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The time- and temperature-dependent spin-spin correlation functions and their wave-vec-
tor-dependent frequency transforms are obtained exactly from the Wigner-Eckart theorem
in the Bethe-Peierls-Weiss cluster model of Heisenberg spin systems. The expressions ob-
tained are valid for all spin values and for all temperatures above the transition temperature.
The present results for the spin-& simple-cubic lattice are compared with the theories of
Windsor and of Blume and Hubbard and with the experimental data on RbMnF3.

It has been possible to study dynamical proper-
ties of Heisenberg spin systems in terms of time-
and temperature-dependent spin-spin correlations
and their wave-vector-dependent frequency trans-
forms which are numerically evaluated in the Bethe-
Peierls-Weiss (BPW) cluster model for various
spin values and temperatures. ' This paper re-
ports exact analytic expressions for these quanti-
ties obtained from the Wigner-Eckart theorem
and valid for all spin values and for all tempera-
tures above the transition temperature. The pres-
ent results for the spin-& sc lattice are compared
with other theories ' and with RbMnF3 data.

The two quantities of interest in this paper are
the dynamical spin correlation function defined by

&So(0)S:(t))= C~ e""&tISoli& &i IS:It)e"""',
(1)

and the wave-vector-dependent frequency transform
given by

p oo

S(k, ~) = Z e ' —e '"' (So(0)S'„(t)),
n ~ 00

(2)
where C= 1/so(so+ 1)Z, with Z being the partition
function and sp the spin value per atom. These
quantities can be evaluated exactly in the BPW
cluster model of Heisenberg spin systems, which,
for temperatures above the transition temperature,
is characterized by the effective-spin Hamiltonian

H= —JSp' S

where So represents the central spin of a cluster
and S& the total effective spin for the yp nearest
neighbors surrounding the central spin. This
Hamiltonian is diagonal in a representation charac-
terized by Isos~sm&, in which So, S, , S, and S'

are diagonal. In this representation the matrix
elements of the spin operators that appear in Eq.
(1) can be obtained exactly from the Wigner-Eck-
art theorem, ' and the nonvanishing elements of
these are

&s ISoIs)&s IS„'Is) = [s(s+ 1)+P(s, )]

x, [s(s+ 1)+P(s~)] (2s+ 1)/12s(s+ 1),

&s IsoIs+1&&s+1IS*ls& = + q(s, , s),

&s ls', Is —1&&s —11S*ls&= s Q(s, , s —1),
where the plus sign goes with n= 0 and the minus
sign with n = 1 and where

P(s, ,) = so(so+1)-s, (s, +1),
Q(s, , s) = (so+ s, + 2+ s) (so+ s, —s)

x (s, —so+ 1+s) (so —s, + 1+s)/12(s+ 1) .

From Eqs. (1) and (4) it follows that

(So(0)S'„(t)) = CQ W(s, ) expI o J[s(s+ 1)—s, (s, + 1)]pJ

x ([s(s+ 1)+P(s&) ][s(s+ 1)+P(s&) ]

x(2s+ 1)/12s (s+ 1)+e "" Q(s, , s)

se' "Q(s, , s —1)], (5)

where the summations are over s, and s, each in

the range of values given by O~s&- ypsp and isp
—s, I ~s ~ (so+ s, ). The quantity W(s, ) represents
the multiplicity of s, values.

A more relevant quantity of interest, directly
accessible by inelastic neutron scattering experi-
ments, is the frequency transform given by Eq.
(2), which now becomes
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equation approach. For short times, t ~ 4l[so
x (so+ 1)]'~, the predictions of a simple-cluster
model appear to be in good agreement with those
of other theories, but for longer times the agree-
ment seems less impressive. The autocorrelation
in a small cluster tends to oscillate even after a
long time, clearly indicating the lack of a damping
mechanism in the model, while the nearest-neigh-
bor correlation oscillates in phase with other
theories but with higher amplitudes. It is interest-
ing to note that in the present model the sum rule

(7)

I.O

I I I I I I I I I I I I I I I I I I I I I I I I

I 2 5 4
t. /2J Js,(s,i!)

0.8

N
N
O 0.4

v"

0.2

S(k, ~)= (C/yo) QW(s, )expb J[s(s+ 1) —sq(s, + 1)]P].

x(5((u) [s(s+ 1)+P(s, )](yo[s(s+ 1)+P(s, )]

+ y, [s(s+ 1) —P(s, )])(2s+ 1)/12s(s+ 1)

+ (y —y, ) [5(a+ (s+ 1)J}Q(s, , s)

+ 5(& —sj)Q(s, , s —1)]), (6)

where y, = pe'"' summed over nearest neighbors.
In Fig. 1 the autocorrelation (So(0)SO(f)) and the

nearest-neighbor correlation (So(0)Sf(t)) predicted
by Eq. (5) are shown in solid curves in comparison
with the predictions of other theories. The open
circles represent the computer simulation calcula-
tions due to Windsor, ' while the dashed curves
represent the calculations made by Blume and
Hubbard (BH) in their self-consistent-field approach
and by Resibois and DeLeener (RD) in their kinetic

I I I I I I I I I I I I I I I I I I I I I

I 2

t, /2 J js,(I,+ i)

FIG. 1. The autocorrelation (a) and the nearest-neigh-
bor correlation (b) predicted by Eq. (5) at infinite ternpera-
ture is shown in solid curves in comparison with the com-
puter simulation calculations due to Windsor denoted by
open circles and with the theories of Blume and Hubbard
(BH) and of Resibois and DeLeener (RD).

is strictly conserved at any given time t in the in-
finite-temperature limit, in spite of the fact that
the sum includes only two terms, the self-corre-
lation and the nearest-neighbor correlation. It is
for this very reason that the nearest-neighbor cor-
relation oscillates with higher amplitude in the
present model than in other models. This may
be interpreted as a self-consistent character of
the model, in which the nearest-neighbor correla-
tion bears the burden of the more distant neighbors

The temperature dependence of these time corre-
lations are depicted in Fig. 2. The autocorrela-
tions in Fig. 2(a) and the nearest-neighbor corre-
lations in Fig. 2(b) are shown as a function of time
for several different values of T/TN for a typical
Heisenberg antiferromagnet. Although the ampli-
tudes of the nearest-neighbor correlations vary
greatly with temperature, very little variation is
observed in the structures of the self-correlation
or the nearest-neighbor correlation. It is, how-
ever, more interesting to note the temperature
dependence of the sum of these correlations as
shown in Fig. 2(c). As stated in Eq. (7), the sum
is normalized to unity at infinite temperature, and
it is seen to fall off to about 0. 3 as the tempera-
ture is decreased to T~ .

Comparison with experiments can be made
through the frequency transform, to which the
inelastic neutron scattering differential cross sec-
tion is proportional. In Fig. 3 the predictions of
Eq. (6) are compared with the RbMnF~ data for
three different temperatures and at a fixed value
of wave vector. The solid curves represent
smooth envelopes of 5-function singularities given
in Eq. (6), and the dashed lines near the zero-en-
ergy transfer show that the elastic peaks are off
the scale. Since the experimental data give only
relative counting rates, the theoretical curves are
normalized to the experimental values at one
point, namely, ~=1.85 meV.

An interesting feature seen from Fig. 3 is that
the simple theory exhibits, in agreement with ex-
periments, a clear resolution in the neutron spec-
tra —an elastic peak at center and two inelastic
peaks on both sides. Although the agreement is
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FIG. 2. The autocorrelations (a) and the nearest-neigh-
bor correlations (b) are shown as a function of time for
several different values of T/T~. In (c) the sum of these
correlations at any given time t is shown as a function of
T/Tz for a typical Heisenberg antiferromagnet.

cluster were somehow taken into account, the in-
finitely sharp elastic peaks would be Lorentz
broadened. The model, nevertheless, exhibits
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rather reasonable near T„, it becomes poorer as
the temperature is increased to S4'K. The reason
for this behavior is that even though the frequency
transform S(k, ~) was obtained from only two
terms in the sum [see EIt. p)], the fact that the
sum rule is obeyed at any given time t is an indica-
tion that the effect of more distant neighbor cor-
relations are approximately taken into account in
the sum. The persistence of structure in the
theory, especially near the zero-energy transfer,
even at high temperatures is most probably due
to the lack of a spin-diffusion mechanism in the
cluster model, the diffusion process being a long-
time phenomenon over wide range of lattice space.
This is a reflection of the poor long-time behavior
in the time correlations shown in Fig. 1, resulting
from an over-simplified character of the cluster
model. If the influence of the spins outside the
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FIG. 3. Frequency spectra predicted by Eq. (6) are
shown in solid curves in comparison with the inelastic
neutron scattering data on RbMnF3 shown in open circles.
The dashed lines near the zero-energy transfer show that
the elastic peaks are off the scale.
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correct symmetry requirement at the infinite-
temperature limit, namely, S(k, u&)=S(k, —~).
Also in this temperature limit the cluster model

S(%, v) gives the correct second frequency moment
as first predicted by de Gennes for a complete
Heisenberg system. '
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It is proposed that the anomalous behavior of the resistivities of Pu and Np and some actinide
intermetallic compounds can be explained on the basis of spin fluctuations in narrow Gf bands.
An initial T2 increase is observed in the resistivities of all these systems. From radiation-
damage data we conclude that there are two distinct regions of Gf-electron behavior: (i) a
high-temperature region (& 100'K), where the 5f electrons occupy virtual bound states and the
metal resembles a disordered alloy with magnetic impurities such as Pd(U), and (ii) a low-
temperature region, where the 5f bands are hybridized and a well-defined Fermi surface is
formed. Anomalies observed in several properties of Pu at 60'K may well reflect the tem-
perature at which well-defined 5f bands begin to form.

I. INTRODUCTION

The resistivites of several actinide metals ex-
hibit anomalous behavior which has not been ade-
quately explained. ~ There are maxima in the re-
sistivity-temperature curves for o.'-neptunium and
all of the allotropic phases of plutonium stabilized
below room temperature, as well as resistivity
minima for stabilized &-Pu above room tempera-
ture. However, the magnetic susceptibilities of
these phases are nearly temperature independent.
We have now observed qualitatively similar be-
havior in UAlz and PuA12 which form the MgCu2-
type cubic Laves phase. We believe, and will try
to show, that in all these materials the primary
scattering mechanism is spin-flip scattering from
paramagnons in fairly narrow 5f bands.

Explanations of the a-Pu properties have been
based on (i) a subtle phase change at 6D 'K, (ii)
interband scattering combined with band-structure
effects, and (iii) antiferromagnetic ordering near
60 K. ' The phase change hypothesis is unlikely
because of the lack of diffraction evidence or
hystereses in physical properties near 60 'K.

Interband scattering proposed by Smoluchowski
is probably part of the cause for the rapid increase
in the resistivity above -10'K. However, the ex-
planation of the negative resistivity-temperature
slope at higher temperatures in terms of a particu-
lar value for the curvature of the density of states
does not seem plausible since very similar values
would be required for all three allotropic phases
of plutonium (monoclinic &, body-centered-mono-
clinic P, and face-centered-cubic &), the inter-
metallic compounds, and orthorhombic neptunium
metal. Also the magnetic susceptibilities fail to
show the temperature dependence expected from
that band picture.

The nearly magnetic behavior of Pu, as shown by
the large magnetic susceptibility, plus the expec-
tation of narrow 5f bands caused speculation to
center primarily on the existence of antiferromag-
netism. A number of studies (specific heat, ra-
diation damage, magnetoresistivity, thermoelec-
tric power, elastic constants, Hall effect ) have
weakly supported the hypothesis of an antiferro-
magnetic transition. A detailed discussion of such
a transition in u-pu by Rocher is based on a 6f


