ¥, and
Xso-

It is easy to see that in the absence of spin-orbit
coupling every term except the h zh,, term of x,,
vanishes. [Every o,, term vanishes because of
the orthogonality of the orbital functions. If one
chooses T to lie in the z direction, one has
%0 ot = 0f i+ 0%,,,=0. This, coupled with the
fact that in the absence of spin-orbit coupling
Tat,mt = Tpt,ms and T, ., =0, makes the first term of
Eq. (3.46) vanish.] If, in addition to the absence
of spin-orbit coupling, the crystal has inversion
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symmetry, then 7y, .= Tn, ., and the hgh,, term
also vanishes. Therefore, in a crystal with in-
version symmetry this term properly belongs in
Xso; but in a crystal lacking inversion symmetry
it belongs in x,.3! A similar term occurs in the g
factor where it causes g to differ from its free-
electron value even in the absence of spin-orbit
coupling if the crystal lacks an inversion center.
These terms arise from an imperfect quenching of
orbital angular momentum which can be caused
either by the spin-orbit interaction or by a lack of
inversion symmetry in the crystal. 3

In a later paper we shall give numerical calcula-
tions for PbTe which, like bismuth, has large spin-
orbit coupling and small energy gaps. For such
cases the dominant term in Y, is the first term of
Eq. (3.40) and the dominant term in xg, is the
(next to last) term containing four 7’s in Eq. (3.46).
In a two-band effective-mass model one can show,
using these dominant terms only, that

x:o = (BEF/3EG)X3’

Xeo == 27(E /EF)"/ 2, , 4.1)

where E, is the band gap, x;’ is the contribution of
the filled valence band to X,, and x5, is the contri-
bution of the carriers, either electrons or holes,

to X&. Xg i8, of course, due only to carriers since
it involves an integration over the Fermi surface.
We note that both electrons and holes give a para-
magnetic contribution to X, but that the filled valence
band gives a larger diamagnetic contribution and
that this contribution is several times larger than
the g-factor paramagnetic susceptibility. Thus,
systems with a large effective Pauli paramagnetism
are actually diamagnetic.

APPENDIX A
We shall prove that?®
Trf(k)= Trf(K) ,

where f(k) is a symmetric function of k formed
fromf(E) by replacing ﬁk with ¥ symmetrically.
Since f(k) is periodic in k space, we can expand
it in a Fourier series

K)=2 fge'®
R

(A1)

(A2)

Since f(k) is obtained from f(ﬁ) by replacing 7k with
k symmetrically, one way of defining f(k) is
Y faettEm (A3)
R
To take the trace, we use a complete set of plane
waves (1/VN)e*'E’ over the Brillouin zone. (The

factor of 1/VN is for normalization over the Bril-
louin zone.) So we have

4591

Trf()= o D e fe R (Ad)

N &

We now consider one term in the expansion (A3),

fze'*®" which operates on e’ We use the
well-known identity
eABogleBlBA) 2 (A5)

which holds if [B, A] commutes with both A and B.
It can be shown by expanding A(iV,) in a Taylor
series that

(Ge/Hic) AGV,)- R, ik R]= - (le/fic)RyA (V) Ry ,

(A6)
where A;;(iV,) =04 ,/87,(iV,) is evaluated by first
differentiating A; with respect to 7; and then sub-
stituting iV, for r. Using Egqs. (2.9), (A5), and
(A6) we obtain

iR FM _ iEeR ite/n) AGVR R ,=ile/2n IR A iVRIR; )
(A7)
We also use the identity
eAe __eBeAe[A B} (Ae)
to write
i A(iVp)oR R R’ Al R
e:(e/ﬁc)A(i » neii R =e'ﬁ R’ jile/hc)A(iVp) R
xei(e/hc)R,’A“(in)Rj . (Ag)
From Egs. (A3), (A4), (A7), and (A9) we obtain
-1 iR, i(e/hC)A(iVp) -R
Trf(k)=— 2 =pik*Ryile/h)ALIVE) R
f(K) Nig: f&

X ei(elzh c)(ZR,!-R'-)A”(th)Rj .

(A10)
We note that because there are no T{’s for them to
operate on, A(iV,) and A;;(iV,) are constants and

Ze®B_g,  R+0
k

=N, R=0 (A11)

so all phase factors vanish in Eq. (A10) and we
obtain

Trf(K)=Nf, . (A12)
1t is evident from Eq. (A2) that
Trf&)=Nf, . (A13)

From Egs. (Al12) and (A13) we obtain the identity
Trf(K)= Trf(k) . (A14)
APPENDIX B

In order to prove the partial integrations in Eq.
(3.33), we first wish to obtain expressions for
Vin, mer and Vioh We have

np,mp’

v:”:p.mu" ka dt Ui (V:H) Un,t,0
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= [dT (VR Uk, (ViH) Ung, o
+ [dTULg, (Vi VEH) Uy g.o
+ [dTUkg, (VaH) Vi Up g,or - (B1)
]

Since the U, ;,, are a complete set for periodic
functions, we can insert the identity 1U, ; ,»+)
XU, 0| in the first and third terms. Therefore,
we have

vka'"ﬁn.mo E fd;(V:U:»i-P) quim"fd;’U:vi"’"(V:H) Umviv9’+2 fd;(V:U:.i.n) Un.f.n"fd? U:.i.p"(vsH) Up,t,0°
P ot

=
P
&&*n

+ E fd; U:.E.D(VSH)Uq.i:P"fd;’ Ug,i-a“vl‘: U""i"'

ap’’
q#m
+2 fd; U:.ﬁ,p(VgH) Um.i,a“fd? Uk ior Ve Un g, o0 +(n%/m) 060,80m0,mp" - (B2)
e
[
We also have & 2
N Y Eia.nLE_"aL.-m_ +f;_5a'85m'm,
Vi [dTUkg  HUy 5,000, (B3) G m

from which we obtain
Ef dE(VE Uks,)Uoi,pr+ Enf AT U 2,095 U 00
+Mnoveer=0,  (B4)
and
ngd; UktoUdi,pr=0, (B5)
from which we obtain
f d?(V: Unio) Ugsiyor= — f dr Ui, Ve Ugior -
(B6)
From Egs. (B4) and (B6) we have for g #n
f d;U:‘.i}ﬂV:Uwi.p‘ = Tnorao'/ Ean . (B7)
We define
Bna.no' = j d;U:,i.ovhUn,i.p' . (B8)
From Egs. (B2), (B7), and (B8) we obtain
L SR

o _ np,gp’*gp’* mp
vk np,mp’ = Z) E
e’

nq
q#n

|

m

a A 8
=20 (D npr Mot mor = Mo mpr D &gt mos)
e
(B9)
We can prove in a similar fashion

o 8 8 a
a B T T gpee . g e gpee .
= —NPsqp”  ~ QP mp._ np,qp”  qp  ,mp
vkaw.rw’ 2: o E e Z; 1 E n
ap’’ na a.:":' maq
@*n q

=20 (D o Onts mpr = Topmor e Diaptt mpr)
o
(B10)

The partial integrations can be done in the fol-
lowing way. We first differentiate
1T-B o, ,mb "
h oo ho. VO Z; np,mp*"'m n e-SE,,) .
BT k(mm'ya'ﬂ" EmnEqn
m,q#n

(B11)
When we differentiate the g # m terms, we obtain
the following (where the I=m and I=¢q terms are
displayed explicitly):

a
h Bh”[(wm+wm+w +11'ﬂ 100t Toare s e +1rﬁ? 2o, me!, Mopgpt Mant st mpt
o np,lp P ymp
E

nl nm nq

Y
N 8 @ Tmp’
=D gt Togers mpr+ Mo e ,D,,,,,,,,,,,,,)

8 a 14 a ¥
u o [Tmpt qpreeTMypeee gore Tmp?.ap?*Mgptt gp’?
m m 1 13 mp’,qp qp
+E_:%£:_EL(_L1_L_E o _.gp —29P" " +
mn™qn mi mq

7 a
LESRINITE SATTINY

E

+
qn

EmnEqn

_ne Y 14 a 8 -s.
Dma‘.mo"'"Tmp"',qo"*”mn'.qa"'an"',qp“>7fqp",,.a€ n

B 3 a [
. T noymo’ M mp*,qp’ " ( Mo s3p'"* W ip* tapp + m
EmEQ’l

Eml mn mq

‘am -SEp

e

mptanp’ Mgt 2000 Mot 100 1Mottt .00t Tinpt mpt Mo apes
ptunp’*Tnp?t tygptt | Tmoti10% *Mip224qp' Mo’ mp*Mmp?,qet

Emn
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o [ [ « -sE
- qu,.'w,., Teo' ', mot nq‘,u'm,,.,D",,.'m> e %n

T Tt s W ogre, i TS -sE T ot T tantt Moot o T ptamp?  =sE
_Z_M_%LG.L_J.L.:LM e Fn 2 Tnowme' Tmptsge Tap' o Tme"sme’ p=sEp
ﬂmEq" E"mEq"

S LA LI X

4 —heamp’ Tmpgge’ "o’ inp “uewe o
E . Eg,

where we sum over all the band indices but n#m
#q+1. We note that all the terms proportional to
the matrix elements D cancel out. We similarly
differentiate the g=m terms in Eq. (B11) and then
add these terms to the terms in Eq. (B12). We
simplify the sum by interchanging band indices (ex-
cept n) wherever necessary and by using the iden-
tity in Eq. (3.30). Then we lump together the di-
agonal terms in the band indices I, ¢, and m with

-E, _ P LAV L

o ! _=SE ]
e **n 1, (B12
E’lﬂl Eqn ( )

r

the nondiagonal terms. Finally, since we have a
summation over E, it can be changed to an integra-
tion. In that case, the volume integral over the K
space can be changed to a surface integral, and
since the integrand is periodic in K the surface
integral vanishes. Thus the sum is zero and so the
term proportional to se™*f»[= — & (E,)] will be equal
and opposite in sign to all the terms proportional
to e *En[= ®,(E,)]. So finally we obtain

_J
a [} 4 8 a r 8 8
M posne Mnpome’ ™ mo’sqp PITT) - A o o' ts 10" 10’ p
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EZ E2 + oW oD '’y + o 60 e%fn, (B13)
mn™aqn mn™an mn
7 " w
where the sums are over m,p ,q,p ,l,p but m,q, l#n.
Similarly, we obtain
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Using Eqs. (B13)-(B18) and the identities
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which is obtained by interchanging m and ¢ and p
and p' "in the summation, and

o 14 B 6
. oMot et T 00 veeTl 000
h h 2 np,mp_"mp-,np ne_ ,9P qp 2 1P
aptys ves

mya,p’,0'" 40 EmnEqn
ii8,
Tfu a‘ﬂ, . Ilnb T ulﬂ’ﬂ 0 )
+—peame’ _metump npttygp”’ Tap e ) =g | (B20)
EmﬂEcﬂ
which has been essentially proved in Appendix E,
we obtain the desired result of Eq. (3.33).
APPENDIX C

We shall now prove Eq. (3.39). We can write
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from which using (B9) we obtain
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Thus, the right-hand side of Eq. (C1) can be written
in the alternate form
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which can be shown by partial integration to be
equal to
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From Egs. (C1) and (C5), we obtain
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From Egs. (C3) and (C7) we have
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Adding Eqgs. (C6) and (C8) and using (B20), we ob- = BusPANE[(GoGp)y, +(GuGo) ], (D2)
tain the desired result in Eq. (3.39).
where
APPENDIX D
G < Car ~ Gax "Gw) (D3)
We here prove Eq. (3.40). From Egs. (4.6), * \Gu+iG,, =—Ga,

(4.11), and (4. 18) of Yafet!® and noting that

and the G,; are defined in Yafet’s equation (4. 20).
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so that the left-hand side of (D1) becomes
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where gZ is defined in Yafet’s equation (4. 23).
(Note the misplaced brackets therein.)
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APPENDIX E
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m netic susceptibility [Eq. (3.42)] is equivalent to
(D1) Roth’s expression [Eq. (102) in Ref. 10]. Our

where all repeated indices (including p) except n
are summed over. (Note that our 7=7%/m times
Yafet’s 7.) However, the left-hand side of Eq. (D1)
is just
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first term is the same as x, of Roth. Our second
term, as written on the right-hand side of Eq.
(D1), is identical to Roth’s x,. Roth’s x, can be
written in our notation as
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Therefore, Roth’s X, can be written in the alternate form [with the help of Eq. (3.41)]
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Roth’s x, can be written in the simplified form
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We now consider the terms
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Using Eq. (B9), this can be written
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which is zero from Eq. (3.25). Therefore, we have
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We now add X, and x4 in Eqs. (E4) and (E5) and with the help of Eqs. (3.30) and (E9), we obtain
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Comparing Eq. (E 10) with (3.42) we find that they are equal except for the first two terms of Eq. (3. 42),
which have been shown to be equal to x, and X, of Roth, 1
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