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It has heretofore always been assumed that the magnetic susceptibility of a crystal could
be written g=)P&~~+)Pd«+g~&„where Xd« is the contribution of the core electrons, y&a is
the contribution of the orbital motion of Bloch valence or conduction electrons completely
neglecting spin, and y~&, is the Pauli spin paramagnetism but with the free-electron g factor
replaced by the effective g factor. The entire effect of spin-orbit coupling is assumed to be
included in the effective g factor. We show that this is not the case and that there is a large
fourth contribution to y, the effect of the spin-orbit coupling on the orbital motion of the
Bloch electrons p». We construct a many-band Hamiltonian using the Bloch representation
and derive the susceptibility directly from this Hamiltonian avoiding the ambiguity of the
usual decoupling transformations. Our result agrees with the expression derived by Roth but
is in a much more transparent form.

I. INTRODUCTION

The pioneering work on the quantum theory of
diamagnetic susceptibility of free electrons was
done by Landau' who showed that for a degenerate
electron gas the diamagnetic susceptibility per
unit volume is

XI, = -e kgl2m mc

where ko is the wave number at the top of the
Fermi surface. The expression for the spin sus-
ceptibility of free electrons obtained by Pauli is
three times larger than Landau diamagnetism and
is of opposite sign. Therefore, a degenerate elec-
tron gas is always paramagnetic. However, the
periodic potential in a solid changes the magnitudes
of the diamagnetic and paramagnetic effects and
also causes a coupling of the two effects through
spin-orbit interaction.

The first step in understanding the diamagnetism
of Bloch electrons was made by Peierls. ' He con-
structed an effective Hamiltonian using wave func-
tions obtained in a tight-binding approximation and
obtained three terms for the magnetic suscepti-
bility, the leading term of which reduces to the
Landau formula in the case of free electrons and
is called the Landau-Peierls susceptibility. How-

ever, in this theory, both the interband effect and
the many-body effect had been ignored. Further,
the tight-binding approximation is not valid for
many solids.

Adams' stressed the importance of the interband
terms in the effective Hamiltonian when the energy
gaps are small. He gave a general treatment of
the interband effect and then examined a simple
example of two bands separated by a small energy
gap produced by the Bragg reflection of a weak one-
dimensional cosine potential. He considered two
particular cases. The first is the case where the
number of electrons in the upper band is small and
so all of these electrons are influenced by Bragg
reflection. The second case is that where the up-
per band contains a large number of electrons and
so only a smaller fraction of the electrons are
affected by the periodic potential. However,
Adams's expression for the second case has the
defect that in the limit of a vanishing periodic po-
tential it gives a divergent result.

Wilson' obtained the density matrix directly as
a power series in the magnetic field in terms of
the solutions of the Schrodinger equation when the
field is zero. The calculation of the susceptibility
then becomes a computational problem, but in
practice the computation becomes so intractable
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by the appearance of large numbers of complicated
interband matrix elements that no satisfiactory ex-
pression could be derived by him. However, Heb-
born and Sondheimer have calculated, in a com-
plicated way, an expression for the orbital mag-
netic susceptibility by using the density-matrix
method.

Kjeldaas and Kohn have applied a generalization
of the Luttinger and Kohn version of the effective-
mass theory to the orbital susceptibility by taking
into account fourth-order terms in k -kp (they
put ko= 0). However, their result has only limited
usefulness since it is valid only for parabolic en-
ergy bands.

Blount and Roth have independently derived
expressions for the magnetic susceptibility of
Bloch electrons (including spin) by essentially
equivalent methods. In their theories, the Hamil-
tonian of the Bloch electron in a magnetic field is
first transformed into an effective many-band
Hamiltonian by extremely complicated methods.
The many-band Hamiltonian is then transformed
into effective one-band Hamiltonians by successive
similarity transformations through nonunitary op-
erators. The Peierls effective Hamiltonian is ob-
tained from their one-band Hamiltonian as the
lowest-order approximation. However, apart from
being very complicated, there are several diffi-
culties in such decoupling procedures, which limit
their usefulness. First, as Blount has shown,
this method of diagonalizing the Hamiltonian is only
asymptotically convergent. In Roth's paper, the
question of convergence was not answered. But
Fishbeck" has shown that Roth's decoupling pro-
cedure is also asymptotically convergent. There-
fore, as the magnetic field strength increases,
these asymptotic solution methods gradually lose
their validity. Second, there is reasonable doubt
as to whether the interband matrix elements can be
removed exactly in the case of bands whose energies
are nearly equal and occasionally overlap (apart
from the twofold degenerate bands due to spin
which has been treated explicitly in the above de-
coupling procedures). Third, the decoupling pro-
cedure of the many-band Hamiltonian is not unique.
A certain amount of arbitrariness is introduced in
choosing the diagonal matrix elements of the non-
unitary operator. Fourth, these theories require
the use of a particular gauge and while the results
must be gauge invariant, they have never been ex-
plicitly demonstrated to be so. Finally, there is
no simple way to understand these results since
they can be put in many apparently different but
actually equivalent forms. There has been no at-
tempt to calculate X from these extremely long and
involved results because of formidable computa-
tional difficulties.

Recently, there have been many attempts to

calculate the magnetic susceptibility by making
simplifying assumptions. Glasser' has derived
an expression for the magnetic susceptibility in a
nearly free-electron model. However, his result
has the undesirable feature that the expression
for susceptibility blows up when the Fermi surface
touches the zone boundary. Fukuyama and Kubo"
have calculated the magnetic susceptibility of bis-
muth by using the k p perturbation model of
Wolff, ' which assumes two bands separated by a
small energy gap. Buot" has calculated the mag-
netic susceptibility of bismuth-antimony alloys by
using a, similar two-band model. ' These pa-
rametrized models have proved successful for
bismuth and its alloys but it is desirable to have
more complete calculations.

Due to the lack of a suitable theory of magnetic
susceptibility with proper interpretation of the re-
sults, there exists some confusion' in the litera-
ture. Usually, it has been the practice to regard
the total susceptibility as a sum of three terms:

core val val
Xtot —Xd fg + Xtf f p+ Xspfn

where val refers to valence or conduction elec-
trons. It is well known' ~

' that due to spin-orbit
interaction, the g factor of valence or conduction
electrons ean differ from the free-electron value
of 2. 0023. In fact, in the presence of very small
band-gap energies, the effective g factor becomes
orders of magnitude larger than that of free elec-
trons. Therefore, it has become the usual prac-
tice to include the effect of spin-orbit interaction
by substituting the effective g factor for the free-
electron g factor in the Pauli spin susceptibility
and to assume that the effect of spin-orbit interac-
tion is completely accounted for. For example,
the experimental orbital susceptibility' is de-
termined by subtracting the theoretical value of
the ionic susceptibility and the value of spin sus-
ceptibility (computed from the g factor which is ob-
tained from electron-spin-resonance experiments)
from the experimental value of the total suscep-
tibility (measured directly). This value is then
wrongly compared with the theoretical value which
is calculated from the dynamics of the purely or-
bital motion of the Bloch electrons. ' There is no
reason to expect the spin-orbit interaction to affect
only the g factor, and indeed we shall see that it
yields an important additional contribution as well.

It is clear from the foregoing remarks that there
remained a need for a theory of magnetic suscep-
tibility of solids, which can be derived from first
principles in a much simpler way than the present
methods, would be free from the ambiguity of the
usual diagonalization procedure, and would be valid
for high magnetic fields. The present work was
carried out as an attempt in this direction and we
believe that we have been able to derive a satisfac-
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tory theory.
Our approach is different from the methods of

Blount and Roth in the sense that we construct
a many-band Hamiltonian in a simple way using
the Bloch representation. Then, instead of con-
structing effective one-band Hamiltonians which are
valid asymptotically in the magnetic field, we cal-
culate the magnetic susceptibility directly from the
many-band Hamiltonian. Thus, we contradict the
usual notion' that the Bloch representation cannot
be used to calculate the magnetic susceptibility.
Our theory has the advantages that our derivation
is much simpler, the ambiguity of the decoupling
procedure is avoided in our method, and our re-
sults are valid for arbitrary magnetic fields since,
as we shall see, when an expansion for different
orders of magnetic field is made, it has infinite
radius of convergence. Also, in our theory we do
not use any particular gauge. Further, since our
results can be interpreted clearly, the prevailing
confusion in the theory of magnetic susceptibility
has been clarified.

The expression for the magnetic susceptibility
of Bloch electrons, which we shall derive, is of the
form

X = X +++&SO y

where g is the expression for diamagnetic suscep-
tibility derived by Misra and Roth by considering
purely orbital motion of Bloch electrons, X, is the
effective Pauli spin susceptibility which is obtained
by replacing the free-electron g factor in the Pauli
spin susceptibility by the effective g factor, "and

g~ is an additional contribution of the spin-orbit
interaction to the susceptibility.

However, we have adopted the Bloch picture of
electrons in solids and thus we have not considered
the electron-electron interaction terms except in-
sofar as they can be approximated in a one-electron
band calculation. However, the many-body effects
can be shown to be small for g, and g~ as long as
we do not have superconductivity. For p~, the
exchange enhancement effect will be very similar
to that for free electrons except that the free-elec-
tron g factor is to be replaced by the effective g
factor.

The planning of the paper is as follows. In Sec.
II, we derive an effective many-band Hamiltonian
using the Bloch representation. In Sec. III, we

The Hamiltonian for an electron in a periodic
potential V(r) and an uniform magnetic field B is

1 eA 8' eX
H= —p+ + V(r)+ p z o VV&& p+

2m c 4m c c

h 1
+

3 2 p V'V+ 2g, gs B o, (2. 1)
8m c

where A(r) is the vector potential, g, is the free-
electron g factor (g, = 2. 0023), ps is the Bohr mag-
neton, a is the Pauli spin operator, and the other
symbols have their usual meanings. The eigen-
functions of the unperturbed Hamiltonian (B= 0) are
the Bloch functions

it ~ p
An t P=e '

UnRP (2. 2)

where U„g P is a periodic two-component function,
n is the band index, k is the reduced wave vector,
and the index p, p = 1 or 2, distinguishes the two

independent eigenfunctions Q„ t &
and Q„~ 2 which

belong to a general wave vector k and energy
E„(k) if the crystal has inversion symmetry. Since
the Bloch functions form a complete set, we can
expand the wave function for an eigenstate of our

problem as

g(r)= Z e
'

U f, g„,(k),
n, t, P

(2. 3)

where g„,(k) is periodic in k. Substituting Eqs.
(2. 1) and (2. 3) in the Schrodinger equation

Hg(r) = Eq(r), (2.4)

we obtain

derive an expression for the magnetic susceptibility
from our effective many-band Hamiltonian, in a
form from which numerical calculations can be
made. In Sec. IV, we summarize and discuss our
results. In Appendixes A-C, we have proved cer-
tain identities which we have used in our derivation.
In Appendix D, we show that certain terms in our
expression for magnetic susceptibility can be
lumped together to yield the effective Pauli sus-
ceptibility. In Appendix E, we show that our re-
sult is equivalent to Roth's result. "

II. MANY-BAND HAMILTONIAN

r I~ p ~ ~ vt) ~, , ~ vvx p ~
1 eA(r) eA(r)

n', t', p' c 4m'c' c

h 2 1
+ q 2 V V+ —g, p, B'o's—E e

'
U„. p p. P„. g(k)=0. (2. 5)
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We have for the coordinate operator

r Z e'"'
Uw z ... (})w...(k )

fI zh', P'

Z [(-iV } ]U,l, , (( „,(}(') .
ff' t &', ls'

(2. 6)
When we integrate by parts, the surface term
vanishes since the expression is periodic in k.

Thus, we have

Z e
'

Uz f , « t)(k )

»z U~, z,;«, :(k } (2.7)
n', k', p'

Therefore Eq. (2. 5) can be written in the alternate
form

Z e"' (P+)( )'+ V(r)+ ~, z s [VVx(|l+)(')]

+ 8m2c 2
&'V+ —g usB o-E

I U~.- ~« '(k )=0
t t t (2. 8}

where the operator g is defined as

)(= Ik+ (e/c) A(iV,), (2.9)

and is the momentum space equivalent of the opera-
tor P+ eA/c. Multiplying Eq. (2. 8) on the left-hand
side by U„*g, e and integrating over the crystal,
we obtain

dr Z P„';,(f()e""-z)'[H(F, P+ 7p') -E]
4 nz fe tpe

x U„, „;,(P) )}),.(j}= 0, (2. 10)

where

1
+ ~z z V V+

2 gtj(sB'5. (2.11)
8m c

Since U„ f,(r) and H(r, /+ itic are periodic in 8, we
can break the integral in Eq. (10) into integrals
over the unit cell and we obtain

j dftU+ l(P-f) 5Q ef(z' f')I',e
cell

H(r, g+)()= —(|i k+)' V+(P)+, (zt [VVx(P gr+])4m'c'

H(g) (I)(k) = E(})(k), (2. iS)

Ne shall now derive from first principles an ex-
pression for the magnetic susceptibility of Bloch
electrons. The magnetic susceptibility is de-
termined from the free energy by the relation

where H(z) is the effective Hamiltonian defined by

H„t g;()() = fdr U„,f,H(r, 1(+igr)U~ f, . (2. 16)

This is an effective many-band Hamiltonian. The
usual procedure" ' is to diagonalize the effective
Hamiltonian by successive similarity transforma-
tions using nonunitary operators. However, this
procedure, apart from being very complicated, is
only asymptotically convergent in the magnetic
field. Further, the decoupling procedure is not
unique since there is ambiguity in choosing the
diagonal matrix elements of the nonunitary opera-
tor. Therefore, we shall derive an expression for
the magnetic susceptibility from the many-band
Hamiltonian.

HI. MAGNETIC SUSCEPTIBILITY OF BLOCH ELECTRONS

x [H(r, if+)( ) -E] U„. z,.(r) )I)„. ~(k ) =0 .
(2. 12)

Since the k s form a discrete set of points in the
first zone, we have

g2
X = —

~~a

where E is the free energy

F=Nf, ——Z 1n(1+e~( ( ()
)

p
f

(3 1)

(3. 2)

~e((1'-1) tt
t (2. 13)

From Eqs. (2. 12) and (2. 13), we obtain

j dr U„z t [H(r, p+ g) —E] U~ f t. (I)„. t.(k) = 0,
t

(2. 14)
where the integration is over the crystal. This is
a many-band Schrodinger equation which can be
written in the alternative form

F(i3) =F -Ng= ——Q(h)(1+e+ ( ()) .
p

(3 3)

If we expand Il in different orders in H, it has only

g is the chemical potential which can be regarded
as a constant to the second order in magnetic field;
P = 1/k T; where k is the Boltzmann constant; T is
the temperature; and H is the external magnetic
field.

Let
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e(x} e-=~'"' . (3.s}

Let 4(k) be the operator such that C (j~c can be
formed from it by replacing Sk with Pc in a sym-
metric manner. [C (k) would of course depend ex-
plicitly on the magnetic field. ] We show in Appen-
dix A that

Tr4(tc) = Tr@(k) . (3 6)

We shall now evaluate 4(k). From Eq. (3.5), we

have

dC (K}
ds

(3.7)

Using the multiplication theorem of Roth, ' we ob-
tain

a small radius of convergence which vanishes at
T= 0. Therefore we make use of the Laplace trans-
form of F since e~'"' has an infinite radius of con-
vergence. F(P) can be related to the classical par-
tition function by the method of Nlilson and Sond-
heimer. '& For our purposes, this can be ex-
pressed in the form

F(P)=Z&F&(P) =Z, Tp(s) e '= Tp (s) TrC(x), (3.4}

where Tp(s) represents the inverse Laplace trans-
form and

C(k) = C,(k)+C,(k),
where

(k ) e skp(k)

(3. 14)

(3. is)

From Eqs. (3.8), (3.11), (3.14), and (3.15) we

have

+ = -Hp(k) Cp(k) H-p(k) i(k)

H) [4-p(k) +@q(k)] +ihip Vk Hp(k) Vk [@p(k)+C)(k)]

'y

hag = &ag„h (3. 17)

E ~„ is the complete antisymmetric tensor of the

third rank, and we follow the Einstein summation
convention. We note that the expansion in Eq. (3.8)
and, consequently, the expansion in Eq. (S.16) has
an infinite radius of convergence. However, in

Eq. (S.16) we have neglected all terms higher than
second-order terms in the magnetic field since for
steady magnetic susceptibility (zero field} we need
terms up to the second order. From Eqs. (3.15)
and (3.16), we have

+ .h, —h»[V, V", H, (k )]V', V,' [Cp(k) + e,(k }]+~ ~ ~,

(3.16)
where

~@ = — -'"'""'k'H(k) C(k )~„- „-,
S

(3.8)
ds

H((h) 4&q(k) +(ihip [Vk Hp(k) ] Vk Hg

where

h
eB eB

A. ,2' 26c
(3.9)

~ is a unit vector in the direction of the magnetic
field and H(k) is the operator from which H(7x) can
be formed by replacing Ik with z symmetrically,
l.e. )

H(k) = (p+hlc) + V(r)+ p p o' [VV&&(II+gk)]
4m 'c'

2e
+ 8» V V + —g, ps B'o . (3.10)

Sm c

We write H(k) in different orders of the magnetic
field

+p h~ h„p[ pVVkkHp(k)] Vk Vk}[@p(k)+@q(k)].
(3.18}

Treating the second term on the right-hand side as
an inhomogeneous term, this equation can be solved
for C, :

C, =e p f ds e' p[ih„p(VkHp) Vk-Hq
0

+ p h~p gp (Vk VkHp)Vk Vk] (C p+ 41) (3' 19)

Ne can now iterate this expression to obtain, up
to the second order in the magnetic field,

Cq:-e o f ds e'"o[ih p(VkHp) Vpk-H,
0

+ k hap hid(Vk Vk Hp} +k Vk ] e

H(k) = Hp(k) +H, ,

where

(3.11}
+e o f ds e "o[ih p(VkHp) Vk-Hq]e '™0

Hp(k) = —(P+gk) + V(r) + p k o [VV&& (II+hk)]
1 2

2m 4m c'

I

&&f ds e' "o[ih„p(VkHp) Vk-H, ]e ' o ~ (3.20)
0

In order to evaluate TrC, (k), we simplify Eq.
(3.20) by using the following operator expansion
theorems [Eq. (5. 18) and (5.19) of Misra and
Roth ']'

V,"e p= —e pf ds e' "p(Vk Hp)e ' "p (3. 21)
0

1H1=Pg~PgB'O' ~

Let

+ ppV V (3. 12)
8m c

(3.13}
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V„Vtte ' 3= —e o f ds e' "o(28'» V»Ho)e "o+e of ds e "o(V» Ho)e '"o f ds e "o(V»Ho)e-"'"3
0

+e f ds e' "o(V»Ho)e 3 f ds e' "o(V» Ho)e ' "3 . (3.22)
0 0

We shall now take the trace of E4l. (3.20), with
the help of E(ls. (3.21) and (3.22), with the function
U„"„,(r). We first introduce some notations and
some preliminary algebra. We write

4 (2 (E„)= s'e ~ (3.28)

7(„,„,.= fdr Um„-, (r)(34'»Ho) U; » (r) We also use V, HH= (tf'/m) 5 3 and the identity
which can easily be proved

(r ~ = fdr U„"-„p(r) o U„-„,.(r) .
It can be easily shown that '

&np, ~ = o

(3. 24)

(3.26}

where p is the state conjugate to p. We also write

eo(E„)=e

Co(E„)= -se ~n,
(3.26)

(3. 27)

x U;,.(fa), (3.23}

where 3(/tl is the velocity operator without the field
alld

hmo h„o(M, M3M3M4+M4 M3M3M4)

= h(23 ha»M, M»M3M4, (3.30)

where M&, M„M„and M4 are any matrix elements.
We now take the trace of 4, with the functions
U„„.,(r), which for a fixed k form a complete set
for periodic functions. We note that 4,(k) is peri-
odic in r since H, (k) and H, are periodic in r. We
also adopt the convention that any running index
means that the sum over all the bands and all the
spin indices shall be taken, except that all band
terms equal to n have been explicitly separated
out. Then after considerable algebra, we obtain

24 (E„) 42 (E„) 1

ttl n

4 ll(

m'

4'o (E.), 2@'o'(E„) 64'o(E„) 84 o(E.)
nPna ~nnnP , ~nntmP' , mP', nP 3E E2 E3 E4

mtl mn mtl tntl

8 (E„) 44 (E )88 (E„)) ll 8,„
np, mp™mp',nP

mn mn Emn m

4 o (E„) 64 (t(E„) 84 o(E„) 44 o(E„)
tnn qn mn qn mn qn mn an

24I (E„) 44I (E„) 44 (E„)
IIP, IIIP PIP EP PP , (P ln" ', nP E E E EZ

2n an mn mn 1n an t n mn an

28,(E„) 24,(E„) 48,(E„) 44, (E))„nP, nP np, mp mp', qp' qp", n E E2 + E2 ~ E E3 + E3
mn qn mn qn mn an mn qn

2

+Ar Ae gspB I»I PP 4 nmPt
@ (E )

n P, mll IllP, IIP 4 (E )
mn

1 4,"(E„) 34',(E„) 44,(E„)
Sh gg~PBB g„p np 7T„p mp 7J p „p + 2 +

4',(Z„) 24,(z„} . + 4,'(E„) 24,(z„) 24, (z„)
nn, mP' mn', aP'' EP", nP E E + Eo E nnmP' lP, '' man", a,ann E E + Eo E + Eo

qn mn mn qn an mn mn an qn mn
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no(z„) 2mo(z„) & + e,(E„) 2C o(z„)
nu, mu' md' a4pI' ~ap'', np E E + Eo + nu, no no, mu' mp', no En + Eo

qtl tntl mn qn mf1 mn

C,(z„) 2C,(E„)
Ilu, IIP IW, nip' ~Ill(p, no E2 + E3 (3~ 31)

mn tnn

where, as indicated earlier, sums will be taken over all indices n, m, q, l, p, and p, but n&m, q, l. In
the above, we have also used the notation

E „=—E (k) -E„(k) .
In Appendix B we derive the following identity:

(3.32)

27 7 + ~ atlP tlP rmD mD ~ OP OP I tip ~ tlP aflP nP amD tnP 2OD OP 2 nP 421 flp 2 nD flp rnp flD atnP mP 2 tlD
2 2 2

EmnEq. En

a Y a
E~r 2 ono na "no mu' orna' np 2 ao, no~no mo' m(p nu

C I(z '(+
2 Shaggy pg

mn tnn

6 e2

k fn tl m ftlfl

e 2 1
+np, mu' ~mo', no'' ~no'', au" ' au"', no

mn an mn qn

5 1 1
~ ~p ~ E2 E E +E2E Emn ln an 1n mn an

1 1
E E3 E3 Emn qn mn qn

1. nO. nu' OIn' mu'' mu" ~ n nO, mu' ~inO' aura ~au" nu+
2 &hasSO Wa && 4 Ea E2 Efnfl mn qn

1 a
+ 2 np. mp' Omo' aor' ~ao'' nup, ap ap, np E2 E E2 E E E2

mn an an mn mn qn

a a
+ 2 IEI ~ mI ~no mu' "mu'. no n nu no ~no am' orna' nu

@0(En) ~

fn tl mn r

It can be easily shown from time reversal symmetry that

%„,...(k)=~f.; „,-(-k)
and

(r„, (k) = -o„, ~ (-k) .
Using h z = -hz„and the above we have for nonferromagnetic crystals

(3.33)

(3.34}

(3. 36)

~ .»noonu m' )tm~, ~ 'o " + ' " + ~ ~agama»" 4 ~C'o(zn}=o.
2C,(z„) C', (E„}

mn n, p,i
n 1 fn

(3.36)

From E(ls. (3.31), (3.33), and (3.36) we obtain

Tr@ (k) —k I Q no na nu na 6 CIII(z )
o ( n)

6m

4 (E„) 24 [E„) 24 (E„) „4(E„) 44 (E„)) 2 I
3E E E " 'm '"' Emn mn mn mn ~mn m

II I
o C)o (E } 6C)o(E ) 7' 'o" o' "oo" «" )r( '"

~

mn an mn qn El n anEmn
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6 5

3 no np no mo mo au 2ad nu Cl (E ) 3 ~nutso "no, lnd Wmap ao'I 2aol', no @I(EE Ea 0 n

r
2 Zsl"& ml, ml' o„oo,ho @II(E g IIDD, ON omu, ho C,l(E )

mff

2 mn qn mn

no mo ~flu aD' "ao su I no mo ~md, ad ad', no

E E 0 n

vno Id~no mu' "mu ho
C

I E + no no IN mo mo IN @ (E )
2' 2' ~ a" .,

0 n
mn fnn

(3. 37)

We note from Eq. (3.4) that

and from Eg. (3.3) that

OF) = —T2Se ~ = T2 CI2(E)),-gE
OE]

OF,.
sE' =f(E(),

the Fermi function. Thus we obtain F(P) by operating on Eg. (3.37) with T2 which causes every factor
42(E„), 40 (Eg, 42 (E„) to be replaced by f(E„),f (E„),f (E„).

Then from Eq. (3. 1) we obtain the expression for the magnetic susceptibility of Bloch elec rona

mn mn fnff

f (E„) 4f(E„) lf 62 „e f (E0 Gf(E )

2ho IIID', 2mu' ~ ao' "aD tu ID nP f (E ) + 3 hP IN "normo "mP ao lid ~ f (E )E,nE nE „ EmnE.

A.
"

A.Ilo IIP hP IIIP IIIP PP a/ IIPf (E } Q )2 IN Ilo IID IIP f (E )
no DIP nld IID f(E )

mff mn

a
&nu mp' Cmo' au' ' ~ao' ' no

Ean Em.

f'(E„) 3f(E„) 2, , 2 .,„~o",g,
Emn

f (E ) nu md &mo' ao" ap",nof (E )
EqnEmn

lrvno. no Ilnu mo' md'itnu f(E )
no, no no mp' mp, nu f (E ) (3 33)E2 n E~

This is the general expression for magnetic sus-
ceptibility of Bloch electrons. As mentioned ear-
lier, the summation is over all bands except that
m, q, l &n, since such terms have been explicitly
considered. Thus there are no divergent terms in
the expression for g We shall show in Appendix
E that this expression is equivalent to the expres-
sion obtained by Roth. However, we note that
this expression can be written in many different
ways by making use of partial integrations. Equa-

[

tion (3.38) is in a suitable form to make numerical
calculations except that f terms should be con-
verted to f terms by partial integrations. How-
ever, it does not lead to an understanding of the
different terms nor is it expressed in a familiar
form. We shall now express X in a form in which
the various terms will have clear physical
meaning. This will also clarify the prevailing con-
fusion in the literature.

We show in Appendix C that
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vna, no ano, lm oso sm slo no na no no Im 0 o (E )
tntl

x wt(m b(r+ g (7r 2 rtnpB np qp 7rqlftt ~ np+ nnp tnp Htnpt Nps ref ~ qp ~ ~ IIIyp Npg I y

/fan

tnn qn/

(E ) + a" ~ f (E„) = Q VB %BE„VBVBE„f (E„), (3.39)
mE „

and in Appendix D that

6 2
aB @2 DD lllD IIID na IID oo Oa Im II (E ) gl'go Zs I 2

~

ot ~ oB f (E )H' E E 2 ) np, gg
' &np', np

tnn an

a
aB g7 ~no Do v.nol, md'I vma'I no fI(E )

2 2f (E ) (3 40)

where g is the effective g factor. It can also be shown by a partial integration similar to that shown in Ap-
pendix B for Eq. (3.33) that

pJ I V lnl no IID ~ID IID mo lna llo a /E
L tnn

no my' ma no no. ao'
aB &d E2 Ean lgtl

vaal no 2 Ilo IDD llnl ~ IIO not a lf ~OD 2 lsl

E E

1 1
np, np np, tnp tnp', qp" qp", np Em E EI Etnn qn qn tnn

a y d
nn IID vnostsID DID oa ~DD t an

E~Eqn
NO DND ttD rtnD tnD oeO eD t NO

E~ E

e'~B
DD IID Ilo IID IID IIID DID Ilo 3 IID&tma DID IID 0 f(E } (3 41)

ntn tnn

From Elle. (3.38), (3.39), (3.40), and (3.41), we obtain the expression for magnetic susceptibility o
Bloch electrons:

'y

a B 'yd ~ND sM AND ~ ND+ HI EI Bd+ ~
tnn

a B d
NDDIND tnO BND ND teD DD

E~NEan

a
tttD 2 NDB IND tttD DNO ND oeO ee o NO

E~E,N

a y d
NDytnO tnO t eD eO t lD 1D BND

E~.E,NE n

a y d
vnoino Vna, slo' v. molO~oao" no +E EI

NDBND NO ~ tnD NCD teD itD BNO

E„NE

y d
y di ag nottnD tno tnD ~ ' aB gy I BS ND DND ND )tND SND ~ ND NDB tnD tnD oeD eD ~ ND

tnn tnn qn tnn

r
NDotnD +tnD oeD eO S BNOE;E.

B B r
NDontO ~tnD teD ~DD BnD NDDNO ~NO ~ N!O ~tttD DND NDBND ~NOttnD ~ttRO BttD E„)

This is the general expression for magnetic
susceptibility of Bloch electrons. 'Ihe first term
is the Landau-Peierls susceptibility which would
be the expression for the orbital magnetic suscep-
tibility in an effective-mass formalism. The
second term is the Pauli spin susceptibility, ex-
cept that the free-electron g factor g, has been re-
placed by the effective g factor g. This term then

can be referred to as the effective Pauli spin sus-
ceptibility. The contribution of this term for crys-
tals having large effective g factors (like Bi) would
be very large but it would be always positive. This
then is the "paramagnetic" contribution to mag-
netic susceptibility. The other terms have been
written in terms of Fermi functions for convenience
of numerical calculations.
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We can write Eq. (3.42) in the alternate form
X= Xo+X, + X (3.43)

where Xo is the orbital contribution to the sus-
ceptibility

h h Sm ~ m
2 8 5

g~goE f&(E )+3 «ao Q 3 numa' mo no 6 3 noma mo no na ao uu nu7T a
~

Ja 7T ~ a ~ ~ ~ TT ut ~ t
Xo= ~2 k k n k k n n + ~2 Ez ae+ E2

k
m mn mn qn

Oi y 5

2 +nuumo ~mu' au" ~ao ulo'' lo'".no

E,nE nEm„

7T T' 7r" 6
~npunu ~nuumu ~mu uap au" unp + nu~np nuimu mu uau ap unp~ 7l a a ~ 1T ~ ~

(3.44)

X~ is the effective Pauli spin susceptibility

X, = Z; .' g-' V,'f—'(E„),
and X„is the additional spin-orbit contribution to
the magnetic susceptibility,

(3.46}

I~ h
(M g yy ~ +nuunp ~nu umu" ~mp unu

X~0= Z 0 g~ pg 3
mn

Ot 8 y
~np, np' ~mpauapaa +auaa unu

E&nEmn

uf y I
ump u mD uau ao sno

E,nEmn

m
" m' ~ m' 0"+nuumu'~mp uao aD uno npunp not mu' mP unu + nuunp notmp mp np

mn

gy 5

+4 no~&6 V no mo' Vmo', no" anu" ao'" aao'". nu XyX5 ( ~g2 no. mu' mo' no f(E ) (3 46)
H E En 2 ' En

It can be easily shown that our expression for
Xo is the same as the general expression for dia-
magnetic susceptibility obtained by Misra and
Roth ~ [their Eq. (5. 36)] if we replace F
with P/m.

IV. CONCLUSION

In this paper we have derived, in a reasonably
simple fashion, an expression for the magnetic
susceptibility of Bloch electrons. We first con-
structed an effective many-band Hamiltonian using
the Bloch representation. Then we derived an
expression for the magnetic susceptibility directly
from the many-band Hamiltonian. Thus our method
of derivation is simpler and we have avoided the
ambiguity of the usual decoupling procedures and
have not worked in a specific gauge. We made an
expansion in different orders of magnetic field in
the course of our calculation, but this expansion
has infinite radius of convergence. We have thus
contradicted the usual notion' that Bloch represen-
tation cannot be used to calculate the magnetic
susceptibility. We have also shown that our re-
sult agrees with the earlier results' ' ' for the
cases which they have treated.

Our result, which is expressed in a form such
that numerical calculations become practical, can
be expressed as the sum of three terms. The first
term is the susceptibility obtained by considering
the purely orbital motion of Bloch electrons. 2'

The second term is the effective Pauli spin sus-
ceptibility which is obtained by replacing the

free-electron g factor in the Pauli susceptibility2
with the effective g factor. ' The third term is
the additional spin-orbit contribution to the sus-
ceptibility. Although this term may contain con-
tributions of either sign (as indeed does x„ the
purely orbital term o), it should be considered a
spin-orbit correction to X, and distinguished from
the spin-orbit contribution to the effective g factor
for the following reason. There are two types of
contributions to the magnetic energy of a one-
electron eigenstate, terms linear in 5 which split
the spin degeneracy and terms quadratic in 8 which
do not. (Both terms, of course, contribute qua-
dratically to the free energy. ) The linear terms
are all included in the g factor" and are always
paramagnetic independent of the sign of the g fac-
tor, i. ea t independent of the sign of the splitting
of the spin degeneracy. The quadratic terms
which arise from a perturbation of the one -electron
wave functions by the magnetic field are generally
diamagnetic20 and are responsible for both X, and

Xso ~

It is easy to see that in the absence of spin-orbit
coupling every term except the h ~hy, term of X„
vanishes. [Every o„„term vanishes because of
the orthogonality of the orbital functions. If one
chooses 5 to lie in the z direction, one has
go' „,. = o„',„,+ cr„',„,= 0. This, coupled with the
fact that in the absence of spin-orbit coupling
m„, , =7Tn, , and TT„, , = 0, makes the first term of
Eq. (3.46) vanish. j If, in addition to the absence
of spin-orbit coupling, the crystal has inversion
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symmetry, then m„p p STD„„, and the h~h„, term
also vanishes. Therefore, in a crystal with in-
version symmetry this term properly belongs in

, but in a crystal lacking inversion symmetry
it belongs in y, . ' A similar term occurs in the g
factor where it causes g to differ from its free-
electron value even in the absence of spin-orbit
coupling if the crystal lacks an inversion center.
These terms arise from an imperfect quenching of
orbital angular momentum which can be caused
either by the spin-orbit interaction or by a lack of
inversion symmetry in the crystal. ~~

In a later paper we shall give numerical calcula-
tions for PbTe which, like bismuth, has large spin-
orbit coupling and small energy gaps. For such
cases the dominant term in X is the first term of
Eq. (3.40) and the dominant term in X is the
(next to last) term containing four )&'s in Eq. (3.46).
In a two-band effective-mass model one can show,
using these dominant terms only, that

T f(x) Q e -(h R' f(x) e &h R'

N k, R
(A4)

We now consider one term in the expansion (A3),
f-e'"'"/", which operates on e' '"

. We use the
well-known identity

A+B A B [B,A]/ g (A5)

which holds if [B,A] commutes with both /1 and B.
It can be shown by expanding A(iVh) in a Taylor
series that

[(ie/Kc) A(i V,). R, ik R].= —(ie/Kc) R(A;/(i Vh) R/,
(A6)

where A;/(ivh) =sA, /Bp;(ivh) is evaluated by first
differentiating A; with respect to r; and then sub-
stitutingiVh for r. Using Eqs. (2. 9), (A5), and

(A6) we obtain

i~ R/)I eik. R i(e/)tc) A&i&y)'R -i(e/2& c)8;A;g&i

(A7)

X' =(6Ep/3Ec)X„

X,c =- h v(Ea /Ep) (4. 1)

We also use the identity

A B B A fA B)ee =eee
to write

(A6)

where E, is the band gap, g„ is the contribution of
the filled valence band to g„and g' is the contri-
bution of the carriers, either electrons or holes,
to p . X, is, of course, due only to carriers since
it involves an integration over the Fermi surface.
We note that both electrons and holes give a para-
magnetic contribution to g„but that the filled valence
band gives a larger diamagnetic contribution and
that this contribution is several times larger than
the g-factor paramagnetic susceptibility. Thus,
systems with a large effective Pauli paramagnetism
are actually diamagnetic.

e i(e/& c) A(i&y) ~ R iR.R ' i R ~ R' i(e/Fi c)A( iVp). Re =e e

i(e/h c) R)A. ((vh)R (A9)

From Eqs. (A3), (A4), (A7), and (A9) we obtain

Trf (x) Q f e ih Re i( e/h c) A(i vh) ~ R

R, R', k

x e«e/hh c&&»;-&&(&A(/&«h&&&/ (AIP}

We note that because there are no k's for them to
operate on, A(iVh) and A;, (ivh) are constants and

APPENDIX A
&i i& p R~O

We shall prove that

Trf(/() = Trf(k), (Al )
=N, R=0 (A11)

where f(x) is a symmetric function of x formed
from f(t&) by replacing Sk with x symmetrically.
Since f(k} is periodic in k space, we can expand
it in a Fourier series

Trf(x) = Nf() . (A12)

so all phase factors vanish in Eq. (Alp) and we
obtain

f(k) =Q fae'"'"
R

(A2)

It is evident from Eq. (A2) that

Trf(k) = Nf0

Since f(/&) is obtained from f(k) by replacing Sk with
K symmetrically, one way of defining f(T() is

From Eqs. (A12) and (A13) we obtain the identity

Trf(x)= Trf(k) . (A14)

f(~)=+ fRe'" ""
R

To take the trace, we use a complete set of plane
waves (I/ N)e")'" over the Brillouin zone. (The
factor of I/KN is for normalization over the Bril-
louin zone. } So we have

APPENDIX B

In order to prove the partial integrations in Eq.
(3. 33}, we first wish to obtain expressions for
Vhm~, , and Vho„, , We have

V»de e. =V„fdrV„*,he(VhH)f/



4592 P. K. MISRA AND L. KLEINMAN

= f d r (V U.*.-..) (V'H) U .t..
+ f d r U„* l„(V„VsH) U, l, ~

+ f d r U nr„p( V'sH) Vs U~.s.' . (81)

Since the Un, -„„are a complete set for periodic
functions, we can insert the identity IU, I,")
&&(U, I p" I in the first and third terms. Therefore,
we have

V ts, , = Q f dI (Vs U t p) Uq j p f dI Uq l p (V sH} U~ s p +Q f di(Vs Un l p} U t f dI U & p ~ (VsH) U~ l p,
plt pt t

g4'n

+ Z f dr Us l p(VsH)U, ,I.p.f dr Uqt, l p"Vs Um, k.p'

qsPtt
qllm

+2 f dr Un t, p(VsH} U„ l, p"f dr' U*, „-,p. .Vs U l p. + (Is/m) 5,l 5„,
pt l

(82)

We also have

Vs f dr Unn, s, pHUq, s,p'= 0 ~ (83) asP
adam

8 0
~np ap "&ap" mp'

Emq

h2
+m~- 8'- -'

from which we obtain

E,f dr(Vs nU, lp)Uq. l, p +Enf d»n. f.pVs Uq. l p ~.
(84)

pl ~

na n( np.~np''tnp", mp' ~ mnp' pm~pm )p

(89)
and We can prove in a similar fashion

Vs f drU„ l U „",, =0,
from which we obtain

(85) o 8
Vs &np, np' =

as p"

e 8
~nu. au"'Ja p".mu

E
g8 0
'Jnu. au "7ap", m p

,plt Em
qllm

From EIls. (84) and (86) we have for q t n

J dr U„* -„pVs U, „- p. = wnp qp. /Eqn . (8 t)

f dr(Vs Un, s p} U„l p. = —f dr Un, l, p Vs U, l, p

(86)
( np, np'' np", mp' np, mp'' mp", mp') ~

(810)

The partial integrations can be done in the fol-
lowing way. We first differentiate

We define

Dnp, np'—:g drUn p PV&Un p p

From Eels. (82), (Bl), and (88) we obtain

(88)
h sh„s Vs

msP'sasP''

tlPs mP mp sqP qP ~ nP e ~En
2 E

(811)

~a 8
"ll ~np, mp'

qsP"
q lln

I
np, qp' ' a p' ', m p'

Enq

When we differentiate the q ~ m terms, we obtain
the following (where the l = m and l = q terms are
displayed explicitly):

p I nP. lP"'" lP" '.mP' ~nu. mp'"mu', mp' ~fit, ap '~qp" ', mp
a8 r6 E + E +

nl tlq

8 Qt a 8 CX

~np. l p" '~1p" ', mu' "nu. tta~»smu' nu. a p' ' ' qp' ' '.mP '
+ + — + E

nPs nP tlP' smP + ~nPsmP" ' ~mP'", mP'
P saP qP sr~a -&En

EmnEq.

8 CM r a
nP tnP' ~mull lp "'~lu' ' '.ap' ' ~mP'. aP' '~au ~ aP' '
2

EmnEqn Em, Em,

Cg r r CX

smut npt t t7Jnp tt l apt t smut lust t771ut t t apt+ + + tn P ~ ttlP ttlP la P

+ mP't nP ~ nut l tau'

E,n

r 6 E
mpl ~ l 77 plll pl t + /pl pt st Pi pl t t pit 77 l Is m, q ttl la a sq aP , nP

8 r
tips mp ~ tnp ~ qp ~au t 1P ~ 1P ttlP

E
~ aP' tnp tnP ~ nut~

Eqn

Ck 6
u' ' nip mp np

6 Q~au" lu'" ~ lu" 'I np
6 a~au" au" ~au" nu

E
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6 a~ ap ' '
4 mp "' ~ mp ' "4nP me 6 -sEn

~q tqp" p"' r qp"' e + 7r ap ' np'" ~np"' e e n
q

B

2
~ nppmp mp'r aP'' ~aD" t nP ~ nppnp $En ne +2

5 r a~ tt ptmD ~ mp tap ~aP Pnp ~ mP tmp
3E.m E,n

-sEn

~ npsmp' ~ mP'taO'' ~ aP' 'tnP ~np~np SEn

tntL qtL

tnptmp Vm'p tap ' tap np Vhlp np 88n I —

)2
' ' e " iB12

nm qn

where we sum over all the band indices but num
4 q 4 l. We note that all the terms proportional to
the matrix elements D cancel out. We similarly
differentiate the q = m terms in Eq. (Bl1) and then
add these terms to the terms in Eq. (B12). We

simplify the sum by interchanging band indices (ex-
cept n) wherever necessary and by using the iden-
tity in Eq. (3.30). Then we lump together the di-
agonal terms in the band indices l, q, and m with

the nondiagonal terms. Finally, since we have a
summation over k, it can be changed to an integra-
tion. In that case, the volume integral over the k
space can be changed to a surface integral, and
since the integrand is periodic in k the surface
integral vanishes. Thus the sum is zero and so the
term proportional to se ' "[= —Co (E„)]will be equal
and opposite in sign to all the terms proportional
to e ' "[=hio(E„)]. So finally we obtain

m nptnp&nptmp ~ mp tap ~ao tnD
/ceQ Ar6~ S 2

Eme Eq.

nPtno ~ nPtmP' + mp'Pao''~ ao''tnt
E E

=h I K[Iel r6

e r B 6~ nptnp ~tLPtmp ~ mP taP ~aD tnp
2 Z

En Eqn

8 6~ mp'tap'' ~ap 't ID''' ~ LP tnP
2E mn Eqn Ern

e 8 r 6~ tip tmp ~ ttLO tLP ~ tLD .aO ~aD tnP

E

np, mp' ~mp', np" &np", qpp" 7

E'nE~

6

} (B13)

where the sums are over m, p, q, p, l, p but m, q, l wn .
Similarly, we obtain

np, nP "nP, mP' ~mP', qp" ~qp", np -sE„
mn qn

6
+np, mp mp, ap Vap tp '+tt'tp"p '+ ~np, mp Vmp, np I tip , aP" tap'"', np ~np mP' ~mp'. nppp ~np ap ~qp nP

EqnEmn

e 6

+ nnp, npvnp, mp nlp ap ~alp np ~np, npvnptmp empt ap ~'op np

@2 a
nPPnp nppmP mP 4qp qP" ~ nP nppmp mP Pnp g -SEn B/4

tLP, nP» nP, nP+nP, mP' +mP', nP -sEn

k nm

&e r 6
np, mp' mp npvnpap" v'a, lp', np , tnp, mp'ttmp', npttnp, ap ttapt', np

a r 6
&tm. npvnp, ma' &mat 4p" ~ap", . np

EqnE

np, np~np, mp'~mp', qppp "qp",np ~nppnp~np, mp' "mp', qP" &qp'', np

e r 6 g
nP, np+np. np+np. mp' ~mp', np -SEn

eg r6~ s E3 e
k tl tn

e 6
np, np»np. np~ np, mp' ~mp', np h mIIP IIIP gamp tlP Lt e asn (Bl5}mE 86 t

mn
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~np. mp' +mp'np7)np, qp" ~cp",np np, mp'~mp'. np "np. qp ~cp» np + np, np "np mp' "mp', cp» ~qp», np

hpsnp flP mP mP sqP 7 CP nP tlP nP nP fhP ~mP CP CP
' ' ~np

2 np'np np' p nP'mp' mp 'np — np'm mp 'np g sEh, 816

8
nP 1hP mp', nP 1lP nP e 8E h g Z tlP mP mp cP cP tlP

2
Emn Eqn

a 8
nP mp mP f nP hP ~ tl p

Em.

and

, mp'& mp', np" O'np", np

Emn

—7Tnutmu' mtt'tau" au''tnu sE- (Biz)
Em. Eqn

r 8
hPs ttlP tnP tlP tlPs flP -8En r ~hps Cp O C p s tnp ~ mp, tip tlP nP nP s mP mP

haBA. ~s '
E2

' ' e n=h 8~m
ttl tl qn mn mh

8 a+ llu tnu tttu au ~ au tlu + Ilu nlu nut nu nu nu -ss„(Bl8)

Using Eqs. (B13)-(B18)and the identities

5
np ttlp ~ tnp hp np cp ~cp tlo

a8 r5 ES
tfln qfl

V En= m„

from which using (B9) we obtain

(C3)

r 8 5

h tlPs thP thP s tlP tlP ecP cP t nP
aB r5 E E3

mn Cn
(B19)

which is obtained by interchanging m and q and pI I
and p in the summation, and

5 m hpsmp ~mp hp flp tttp thp s flp 85

nm nm m

(c3)

h Bhr5
a r 8 5

tlP u mP mP s tlP nP CP CP u flP

Emn E.nptttlp

Thus, the right-hand side of Eq. (Cl) can be written
in the alternate form

~h sh„sZ w„, „,tt"„, „,VnvsE„f (E„}, (c4}
+ '

— = Q (B20)
mn qn

which has been essentially proved in Appendix E,
we obtain the desired result of Eq. (3.33).

APPENDIX C

We shall now prove Eq. (3.39). We can write

&a r 8 5
ttu ~ nu nu ttu tlu mu mtt nu

aB r5 „3E
mtl

h ttu ttu Ilu. Ilu 6. f ( E )6

which can be shown by partial integration to be
equal to

-Z zh.,h„,V„V„"E„v,'v,'E„f'(E„).

From Eqs. (Cl) and (C5), we obtain

~nu, nu~nu, nu~ nu mu'~mu', nu
a8 r5 3Etl fn

g2 a r
tlPs tlP tlP s tlP

(c5)

5 5 8haBh us Q a u ~nu, mu'~mu', nu ~nu, mu'~mu' ~ nu
tlP, nP nP, tlP Ejt, nm nm

~ "' 5 Va V",E„V,'V'E„f' ( E„) .

f En . C1
We can write

(C6)

e 4~a8 r5 nP mP mP, nP nP, CP ~CP .nP tlP. mP mP snp tlP. CP CP ~ tlP 2 np. mP mP ~hp g
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~a8~ y6 ~np, mp' ~mp'. np ~np. mp' ~mp', np ' ~ay nP qP qP nP + nP qP qP on@ + B6 (C7)

From Eqs. (C3) and (C7) we have

no mo mo ~ no n.oa"oao" no no, mo' mo' no novas" ao", no 2 ~no mo' . mo', no 6 aa Ba fs(E )
mEnm 2 m

' "' 5 V, V,"E„V',V,'E„f (E„) . (C8)
4

Adding Eqs. (C6) and (C8) and using (B20), we ob-
tain the desired result in Eq. (3.39).

APPENDIX D

—(-.'p. )'), x'[(c.c,)„+(C.c,)„],
where

(D2)

We here prove Eq. (3.40). From Eqs. (4. 6),
(4. 11), and (4. 18) of Yafet and noting that

np, mp' '~mp'', np''~eg +np, mp''&mp'' np'~eg f

we obtain

~ & ps(Ln+ag son)no'no ( I+ssgso) 8n'ono

(D3)

and the G„are defined in Yafet's equation (4. 20).
Inserting (D3) into (D2) one finds

). X (GnGB)„=X X (Gm GB)„=X X Go~co~, (D4)

so that the left-hand side of (Dl) becomes

~e A'6 &n p~ mps s & mp' '
~ np' &np' s qp' ' '&qp' ' ' enp

erj 2~ &2Zs&a) &no, no Ono', no

2 e g 1 2——,P, ~X )l. (xe~G~~= ——,P.gg

where g is defined in Yafet's equation (4. 23).
(Note the misplaced brackets therein. )

APPENDIX E

(D6)

e 8
~ ~eR yy +nP. np'~nP a mP' '~mp''anp—i 0 Es~a

'
Emn

(Dl)
where all repeated indices (including p) except n
are summed over. (Note that our w =8/m times
Yafet's v. ) However, the left-hand side of Eq. (Dl)
is just

%e shall now show that our expression for mag-
netic susceptibility [Eq. (3. 42)] is equivalent to
Roth's expression [Eq. (102) in Ref. 10]. Our
first term is the same as g, of Roth. Our second
term, as written on the right-hand side of Eq.
(Dl), is identical to Roth's y, . Roth's g, can be
written in our notation as

e y g r e 8. he anomo +mo', n, ovno, n'o +no. mo vmo novns n'o '. o&(E.
)

mn mn

(El)

j a, y 6 8
nP, np~np, mp' ~mp o qP ~qp nP

2 E nEqn

e g r 6
&nona&no mo'&ms', .ao''&. ao ',no'

EmnE~

It can be shown by partial integration (in a way outlined in Appendix B) that

&noo Wno .mao,
' ' &aa''. 'I o ''

V la ''.n'o''
E,nE, „E „

~+P mP +mp' ~ qP' '+qp a ~P ~l p' ', nP

ErnEq nEmn

~nP, mP' ~mPs a nP s s +nP' ', qP ' "FqP" ', nP
2E „E,n

&np, »p' 7Tmp', np" 7Tnp' ', qps s '7l qp''', np &np, np~np. mp'&mp'. qp' ' &qp''. np

2 E E „

e r 8 „6
&np, n p&n p, mp'W mp', q p "&qp' ', n p

2 E E

e B a y 6
&eP, nP&nP, mP'&mP'. qP' ''ttqp' ', nP ~nP, nP~nP, mP'+mP'aqp"~qp~, np ' ~np mp mP ~ np g f E (E2)

and
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nP, mP' mP', nP nP, nP nPsmP' mP', nP nPsnP

k mn tnn

yyQ ll, m Om, lla, n no mu mu n o (E ) (E3)
E E

Therefore, Roth's g, can be written in the alternate form [with the help of Eq. (3.41) j

3 "ad'~"ad sno, mu'smo'. au+a»ul»u+»lu nmu ~no, mu' mo ao"',~au» lu' sl»um. no

&e 7 B 6
nD, mP mP HP nD, aP qP np

2

&e 7 6 B
np. mp'~mp', np~nptqp ~ap»t np

Ez
~npomp ~mp' nP "nP' .qP ~qp .nP

2
EmnEqn

6 6
~np, mpt "mpt np»Wnptt qpt»Wqp~ np npsnp npsnp npsmp' mp', np n " "nptmpt~mp'np

s
'

EmnEq. Es mE „

ah B ya no mu mauo»a o, »nu no. mu' &mu'. nu'' onu''. no oiE i (E4)
mn qn m1t

Roth's y„can be written in the simplified form

a 7 B 6
had«yd o Snu, mo' ~mu' nu Snu, au'' Sau'' no

E HE~

7 6 B ~a 7 B 6
~HPsmP' ~mp's HP ~HPsaPt t ~aP' 'sHP ~HPsHD ~HDsHD ~HDsmp' ~mp'snp

E~Eqn

e B 7
~nps HP ~nps mp' ~mp's ap' ' ~ap 's np+ 2

e 7 6 B
~HPsnp ~nps mP ~mp s aP ~ap snP

2
Em. Eq.

a
~nps mP +mp saP ' qP y 1P' ' ' ~ 1p' ' ' snp

Em. E1n Eqn

e B 7 6
HPs tHP ~mp s nP +HP s aP ~ap s nP ~'2 Em. E.n

B
haB 7 HP a HP +HPS mP' m mp'S np +np S mp ~mp S aP ~ap 'S HP

H gsPB Ez + E Emn mn qn

e B a
~HPsHP +Hpsmp +mp sHP nP

E
mp ~mp s ap +ap ~ QP 2 ~nps tttP ~mp s HP +HP s HP

E,HE „ E

+ —~"~'(g, l, )' "" ' ""' f(E„). (E5)

We now consider the terms

pt ptt pt tt
pt t tip

7 B
~HP SmP ~mp o HD ~HD S aP

2
Emn Eqn

6
~aP s HP ~nps mP' ~mp's nP ~HP 'saPt t ~ap' 'sHP

2
Emn Eq.

(E6)

which can be written in the alternate form

m, p', p"
pt tgp

a 7
&Hpsmp' &mpt snpt ' 6

"HP 's aP' ~ap snP

I
putt

6 B

+ ~np saP ~aP snP

E
(E&)

Using Eq. (89), this can be written

m, p', p''
pt tgp

a
~npsmp' ~mptsnp" M 6

E2 vk mnp-, np
tnn

(E6)

which is zero from Eq. (3. 25). Therefore, we have

Snusmu mu nu an»lao Sau nu nu aid mo ~Jgg
Ml\au ao ~ nu

E E E E

6
7THP ~ mpt tdtnpt snpe t n npt ~ aptt t 7[apts t np

2 + normo' "mu'&no" no" iao" ' ~ao"'&no (E9)

We now add g, and gd in Eqs. (E4) and (E5) and with the help of Eqs. (3.30) and (E9), we obtain
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hm8 l6 3 noImn' Smn'~an'' "nn" sin'" ~ln'"t nn + 2 n nsmn mn'~nn" nn''inn" ' nn"'i nn

+np mp& +mp np I Wnptt pl I t 77 pt c i

2E nEqn

~np, np ~np, mp' ~mp', qp'' ~qp' ', nP

2

0. r 6~ np, np ~np, mp' ~ mp', qp'' ~qp'', np

~2 6 6
~np, mp' ~mp', np y„ot y—2 ~ ftotg ~ np, mp' +mp', qp' ' ~qp ' 'enp

mE2 p,gs s
mn mn qn

np, mp' mp', np'' +np', np

2
Emn

e y 8~ np, np +np, mp' ~mp', np

2En

+np mp' ~mp', qp' ' ~qp' ', np m~ np, np ~np. mp' +mp'. np

2E n

~np, mp' mp'. qp'' ~qp''. np

6

+
i QT/5 Q ~ )2 D mP' D'mhP f,(E ) (El0)

Comparing Eq. (E 10) with (3.42) we find that they are equal except for the first two terms of Eq. (3.43),
which have been shown to be equal to X, and y, of Roth. '
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