5 NEW VARIATIONAL METHOD FOR

culation of ground-state properties of a local region
of the lattice. Although the present treatment has
focused on the spin-3 isotropic antiferromagnet,
our technique is easily generalized to account for
anisotropy or higher spin. For example, an ap-
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proximate wave function of this type is being used

to calculate light-scattering properties in the ground
state of S= 2 MnF,. It is felt that the wave function
as given by this technique may be useful for other
ground -state properties.
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The influence of the crystalline field on the Kondo effect of alloys with cerium impurities is
studied in the framework of an effective Hamiltonianwhich describes the resonant-scattering
character of the cerium impurities and which takes into account combined spin and orbit ex-
change scattering. The third-order perturbation-theory resistivity is computed exactly for any
configuration of levels split by the crystalline field and is especially derived for the cases of

two or three levels.
compounds and to LaCe and YCe alloys.

The model is applied to the resistivity measurements of CeAl, and CeAl;
A general discussion of the magnetic and transport

properties can explain the different roles of the cystalline field and of the Kondo effect for al-
loys with cerium impurities especially in the case of LaCe alloys.

I. INTRODUCTION

The occurrence of a resistivity minimum at low
temperatures—or the Kondo effect—has been ex-
tensively studied for alloys containing rare-earth
impurities.!™* The yttrium-, lanthanum-, LaAl,-,
LagIn-based alloys with cerium show a Kondo ef-
fect which varies in intensity with pressure, !1*12:14
On the other hand, ytterbium as an impurity dis-
solved in some mixed gold-silver hosts shows also
a resistivity minimum at low temperatures. 1%

Of the rare-earth elements only cerium and yt-
terbium impurities in only certain hosts give a
Kondo effect. This paper is devoted to the study
of these two impurities.

It is well known that the anomalous behavior of
cerium and ytterbium impurities, and especially
the Kondo effect, is closely connected with the pres-
ence of a 4f level close to the Fermi level which
produces a large resonant-scattering effect.® To

explain the Kondo effect, two models are generally
considered, the s-d (or s-f) exchange model and the
Anderson model, but Schrieffer and Wolff?° have
shown that, in the limit of small mixing, the
Anderson Hamiltonian leads to an exchange-type
Hamiltonian,

The exchange Hamiltonian

H=--2T'3.8 1)

is conventionally written, with the notations of Ref.
21, for rare-earth impurities as

H=-2T(g-1)§.3 (2)

It was previously?! noted that the form (2) leads
to a rather puzzling result, i.e., in the case of
cerium impurities (g -1) is negative, so that
there would be a Kondo effect only if I" were posi-
tive, in contrast to transition-metal alloys. To
clarify the situation, the Schrieffer-Wolff trans-
formation has been recently derived for cerium and
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ytterbium impurities. The Anderson model has
been considered for the ionic 4f' configuration

(or the 4f'® configuration) and the canonical trans-
formation derives an effective exchange interaction
between the conduction electron and localized
electron magnetic moments, taking into account
combined spin and orbit exchange scattering.
More precisely, for a cerium (ytterbium) atom,
the large spin-orbit coupling leads to a ground
state of total angular momentum j=3 (j=1). If
we call ¢} the creation operator for a localized
4f electron on cerium impurity of j=% and z com-
ponent M=j,(+%, +3, +2) and ¢}y the creation
operator for a conduction-electron partial wave
function of wave number %, j=3 and z component
M =j,, the exchange Hamiltonian is

H==T 20 ClyrCou
Rok’ M M
6 .
' - MM e 3
x(c,,cu 27l 442'”")' (3)
The exchange integral T is given by
2
r- | Ve °U @)
Ey(E,+U)

In the expression (4), V,_ is the matrix element
of mixing between 4f and conduction electrons at
the Fermi level, U is the Coulomb integral, and
E, is the position of the 4f level relative to the
Fermi level, T is independent of M and M’ values
without taking into account crystalline-field ef-
fects.

The depression of the superconducting transition
temperature 7, with a concentration ¢ of cerium
impurities and the spin-disorder resistivity have
been derived with (3) and these results are similar
to those obtained with (1) or (2). The Hamiltonian
(3) gives an anisotropic Ruderman-Kittel interac-
tion which has been studied in detail by Silhouette?
for explaining NMR experiments on ¥Ce alloys.
But the two new points of (3) compared to (2)
concern the Kondo effect itself. With (3), the
Kondo effect occurs when I is negative, i.e., when
the resonant-scattering mechanism is large. The
Hamiltonian (3) also describes spin and orbit ex-
change scattering and, in contrast to the §-T
Hamiltonian, the change AM =M’ - M in the mag-
netic quantum numbers is not limited to +1 or 0,
but can be equal to £27, +(2j-1)..-+1,0. This
new point changes the coefficients in the formulas
of the Kondo temperature and of the third-order
term of the resitivity, but does not give a profound
difference when all the states of given M are de-
generate, as it is the case when the crystalline-
field splitting is not taken into account,

In this paper, we will go back to the problem of
the exchange interaction in alloys with cerium (or
ytterbium) impurities, but now including the
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effect of the crystalline-field splitting. The
argument of a crystalline-field effect in alloys with
cerium impurities has been first used by
Sugawara®® for explaining the Kondo effect of LaCe
alloys with a negative I'" value for the Hamiltonian
(2). For, if the ground state split by the crystal-
line field is a M=+ 3 doublet, we can define an
effective spin as the projection of the total angular
momentum inside the M=+ 3 doublet and a
Hamiltonian such as (2) is valid for this case with
a total angular momentum equal to a spin s =+ and
a Landé factor g=2. So, with this simple argu-
ment, Sugawara has explained the occurrence of

a Kondo effect in LaCe or YCe alloys for a nega-
tive I" value, without invoking a Hamiltonian such
as (3). So, it is necessary to clarify this point,

in view of the Hamiltonian (3).

Another point is to relate our model to the recent
studies of the crystalline-field effect and especially
the recent discovery of “Kondo sidebands” by
Maranzana.?* He has looked to the effect of crys-
talline field in compounds such as CeAl,, CeAl,,
by use of the Hamiltonian (1). With (1), if, for
example, the ground state is the M =+ 3 doublet
separated by an energy A from the M =+3 doublet,
the Hamiltonian (1) does not give any coupling be-
tween the +3 and — £ states, so that there is no
divergency appearing at energy €, -0 and con-
sequently no Kondo effect for temperatures much
lower than A; on the contrary, it gives a coupling
between the +2 and +3 states or the -3 and - 2
states, so that there is a divergency appearing at
the “sidebands” €,~+ A, and consequently the
Kondo effect appears only at temperatures much
larger than A.

So, in this paper, we would like to clarify all
these points in the light of the exchange Hamiltonian
in alloys with cerium (or ytterbium) impurities
including the crystalline-field effects and compute
the Kondo resistivity up to the third order in per-
turbation, Recently a brief account of this calcula-
tion was presented®® and similar calculations using
the Green’s-function method were made.?® The
other physical properties will be reported else-
where,

IIl. EXCHANGE INTERACTION HAMILTONIAN

We will use, as in Ref. 21, the ionic model for
describing cerium or ytterbium impurities. So,
first we point out the different steps of the ionic
model for the description of the 4f! (or 4f'%) con-
figuration and, at each step, we will study the
validity of the ionic model.

First, the Coulomb integral U is the most im-
portant term in energy, of order some to 10 eV,
which leads to a definite 4f' (4f'%) configuration.
The energy to add one electron more, when there
is already one 4f electron at energy E,, is E, +U
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which is very large. Since U is very large, we

can neglect the multiplet splittings due to the atomic
exchange integrals when there are two or more
electrons in the 4f shell. This procedure will be
easily justified in the following [see Eq. (29)].

The second term in energy is the large spin-orbit
coupling (SO), larger than 0.1 eV in cerium,
which splits the levels of different j values and
leads to a given j value for the ground state, as
previously described in Ref. 21. The ground state
is j=32 for cerium impuritiés and j =7 for ytter-
bium impurities.

The third term in energy is the crystalline field
(CF) which splits the levels inside the ground-state
multiplet of j value. We will call E, the energies
of the different levels split by the CF. For cerium
or ytterbium impurities, the CF splitting can be
considered to be small—of the order 0.01 eV to
some hundredths of eV.

If now we introduce the conduction band of the
host and a mixing matrix element V,_ between con-
duction and localized 4f electrons, we have to
compare the preceding energies to V,,F and the
parameters of the conduction band.

There are two well-known alternative solutions.

Either we consider V,, as bigger than SO and
CF terms and we treat them as small perturbations
compared to Vi, ; a way of treating U is, for ex-
ample, the Hartree-Fock method. This procedure
is appropriate for transition-metal alloys.

Or, we consider the ionic model as described
above for the 4f electrons and we treat Ve, as the
smallest perturbation, which is the usual proce-
dure of the Schrieffer-Wolff (SW) transformation.
Physically, with the usual parameters of cerium,
Vi is of the order of a fraction of a tenth of eV, so
that V‘.F is much smaller than U and relatively
smaller than the SO splitting, so that the second
procedure is certainly appropriate for cerium im-
purities, without CF splitting.?! But now the CF
splittings are typically of the order of V,,F or even
smaller, so that the ionic model and the SW trans-
formation are in fact less justified.

Another problem which arises from the introduc-
tion of the CF effect comes from the position of the
E, energies relative to the Fermi level E.. It is
necessary that the mean distance between E, and
Ep be greater than the splittings between the E,
energies due to the CF effect. This last assump-
tion is certainly checked for the case of LaCe or
YCe alloys, because the CF splittings are of the or-
der of one or two hundredths of eV, to be com-
pared with a value of 0. 05 and 0.1 eV for the mean
distance from Ey, to E.

In spite of these two relatively conflicting dif-
ficulties, i.e., Vi, small relative to the CF effect
and the CF effect smaller than the mean distance
| Ey — Egrl, we will use in the following the ionic
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model and we will derive the SW transformation
for cerium impurities.

Let us specify the form of the Anderson Hamil-
tonian with CF effect. Without CF effect, the
Anderson Hamiltonian is

. R

H=2 €ty +20 Egny +5U 20 mymy.
koM M Mo
(M#u*)

+ 2 (Vk,,CIMcu +Vicucm) - (5)
koM

The M values designate, in expression (5), the
z components of the total angular momentum j. #

The introduction of the CF in hexagonal symmetry
splits the multiplet of j value in doublets of the same
jo2 value: three doublets of j,=+3, +3, +3 for
the j =2 value of cerium impurities and four dou-
blets of j,=+3, 3, +2, I for the j =% value of
ytterbium impurities, So, we can keep the j, rep-
resentation of Hamiltonian (5) and the introduction
of the CF effect in hexagonal symmetry simply
changes the term Egny to a term E,n, for each
M =j, value, where E, is the energy of each dou-
blet corresponding to a same 7,2 value.

On the contrary, the introduction of the CF in
cubic symmetry splits the multiplet of j value in
doublets and quartets, but the eigenfunctions have
no eigenvalues equal to M=+3, +3 ...; infact,
the eigenfunctions are linear combinations of the
functions which have M eigenvalues.?’ For the
j=2 value of cerium impurities, the multiplet is
split into a doublet I'; and a quartet I'y and the
eigenfunctions are

T;:1j,=%0.83)=0.4083] £3) -0.9129] %) ,
Tg:lj,=+1.83)=0.9129] +3) +0.4083| ) , (6)
lje=20.5)=] +3)

For the j=% value of ytterbium impurities, the
multiplet is split into two doublets I's and I'; and a
quartet I'y and the eigenfunctions are

Tg:1j,=+1.17)=0.6455] +1) +0.7638| 1),

Iy:1j,=+1.5)=0.8660] +3) -0.5000]| #3) ,

Tg:lj,=+1.83)=0.7638] +1) —0.6455| ¥3),
|j.=%0.5)=0.500] +3) +0.8660] +3)

(7)

So, the Hamiltonian (5) has to be written on the
basis of the new wave functions defined by (6) or
(7). Let us call ¢!, the operator which creates a
wave function such as (6) or (7). The transforma-
tion which goes from the c}, operators to the c,
operators is a unitary transformation and the c!,
are also fermion operators:

[CI'I’ C"l]=5”"' ’
(8)

[CL cl’-l]: Ouue
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We can define exactly the same transformation
for the partial wave functions ¢}, of the conduction
electrons from the partial wave functions c¢},. In
this transformation, the trace is invariant, so that
the Hamiltonian (5) can be written exactly in the
same form with the representation of the cL op-
erators. Moreover, with the cL operators, the
CF effect is diagonal and the introduction of the
CF effect in cubic symmetry changes simply the
term Eg, to aterm E,n, for each u value, where
E, is the energy of each level; for cerium impuri-
ties, E, is the energy of either the doublet I'; or
the quartet T.

In general, the Anderson Hamiltonian can be
written

H=Hy+H, , @)
Hy=20 €y +20 Eynyg+3U 25 mymy
Ry M M MM’
M)
(10)
Hy=2J (V,Fc,{,c”+V:Fc},c,‘,) . (11)
koM

€, and E, are both measured relative to the Fermi
energy Ep. The quantum number M is the eigen-
value of each eigenfunction of the multiplet with
CF effect.

H, is here considered as a perturbative term
and we follow the method previously explained. %
After eliminating the first-order term in V,_, the
transformed Hamiltonian is

i’{zHo-f-'lz‘[Hl,s] . (12)
The S matrix of the canonical transformation is
S=—i [0 dte'ot H, e ot (13)

After making the different commutations of H, and
e #of  we obtain

__: [° P + it(ep=Ey)
S=-i f_adtﬁ{V,,chc,e % ~Ey

x I (A -ny)+e™Viny,.]
.
&
+VE e et B I [(1-ny)+e'Vin,.]}.
kp Ct Crut p u ”
(£4)

(14)
If we write

I [0 -ng)setPng]-3 e a ) (15)

M =
(M) =0
and
Ay(M)= Z; ['--n”:"'][---(l—n‘l-)-.-],
all combinations ="V N — .
(M’ #M) p terms (27-p) terms

(18)
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S is given by
Ay(M)
S=2 (V¥ el ey - Vi Clycy) o ——2—
Py kF M “RM Rp “RM “M N eh_E”__pU
(17)
At last, if we call
. Vi V:'< 1 1 >
MM ry_ Yep Vrg ,
Wt (ke k)= —5 €~ Ey —pU " € — Eyr —pU
(18)
then
T (R k) =WHY (R R = WHY (R, R') . (19)
The transformed Hamiltonian H is
H=Hy+Hy+He + Hyyp + Hyg | (20)

and if for different M and M’ values we introduce a
quantity B,(M,M") given by the expansion of A,(M)
such as

A,(M)= (1 =n,)B, (M, M") +nye B,y (M, M) ,

(21)
then the different terms of (20) are
Hj==- 2 W}k, R)A,Mn, , (22)
RypoM
Hy=- 2 JM"(e,k")B,(M,M")
Rok® M M P
W)
XC;tuu Ck”CLC”r , (23)
Hye= 2 Wi, kA M)Chy Cou (24)
RyR® oM s p
Hy=-% 2 J&,k)B,M,M
RoRY M MY, p
(e
X (Clous Chu Cu Cur +Corue Cuu i) - (25)

The preceding Hamiltonian is greatly simplified
for the case of a 4f¥ configuration, i.e., for
Zu* Mye=N. The last term H,, is negligible, be-
cause it creates or destroys two 4f electrons. The
first term H; corresponds to a simple shift in en-
ergy of E, and U and can be incorporated in the
H, term itself,

In a given 4 ¥ configuration, we can write

Ap(M)= (6,5 = by, y-1)( 2 e = N)+ 8,y
MR

(26)
B,(M,M’) =8y, y-1

So, it is possible to arrange the two remaining
terms H,, and Hy, by use of (16), (18), (19), (21),
and (26) and write the effective Hamiltonian, the sum
of H, and Hy ., as

_ _ MM n.t 4
Hepg =Hop + Hyy = ~ Y" Iy-1 (B, B )Choye Coy Clyp Cye
i
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Y W:“(k,k')clmcm . (@27

ko' M

The Hamiltonian (27) is valid for the resonant-
scattering mechanism and in principle for all the
rare earths inside the j-j coupling.?® However,
the resonant-scattering mechanism is important
only for cerium and ytterbium, so we will apply
the formula (27) to the case N=1 (for ytterbium N
is the number of 4f holes).

For cerium impurities, as U is very large and
E, fairly small, W{¥( ') is much smaller than
J¥*' (k,k’). But moreover, in dilute alloys, there
always exists the regular direct-interaction term
coming from the impurity potential and we will use
a semiphenomenological V,,(k,%’) direct potential

instead of the W¥¥(k k') value. So, the total
Hamiltonian is
H=20 €My~ 20 Jyys Cloys Cou ChiCue

kM kok*
MM

+ 2 Vin Chru Cou - (28)
Rk M

The exchange term gives a change of the quantum
numbers M. In hexagonal symmetry, the change
AM=M’'-Misequal to0, 1, £2, ..., +2j, as it
is without CF effect; on the contrary, in cubic sym-
metry, the change AM =M’ - M is no longer an
integer. The change AM in the quantum numbers
of the 4f electrons is accompanied by a change
— AM in the quantum numbers of the partial wave
functions of the conduction electrons. Here, the
fact that AM is no longer an integer is not impor-
tant, because the only physically interesting point
is the degeneracy of each level for the study of the
resistivity, but, for example, this fact will be es-
sential for the study of the magnetic susceptibility.

In (28), we neglect, as previously, # the depen-
dence of Jy, . on € and €, and we take a cutoff
D independent of M and M’, so that Jy,. =0 if |¢,|
or |€.| >D; the cutoff D is chosen to be of order of
the mean value E,. We neglect also, in (28), the
normal Heisenberg exchange term which is a good
deal smaller than the resonant-scattering term in
the present case of small E,. As U is much larger
then E,, J,, reduces for cerium alloys to

| Ve 12 /1 1
Juur = __2”&_ (E + _E7> . (29)

The reduced form (29) coming from (18) and (19)
justifies perfectly the fact that we have neglected
the exchange integrals giving rise to splittings
inside the multiplet when there are two or more
4f electrons.

The preceding treatment is valid at temperatures
kT much lower than E,, which is physically ap-
propriate for the study of the Kondo effect in YCe
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or LaCe alloys.

At last, let us go back to the meaning of the
Hamiltonian (28). For M=M’, the average value
of the second term is not zero, so that this term
contains both exchange and direct scattering. If
we want to separate the exchange and the direct
scattering terms, we can write (28) as
H=2. €y~ "Zﬁ' Tuue Chour Cou (Cly Cuv = Syue ()

kM
MM

—
+ 20 Uyy Cloy Coy
Rok® M

Vi = Viw = Tullr) (31)

So, in the expression (30), the second term is
only pure exchange scattering and the third term
Uy is only pure direct scattering. The relative
importance of the Jyy., Vyy, and Uy, terms is
difficult to know and can be established only by
comparison with experimental data, as we will see
in Sec. VII.

For 3d-transition-metal impurities dissolved in
a normal matrix, one thinks that the U terms are
much bigger than the J terms and this approxima-
tion |V| >»>J is used for treating alloys with 3d im-
purities, as seen, for example, in Refs. 29 and
30. Since, for normal rare-earth impurities, the
spin-disorder resistivity, the Curie temperature,
or the depression of the superconducting tempera-
ture in lanthanum-based alloys are roughly pro-
portional to the S(S +1) value, 3 we can conclude
that the U, values are certainly not larger and
probably smaller than the J,. values.

In the case without CF effect, one has previously
taken into account only exchange scattering and
making U =0 gives V=~ 3J for a spin s= % and

=-§J forj=3%. # Making such an approximation
in the present case with CF is relatively more dif-
ficult, because the resulting V,, =J,,(n,) poten-
tial is greatly temperature dependent. For the
discussion of the resistivity, it is not very im-
portant to separate the two exchange- and direct-
scattering terms, so we will use in the following
the simplest form (28) of the Hamiltonian. But
we will remember the form (30) of the Hamiltonian
for the numerical discussion of the results.

At last, we have obtained here a Hamiltonian
for the resonant-scattering mechanism and we have
neglected the Heisenberg-type normal exchange-
scattering mechanism. This second term is surely
small for cerium and ytterbium impurities exhibit-
ing a Kondo effect, which justifies the present ap-
proximation. For the case of normal rare-earth
impurities which do not exhibit a Kondo effect,
the only mechanism is the normal exchange-scatter-
ing mechanism, but the derivation of an effective
Hamiltonian is then very difficult because all the
partial wave functions for conduction electrons are

, (30)
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scattered?®'® and not only the =3 partial wave
functions as it is for the resonant-scattering
mechanism.

III. FORMALISM OF THE KONDO EFFECT

First, we present the method of calculating the
resistivity from the Hamiltonian (28) up to the
third order in Jy,.. The method is the classical
one already explained. *¥ If we call as usual

go-5 L&) (52)
. € —€
the amplitude for a conduction electron in a state
kM to be scattered into a state 2’M’, with the 4f
electron being in the p state before the scattering
process, can be written

Truyu-nru = ( = JuueOyrp + Vuuéuu')
+Oppae (1= 6pe) | Ty Iag(ek +E,-Ey,)

+ Gu-M’ Z) (1 - 5mM me')
m

XJ,,,,,J,,,”.g(E,,:+E,,,—E,:) . (33)

In (33), we have neglected the terms in second
order in Jy,. which are not proportional to the
g(e) function and which consequently do not give
a divergency.

Before going further, let us compute the function
g(€) which leads to logarithmic divergencies. In
the expression (33), as we have taken a cutoff D
for the J,, values, the functions g(e, + A) corre-
spond to an integration from the energy D instead
of from the bottom of the band. Moreover, D is
sufficiently greater than A and 27 in physical
cases that we can apply the previous results to the
present case of cerium impurities, by only chang-
ing the cutoff. So, we can write®

g(€+A)=E ACY

. €-€-A

3z kT €+A
" 1L, [2+1n2D—I(kT )] » (9

where z is the number of conduction electrons, E 5
is the Fermi level, and the function I[(e + A)/2T]
is defined by

€+A of (€)

I( kT)zj ae’ In
The probability of finding the localized state in
the state u is (n,,) which designs the thermal aver-
age of the occupation number of the localized elec-
tron in the state u. The probability of finding the
conduction electron in the state M is simply
1/(2j +1), because all the partial wave functions for
the conduction electrons have the same weight.
So, the total probability of scattering for the con-

€ —e-A
kT

de’. (35)
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duction electron by the impurity can be written

2 I 1
W= —ﬁlz“, 5727 0(6 = & + Eur = Eu)

XZ("u> |Thu,u~k'u'|2 . (36)

For the determination of the relaxation time 7,
with inelastic processes, we follow the method of
Van Peski-Tinbergen Dekker3* and Béal-Monod-
Wiener?® who have developed it for magnetoresis-
tivity calculations. The value of 7, is given by

1 mkvyc
G Bt S (37)
with
Rk=2 (I Vi 12 = 2V Juunae))
M
| Ty |y
+ L TG -ty @8)

Sp=2 2 2 s Imut T Mg
MM' m
gleg+ Ep — Ey)
1 -fk (1 - eB(E" 'Ell‘))

x(1- 5mM6mM')
222 (1= Omur) Vigue | JMMIZ
M m

X(ny) —(ny))g(€e +E, - E,),  (39)

where R, is the second-order term, S, is the
third-order term, m is the mass of the conduction
electrons, k is their wave number, v, is the sample
volume, c is the impurity concentration, g=1/kT,
and f, is the Fermi-Dirac distribution function:

1

fe= o5 - (40)

So, the total resistivity p is given by

Feoe ), P a)
S=0=3 mL B (-5t ) e (41)

We have to invert 1/7, and we use again the
usual approximation which considers the third-
order term S, as small relative to the second-
order term R,.* So, the relaxation time 7, is
given by

. (2j+1)1r}i3( 1§ )

7 mkvge R, “2)

R, (R,

The total conductivity ¢ is given by

oo CTHRE@ 1Y) (oo (43)

T 3mfmy,c
where
AR
o =I (__B_) —de , 44
0 aeh Rk R ( )



5
w@_ (24 S _
o _L (aek )(Ru)z de, . (45)

In the expression (43), we have directly taken
the value k3 for %° at kp, because it does not
change the calculation of the integrals (44) and
(45).

Before entering the determination of the inte-
grals (44) and (45), we rewrite the expressions
(38) and (39), no longer according to the M, M’,
m, ... index of the states but according to the
i, j, k, ... index of the levels. Let us call
the degeneracies of the levels with

So, R, is given by

ay, Q;, Qp, ...
index i, j, &,

Ry=A+ 5 —24 -4, % —4‘*— . (46)
1y 1=¢ciyfs i Te=by
#) a#H
with
A=’E a; L1V 12 =2V, i) + oyl 9341 %(my) ]
(47)
or
A= al[Iviil2+al|JiI[2<ni)<1_%Q)] )
1 1
(48)
cy=1-ei | (49)
with
Ay=E -E, , (50)
by =y a, | Jy1¥n,) (51)
or

b, a; oy Iy 1¥ny)
du=--—‘ “‘T’TJW* , (52)

1 1

plj= 1 _eBA“ -

= a (53)

Similarly, the expression of S, can be written

sk_z Clgley+Ay)+ 2 Dxii(ﬁa_*:‘_u_)

1,4,1 Je=byy ’
d#)
(54a)
8,=% Clgle+a)+ & B, E&rtu)
i1 10,1 1‘Cufk
dz
(54b)

with
Ci =20y [9y4] I3 1 ¥ng) (@ @; ~ 6yy)
= Vil Il (ny) = (ny))] (55)
or
C: =2a4l Jy; lz[Jn<"i> (@, -6, - a(ny)

+ay(n))-v0,(n) - (n;))] (56)
and

INFLUENCE OF THE CRYSTALLINE FIELD ON... 4547

2
D}, =- T——E——J”J,,J,,a,a,a,(n,) , (57a)

B, =2Jydydy apa,a,(ny) . (57b)

This way of writing R, and S, will be very useful
in the following. R, has N(N - 1) single and real
poles p,,, if there are N levels split by the CF.
The peculiar case where two CF splittings would be
equal can be solved easily by changing the nota-
tions. The important feature (the poles are single
and real) will remain. The pole p;, is negative if
A,, is positive and larger than 1 if A, is negative.
The coefficients d;, and Dj 4 are antisymmetric
under the inversion of 7 and j:

dy=-dy , Dy=-Dj . (58)

Consequently, since A;;=— A, we see imme-
diately from (58) that the function R, is sym-
metric with the f,= 3 axis of symmetry. This re-
mark will be helpful in Sec. IV.

IV. CALCULATION OF RESISTIVITY FOR N LEVELS
SPLIT BY THE CF EFFECT

We present the exact calculation of the resis-
tivity inside the third-order approximation, for
the general case of N levels split by the CF. The
degeneracy of each level E; is a; and the total
degeneracy is

N
2+1=2a; . (59)
i=1
Physically, for a cerium impurity, N is equal to
2 in cubic symmetry and 3 in hexagonal symmetry
and for an ytterbium impurity, N is equal to 3 in
a cubic symmetry and 4 in hexagonal symmetry.
But the treatment we present here can be applied
to any N value,
So, let us compute the o‘?
with R, given by (46).

value given by (44)
The inverse of R, is given

by
1 1/ PR
R, A (1 Q(fk)) ' (60)
with
P(fh) ‘Zy H” plm) i) (61)
oJ
Q(fk)"‘{III,(fk—pu)*'P(fk) . (62)

P(f,) is a polynomial of highest order equal to N?
~N-1 and Q(f,) is a polynomial of highest order
equal to N2~ N. In (61), the summation ¥{,; means
a summation on ¢ and j except for i=j; the product
H’_, means a product on i and j except for i =j
and the product II;/,, inside a summation 3},
designates a product on ! and m except for I=m and
except the couples of values Im =1ij.

To compute the integral (44), we have to expand
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FIG. 1. Function R,(f,) at T=100 K for a typical set of

parameters: N=3, ay=w0,=03=2, Ag=K, 4y;=40 K,
T=0.05 eV. E{=—600K., Jy;=—0.097 eV.

the ratio P(f,)/Q(f,) according to its poles. The
poles of 1/R, correspond to the zeros of R, and can
be easily found. The function R, is plotted on the
Fig. 1 for a typical case N=3. As R, changes
sign at each of its poles p,,, there is one and only
one zero of R, between two neighboring poles p,,.
Between the largest negative p,, pole and the
smallest positive p;, pole, R, remains positive,

is minimum for f, = 4, and has no poles in this in-
terval. At last, there is one zero of R, below the
smallest negative p;; pole and one zero of R, above
the largest positive p;, pole. So, consequently,
there are N(N -1) zeros of R, and N(N-1) real,
single poles of 1/R, which are always d1fferent
from the p;; values. In order to keep the sym-
metry oni andj of the problem, let us call A, the
poles of 1/R, by the following method: For negative
biy values, A;; denotes the zero of f, which
neighboring of p;, and has a smaller value (i.e.,

in Fig. 1, X, is immediately on the left of p;, for
negative p;; values); for positive p;; values, Ay
denotes the zero of R, which is neighboring of p, ;
and has a larger value (i.e., in Fig. 1, A is im-
mediately on the right of p;, for positive biy
values). With this definition };; is the symmetric
of A;; with a center of symmetry at f, = 3:

)\ij+)“jl=1 . (63)

Since all the N(N - 1) poles of 1/R, are real and
single, we can write 1/R, as

_1__ ’ Hij
R,,‘A(l 2, f.—x,,) . (64)

In the general case, the A;; can be determined
as the roots of the equation @(f,)=0 of highest
order N(N-1),

From (63) and the symmetry of R,, we can easily
see that
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P-“=- “H . (65)

Knowing the A;, values from the equation QS
=0, we can determine the coefficients p;, which
are equal to

by~ i ( () %ﬁ) (66)

Similarly to the definition (53) of p;; as a func-
tion of A;;, we can define an effective gap A?, for
each Ay, such as

1

Ny =T 54, (67)
or also
1
A, =kT1n(1 ‘T) . (68)
7]

So, either };; is negative for posmve A, y or
A;; is larger than 1 for negative A“ One has also

Ay =-08), . (69)

Figure 2 shows a typical plot of A), in the case
of two levels split by A,; =100 K.

When £T tends to infinity, the negative p;, and
A,; tend to - and the positive p;; and A;, tend to
+. When T tends to zero, the negative p,, and
A;; tend to O and the positive p,;, and X;, tend to
1

With the form (64) of 1/R,, the calculation of the
second-order term o’ is easy to do:

o " dh
@_1 1%y
o - 70
> L v o)
and consequently

e_ 1 sby 1
or also

0@ = By A

i A kT ° (72)
From the relations (65) and (69), ¢® can also

————Qyz4 ., Qp=2
A =2, Q=4

KAK)
100

0 50 100 150

FIG. 2. Effective gaps AJ; versus temperature for two
values of U : (a) and (b): V=0.1eV; (c) and (d): UV =0 ev;
for @y =4, a,=2(a) and (c)] and @; =2, &, =4 [(b) and (d)].
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be written
1 By A 1 By A
@ __— _9 > Dy _ 2 _ st ¥ B ¥
o=y 2 ,—,’ FT -4 2 ?’, A kT -
@3 <
(73)

The symmetry of R, simplifies the results, be-
cause we can sum only on the positive values of
Ay

The calculation of ¢'*> by the expression (45) is
simple because the poles A;, are either single or
double because they come from 1/RZ and the poles
py; are single because they come from S,. The
poles p;, and A;; are always different. We can
write 1/R2 as

(3)

1 1
Eg A_E-(l +Z,Jj

I“'il b BesYig
‘;\l;) 2 )

6y Je— Ny

where y,; is given by

Yy=1- 2" T“ﬂ— . (75)
m,n

0<a)=n_;gﬁ{‘z CIT (801, 0)+
o}

nyn’ 4,1

where n(Ez) is the density of states for one spin
direction and

1
Urm' = K [ZIJ.M.'}’M-C: + 2 D:!
' J(#H)
)]
, (79
( ’ 'Pu Arm' ‘i’u )
Vv,

w(5) (e

In the calculation of (78), terms such as Tf,I“
X (Ay, Ay;) appear but the coefficients T}, are just
equal to zero because they are equal to 1/RZ for
A =Dy

The T''(A, A’) and I%(A, A’) integrals can be ex-
pressed as a function of the two well-known
I''(a,0) and T}(0, A) integrals.?*'® The I*(a,A’)
integral is computed by use of a variable change
€, = €, — A" because

D}
—iy
;%/:u A Pu) ’ (80)

LAGY) . 33(g) 1
Ir\&p) _ 88 Yp\&) ;
e, ¢ Tog [-f-eP) 1)
Consequently, we find
r?(a,a”)=e®2 1A+ A%,0) . (82)
The I''(A, A’) integral is given by
B(AwA )

r'(a,a’)= ———5—1-—1——1'(0 A+A)

2' Z [ rm' PI(AH’ Amx') +

The summation 3, ', means that we sum on m,
n except for m =n and for the couple of values
mn=ij. The coefficients y;, are symmetric on
the change of ¢ and j indices: y;;=vy.

So 0¥ is given by

1 df, , | Ky [ 7" )
M) _ _1_)2
7 _Lﬁ(“?ﬁ (fr"\u -2 iy f,,-x,,

(E Cigle,+ay) +._/'Z: D g______(e,,+A,‘)> .

Y fo=byy
(76)
If we call I"(A, A’) the integral given by
4E; (~ afy g(e, + A)
n ’ - _F b
(&, a9- 3z L ( 35::) 1-f(1 -2
(77)

after separating all the poles };; and p;,, we can
express o‘® as a function of the two integrals
I''(a,A’) and T%(a, A"):

i e, | 18)
[
eBA_l L
'}TE'TTF (0,4) . (83)

In the preceding integrations leading to (82) and
(83), we have assumed that the shift by A of the
energy €, does not change the value of the integrand
at the limits of the integration. Due to the cutoff
D we have taken here, it is the same as assuming
that the shift A has to be small compared to D,
or more exactly that the integrated value for D is
the same as for D- A, Due to the presence of the
function ( - 8f, /9¢,) inside the integral, this is
checked when D is sufficiently large compared to
A and kT, which is easily satisfied in the present

case of cerium and ytterbium impurities. There

are also two other relations of symmetry:
I''(a,0)=T'(-4,0) , (84)
r'(0,a)=e41'(0, - 4) . (85)

The two simple integrals I'*(0, A) and T''(a,0)
are given by

1 A
r'(a,0)= 2+1n D +1‘<kT> , (86)
A e~a/2rT [ T A>]
SR — 20 574 (7
2rT
(87)

The functions I,(x) and I,(x) have been previously
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computed and are plotted in Ref. 29 for all x

values. In particular, we have

r‘o,0)=1. 568+1nﬂ~=1n ’31 , (88)
with

D'=D/2.4. (89)

So, we can write more simply the expression

o

kT A
Ji(A)=2+1n -— 2D +Il(kT> y

A RT A
BT [2 +1n —— 2D +Iz<kT>]

After using the antisymmetry of the n,, coef-
ficients, the symmetry of the vy,, coefficients, and

(90)
Jy(a)=

(78) for o' by use of Eqs. (82)-(89). We define after noting that 1/R2 given by (74) is zero for
now two functions J,(A) and J,(A) by fu=bi;, We obtain a simpler result for o'®,
|
9 _ n(Eg) S S D! S pl | tgge |2
= —AEL CiJi(4ay) - Dy, Jo(4yy) - 2! 2t Yt Cf + 20 Dy, (TTTp—)f
i, e nyn’ (‘/” nn i
2 Lt Yot Sy lum:l Z) 0
+ Jz(Au +Am, ) +_/ C{ + Jl(Axi+Ann’) . (91)
Amy’ -plj non’ ()\ . —1) p”

Due to the asymptotic behavior of I,(x) and I,(x)
functions, ?® the J,(A) [or J,(A)] function gives a
In((7T) [or (A/ET)In(kT)] behavior when 2T is much
larger than A, while the logarithmic behavior of
both J;(A) and J,(A) disappears when 2T is much
smaller than A, In this last limit, the Kondo di-
vergency is destroyed by the CF effect. So, in
the expression (91), J,(A) and J,(A lead to the
Kondo divergencies, while the coefficients in front
of these functions give the weight of each diver-
gency. This limiting behavior is studied in Sec.
V.

From the expression (43) of ¢ and using again
the third-order approximation, the spin-disorder
resistivity is given by

®R 1

R, = -2]_+l & (92a)
and the total resistivity by
® 1 0,(3) )
where
3m? ’IT’UPC 2mrvgen(Ep )
f= e“nky e‘rz ’ (93)

So the expressions (92) with (72) and (91) give
the exact expression for the second- and third or-
der resistivity in the general case of N levels split
by CF effect.

V. RESULTS FOR RESISTIVITY: APPLICATION TO
CASES OF TWO LEVELS OR THREE LEVELS SPLIT BY
THE CRYSTALLINE-FIELD EFFECT

Before showing the numerical results for the
case of two or three levels, we study in detail the
limiting values of the resistivity.

For N levels, the level labeled 1 designates the
ground state which has a degeneracy @,, the level 2
designates the first excited state which has a degen-
eracy @, ..., and so on, The occupation number
(n;) of the level i is given by

N
(nyy=eP211/2) a et (94)
s=1

So (n;) is a very rapidly varying function of
B=1/kT. When the nth level is well separated
from the (z +1)thlevel and if 27 has a value between
A,;and 4,,, ,, the occupation number (ny is
equal to zero for ¢ =7 +1 and constant and equal to
(n;) =1/3}.1a, wheni <n. Letus call \,=3}.; a;
the total degeneracy of the n occupied levels. If
n=1, A\ =a, is just equal to the degeneracy of the
ground state, which corresponds to the physical
case kT -0 or 2T much smaller than the smallest
Ay value, i.e., RT<<A;. Ifn=N, \y=2j+1is
equal to the total degeneracy of the 4f level, which
corresponds to the physical case kT - or kT
much larger than the largest A;, value, i.e.,

BT > Ay,

If the first n levels are occupied and the remain-
ing (N -n) levels are empty, in the expression (46)
only the terms b, /(1 - ¢y, f,) with i and j varying
from 1 to » are different from zero and equal to
b;; with (n;) =1/x,, because, either j is greater than
n and {n;) is equal to zero, oriisgreater than» and
¢y; tends to the infinite. So the constant value R,
for this limit is

Ry=A+2 5 by . (95)
i=1 J=1
(i#4)
So ¢® is equal to



jon

(2 011"(”{‘ +E E{"gj"*]u‘z
i1 jal n

-5 el o)

i=1

In the simple case where we take all the U,;; equal
to a constant U and all the J;; equal to a constant J,
which corresponds physically to the case of an
over-all CF splitting much smaller than the dis-
tance of the 4f level to the Fermi level, ¢ is

-1

given by
= [(2j+1)('02+ WJZ)]-l . (97)

The spin-disorder resistivity R, given by (84) is
equal to

2 _A-1
R, a(v GO J2> . (98)

For the calculation of ¢® in the same case, we
use the formulas (45), (54), (56), and (57). The
same remark as previously done for the calcula-
tion of ¢ can be done for the calculation of oc®’,
Only the terms Dj, /(f, - pi,) = Bi; /(1 - ¢;, f) with
i and j varying from 1 to » are different from zero
and equal to B}, with (n,)=1/),, because either
j is greater than » and (n,) is equal to zero, or
i is greater than » and c¢;; tends to the infinite.

So the constant value S, for this limit is

n N n
Sp=22 20 g(e,+A”),(C: + 2 Bj,) (99)
i=1 1=1 J=1
G#)
and ¢ is given by
®_ 32

(100)
Since I''(a;4,0)=T%(4,;;,0), we can add in ex-
pression (100) the two terms C{ + C} and consequent-
ly all the terms in V;; or U,;; disappear in the sum
on i and ! appearing in (100). This result is rather
obvious physically because the V;; terms do not
appear in the slope 0‘®/(c®)? of the resistivity for

the limiting case of n occupied levels. So, C} and
Y,4 Bi, reduce to
-0
Ci=2a, ;| 7,2 S (101)
n
a0
2 Bj,=2 2 J,,J,,J,, —ti ot (102)

e I A,

In the simple case of all the J;; equal to J, the
sum on j of all the Bf, becomes independent of j
and we have

Z B“— <a, a; -

(Jﬂ)

2
3‘—°‘L> , (103)

A

n
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2
C§=2J3<g_f_‘_y_l__ EI_GLL) , (104)
A, A,
and consequently
n n
o® = 3z (0(2))2J3[Z, > I“(A,,,O)(a, a; - 0y )
2Ep ix1 121 Ay

5

I=n+l

Efj:

+ (105)

-

-

I"‘(A“ ,0)ay le] .

On the final form (105) of 0*®, we can then apply
the asymptotic behavior of the I'!(A, 0) functions
because, from our definition of the limiting case
of n occupied levels, B|A;;| is smaller than 1 when
both i and ! vary from 1 to » and B4;; is much
greater than 1 when ¢ varies from 1 ton and ! from
n+1 to N. The two asymptotic limits of I"(A 0)
are?®

for BA<2
kT kT
1 —_—
I'(a,0)51.568+In 57 =In 77 (106)
for BA>10
~ A A
r‘(A,0)=2+1n4—-D—=1nW , (107)
with
. D_ n_ D _
D T 2.4 b= 1.85 (108)

So, in the first summation of (105), all the
r*(a,;,0) can be approximated by 1n(k7/D’) which
is in fact I''(0,0) and in the second summation of
(105), all the I''(4,;,0) can be approximated by
In(a,; /D"). So

0,(3) o 312 1
(012))2 = n(EF)J ()\"— )

Qo

—z"—L 1n 109
i=1 I=nel )‘n 1 D ) ( )
We call D™ an effective cutoff defined by

N ajay/(2-1)
o/I 1 "

izl l=pel

A
DM = B% (110)

So, the third-order part of the resistivity can be
simply written

P-R, 1 o@¥® 3 kT
® "2+l @y " ER)d J—z] 1 I ptm

(111)
So, in the limiting case A,,,,; > kT > A, studied
here, the resistivity behaves as InT with an effec-
tive cutoff D and with a slope proportional to
g -1).
The total resistivity can be also written
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-1

B A 2 kT V(25 + 1N )]
p-(R(‘UZ+ (—m'] >[1+2n(EF)X"Jln-’5(,,—) /(1+72' (7\"—1)

So, in the range of temperatures 4,,,,; > kT
> A, the resistivity behaves as 1n7 and we can
extrapolate a Kondo temperature T, corresponding
to n occupied levels which is defined, as usual,®
by writing that the third-order term of p is two
times the second-order term of p. So 7} is equal
to

kanzD(n)exp[_(l " }: @i—{r_l—l))i> /n(EF)A,,|J|].

(113)

The peculiar low-temperature Kondo temperature
T, will be called T,* and the high-temperature
Kondo temperature 7' will be called 7 in the
following.

The coefficient A, appearing in the denominator
of the exponential of (113) is easy to understand;
if the first » levels are occupied, there are
A, =Yi.1 @; ways of changing the total angular mo-
mentum, At low temperatures A, =, is just the
degeneracy of the ground state which is the only one
occupied and at high temperatures A, =2j+1 is the
degeneracy of the 4f level as if there was no CF;
the formulas (111)-(113) have been previously de-
rived in Ref. 21 for the high-temperature limit
(or without CF) with a zero direct scattering
V=0.

So, from the above study of the limiting cases,
we can deduce some information on the slope of
R, and p. If the values of A;, are well separated
froni each other, R, is constant far from the A,
values, given by (98), and then increases around
each A value; similarly, p is InT dependent far
from the 4;,, given by (111) or (112), and then
goes through a broad peak around each A;; value.
In fact, it is difficult to see all the intermediate
steps of R, and p due to the proximity of the A,
values; in such a case, the intermediate step
vanishes and is changed to a broader increase of
R, or a broader peak in p around the neighboring
Ay, values. But in all the cases, the kT -0 (or
kT << Apy) and kT = (or kT > Ay,) limits exist and
the ratio of the (InT)-dependent total resistivities
is given by (a?-1)/[4j(j +1)]. For example, in
the case of two levels, there is a (In7)-dependent
part above A,, then a broad peak around A;, and at
low temperatures a (InT)-dependent part; in the
case of cerium impurities (2j+1 =6), the ratio of the
low-temperature and high-temperature slopes is
3/35 if the ground state is a doublet and 3/7 if the
ground state is a quartet. In the case of three
levels, there is a InT high-temperature behavior
and a InT low-temperature behavior and, if the
values A;, and A, are very well separated as
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(112)

—

shown further on Fig. 7, there could exist also

an intermediate InT behavior. In the case of ceri-
um impurities in hexagonal symmetry, the ratios
of the low-temperature and the intermediate-tem-
perature slopes to the high-temperature slopes are
respectively, 3/35 and 3/7. In the case of ytter-
bium impurities (2j +1=8) in cubic symmetry, the
ratio of the low-temperature and high-temperature
slopes is 1/21 if the ground state is a doublet and
5/21 if the ground state is the I'y quartet.

Some theoretical points are interesting to note.

(a) There always exists a Kondo effect, whatever
the ground state is, and the only condition is that J
is negative.

(b) Since ® is proportional to n(Eg), the slope of
the resistivity at high or low temperaturesis only a
function of J%?(E,) and, respectively, of the de-
generacies @, and (2 +1). The two limits are in-
dependent of the eigenvalues of the levels. In
particular, the low-temperatures resistivity is the
same for alloys with a doublet as a ground state,
both in cubic and hexagonal symmetry and whatever
the eigenvalues of the ground state. This result
is not obviously true in the calculation of the mag-
netic susceptibility.

(c) On the contrary, the spin-disorder resis-
tivity which gives a large part of the resisitivity
depends strongly on U and J. The spin-disorder
resistivity increases from V% + £J2 at low tem-
peratures to V2 +3J2 at high temperatures for a
cerium impurity which has a doublet as ground
state. The effect of U is to decrease the relative
variation of R, with temperature.

(d) The Kondo temperature is also dependent on
U and J. In the case of U smaller than J, the main
contribution arises from the A, coefficient and
from the effective cutoff D", In the usual case,
the | A;;| values are smaller than D”, so that all
the D', for n<N, are generally much larger than
D’, which is just equal to the high-temperature
cutoff DV,

For the low-temperature limit, D'V is equal to

2.
DV -p’ ﬁ (Ap)“‘“'l(“l v

11 ( 5% (114)

For the case of two levels, D® =D’ and D'V is
equal to

D =D‘2’/(éaL>°‘ 1957 (@2-1)

D’ (115)

For example, for D=500 K and A,, =100 K,
D’'=210K, D'’=270 K, D' is equal to D'V~3000 K
for @;=2 and a, =4 and to D‘’~350 K for a,=4
and a,=2.
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FIG. 3. Typical behavior of spin-disorder resistivity

(a), total resistivity (b), and relative Kondo perturbation
(c) versus T (logarithmic scale). Vk}-'=0' 07 eV, m=3 a.u.,
v (=234 a.u., z=3 electron/atom, c=1at.%, E;=—600 K,
J11=—0.095 eV, These seven parameters will also be
used in Figs. 4—8 and not repeated there. Moreover, Ay
=100 K, D=400 K. 0 =0, 05 eV, n(Ep) =0.5 state/eV, @,
=2, ay=4,

(e) Last, the introduction of the CF splitting
enormously increases the range of validity of the
third-order approximation, as was previously
noted for any other perturbation such as the mag-
netic field®® or the interaction between impurities. %

Without CF, the perturbation theory breaks down
at the high-temperature Kondo temperature 7.7,
while, as we will see on Figs. 3 and 5 showing
the numerical results for p, the T, or intermediate
T Kondo temperatures are never reached by the
resistivity curve and the low-temperature Kondo
temperature TE is generally the only one which
is really reached by the resistivity. In principle
the perturbation theory could break down at
T# (or T}), but this case would need peculiar
parameters which do not correspond to the present
physical situation and consequently will not be

A RESISTIVITY
(Qcmyato)  9=010eV_
= (b)
of e
=2 o.o7____<C§
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FIG. 4. Spin-disorder resistivity versus temperature.
D=400 K, n(Ep)=0.5 state/eV. Influence of the degener-
acy of the ground state when A,; =100 K: compare (a) or
(f) (24=2) and (b) or (g) (@y=4). Influence of the direct
scatteringV whenA,; =100K and oy = 4, a@,=2: compare (b)
(U =0.1eV), (d) (V=0.07 eV), and () (V=0 eV). Influ~
ence of the CF splitting Ay when oy=4, o,=2, and U
=0.07 eV: compare (c) (4 =200 K), (d) (8;;=100 K),
and (e) (4y;=50 K).

FIG. 5. Relative Kondo perturbation versus T (logarith-
mic scale). A,;=100 K. D=400 K, a;=2, a,=4, In-
fluence of the direct scattering U when n(Ez)=0.5 state/eV:
compare (a) ( V=0 eV), (c) (V =0.05 eV), and (d) (V
=0.1 eV). Influence of the density of states when U =0. 05
eV: compare (b) [2(Ep) =0. 8 state/eV] and (c) k(Ep) =0.5
state/eV].

described here. So, the perturbation theory breaks
down only at the T,,L temperature which can be the
only physically observed Kondo temperature or
temperature for disappearance of magnetism. Due
to the decrease of A, with decreasing temperature
and in spite of the increase of D™ the Kondo tem-
perature 7} is generally smaller and even much
smaller than 7/*!, and especially T;F is much
smaller than T, So, the introduction of the CF
splitting enormously increases the range of validity
of the perturbation theory from Tf to TE. For
example, in the case of two levels, if we take

V=0 and n(Eg)J=0.1, the high temperature T}

is 40 K, while T,f is 29 K for a,=4 and 2 K for
a,=2, Itis interesting to note that the effect of U
is also to decrease rapidly the Kondo temperature
and to extend again the range of validity of the
perturbation theory.

Close to the values of A;;, R, increases and p
presents broad peaks which are due to the impor-
tant effect of inelastic scattering processes. All
these inelastic processes give positive contributions
to the resistivity for negative J, whatever the na-
ture of the ground state and of the excited states
is. This remark is no longer valid for the Ham-
iltonian (2) previously used for rare-earth im-
purities. %" Figures 3-7 summarize the results
on p, R,, and p/R, -1 according to the different
parameters used here, We have plotted the exact
result of the resistivity coming from Egs. (72),
(91), and (92) for the two cases of two levels or
three levels split by the CF. The case of two levels
can be applied to cerium impurities in cubic sym-
metry and the case of three levels to cerium im-
purities in hexagonal symmetry and to ytterbium
impurities in cubic symmetry. The cases of four
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FIG. 6. Total resistivity versus T (Logarithmic scale),
n(Ep)=0,5 state/eV and U =0,05 eV. Influence of the cut-
off D when A, =100 K and &y =2, a,=4: compare (b)
(D=600K), (f) (D=400 K), and (c) (D=250 K). Influence
of the CF splitting Ay when D=400 K and @y =2, a,=4:

compare (d) (8;=25 K), (e) (4y;=50 K), and (f) (A,;=100K).

Influence of the ground-state degeneracy when D=250 K
and 4,y =100 K: compare (a) (a;=4, @,=2) and (c)
(y=2, ay=4).

levels which correspond to ytterbium impurities in
hexagonal symmetry or even of more than four
levels are easy to compute numerically from Egs.
(72), (91), and (92), but they are not presented
here because there are presently no available ex-
periments on .hese cases.

For the case of two levels, the calculation can
be done analytically while for the other cases the
calculation is done only numerically. For N=2,
the two roots Ay, and A, are given by

. d 1/2
Not =—29-%319- +3 [(Pox ~p1o) +4 'A& (Por —Pm)] ’

(116)
1 d 1/2
Ao :ﬂo%p_x_o_ - 'z‘l:(P(n ‘plo)z +4 ’jn‘ (pol -Pm)] .

Knowing the expressions for ;;, the calculation
can be conducted analytically in the N=2 case by
using Eqs. (64)-(92). The limits are given by (98)
for spin-disorder resistivity, (112) for total re-
sistivity, (113) for Kondo temperatures with, re-
spectively, A, =a, for #7-0 and 2,=2j +1 for
kT =,

We now discuss the numerical results for the
resistivity as a function of the different parameters
of the model in the case of two levels separated by
an energy A. We take a fixed distance E,=-600 K
and a fixed mixing parameter Vi =0.07 eV leading
to a Jy; value equal to J;; =—0.095 eV. These pa-
rameters are typical of cerium impurities dis-
solved in yttrium or lanthanum'®?! or of CeAl,
compound. We chose also the theoretical param-
eter D around the value D =400 K which is of order
of E, and E; as previously described. !
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Four other physical parameters are important.

(i) The density of states n(E ) for the one spin di-
rection of the s-d band which is assumed to be a
parabolic one. We take a typical value of n(Eg)
=0.5 state/eV atom, corresponding to a Fermi en-
ergy Ep=4.5 eV, for the derivation of the resistiv-
ity curves.

(ii) The value of A is chosen around 100 K cor-
responding roughly to the experimental separation
between the two levels in cubic CeAl, ¥~ or to
the distance between the ground state and the first
excited state in hexagonal YCe alloys. 10+4!

(iii) The value of the direct potential, which we
take constant U, =V, =0 for simplicity, is positive
but its value is difficult to know precisely. We
take U=0.05 eV for the case of YCe or LaCe al-
loys in order to have a |V /J| ratio smaller than
1 and larger values of about 0.2 eV for CeAl,
and CeAl,.

(iv) The degeneracy a; of the ground state which
can be either 2 or 4.

Figures 3-6 summarize the main physical points.

(a) Figure 3 shows a typical plot of the spin-
disorder resistivity R,, the total resistivity p, and
the value of p/R, - 1 versus In7, for an alloy con-
taining 1 at. % of cerium in lanthanum. We take
m=3, z=3, ¢=0.01, the lanthanum atomic volume

spin-disorder
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FIG. 7. Typical behavior of the resistivity versus T
(logarithmic scale) in the case of three twofold degenerate
levels. 1 =0.05eV,D =400 K. For simplicity all the
Jyys values are equal to — 0,095 eV; the total CF splitting
is 100 K. (a) Spin-disorder resistivity, (b) total resistiv-
ity, and (c) relative Kondo perturbation for various values
of the splitting between ground state and first excited state:
A,y1=0 (or case of two levels with ay=4, a,=2), 5, 20, 60,
100 (or case of two levels with oy =2, a,=4),
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v9=234 a,u., n(Eg)=0.5 state/eV atom, so that

the constant given by (93) is ®=5.9 pQcm/evViat. %,
E,=-600K; A=100K, V,,=0.07eV, J;;

=-0.095 eV, Jyp=—0.114 eV, a,=2, a,=4,
V=0.05eV, and D=400 K,

The spin-disorder resistivity R, increases
rapidly around A, while p has In7 dependence at
low and high temperatures given by (112) and sep-
arated by a broad peak around A.

(b) Figure 4 gives the plot of the spin-disorder
resistivity versus temperature. The three impor-
tant parameters here are A which fixes the tem-
perature at which R, increases rapidly and the U
and «; parameters which fix the relative impor-
tance of the low- and high-temperature limits.

(c) Figure 5 gives the value of p/R, - 1 versus
InT. The important parameters are the values of the
Kondo temperatures 7.¥ and T} for, respectively,
high and low temperatures. According to formula
(113), the Kondo temperatures vary both with the
ratio | U/J| and the product n (Eg)J.

(d) Figure 6 gives the total resistivity p varying
with a;, A, and D and with constant U, n(Ez), and
consequently 7, parameters. The cutoff D does
not affect the physical results deeply, as expected.

Last, Fig. 7 shows R, p, and p/Rg -1 for
the case of three levels. We take all the param-
eters fixed except the distance A,, which varies
from 0 to A;;. The curves are very similar to the
case of two levels, because it is rather difficult
to observe the intermediate logarithmic slope, as
seen, for example, in Fig. 7(b) for a ratio A;;/A,,
equal to 20.

As seen in Figs. 3-7, the low-temperature limit
given by (113) with A, = @, is well followed for
roughly 27 < A,,/10 and the high-temperature limit
given by (113) with A, =2j +1 is well followed for
roughly 27T > Ay,.

VL. VALIDITY OF THE “f, =3 APPROXIMATION”
FOR THE CF EFFECT

Since we have made an exact calculation of p in-
side the third-order approximation, it is interesting
to compare our results with the “usual” approxima-
tion used by several authors3*:3® which consists in
averaging R, and S, in the integrals (44) and (45)
by taking everywhere f,=%. In Fig. 1R, as a
function of f, is plotted. We see that this approxi-
mation consists in changing the R,(f,) curve to a
constant value R, (3) which is considerably dif-
ferent. So, in this approximation,

2b
R(fi=3)=A+2" T b5

144

1
S(h=3)=Z Clelera,) 2 I 2Bt

T 1, Y

(117)

(118)
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So, ¢’ and ¢® are given by

2b -1
(2) _ ’
o —(A+Z —J‘Lg—1+e Al/) ,

iy

(119)

3) 3z 2B!

(c(:‘ E,Z, (C:+ ,E 1+e%“u)rl(A”’o)
(#)

(120)
The approximation gives the exact results in all
the limits when #n levels are occupied and (N -#)
empty, but gives appreciable discrepancies when
kT is close to the A;, energy values, as shown in
Fig. 8 for the simple case of two levels. Figure
8 shows the difference between the exact p value
given in the preceding part and the value approximated
by the f, = 3 approximation versus In7. The dif-
ference is important for 2T of order A,; and is of

the order of 10% at its maximum.

VII. COMPARISON WITH EXPERIMENTS AND
CONCLUDING REMARKS

The first point to emphasize is the form of the
Hamiltonian itself. It has been previously®' shown
that, without CF, the Hamiltonian (3) describing
spin and orbit exchange scattering is more ap-
propriate than the Hamiltonian (2) for the study of
the Kondo effect of cerium and ytterbium impurities.
The Kondo compensation of both spin and orbital
moment is a direct consequence of a Hamiltonian
such as (3): This has recently been checked ex-
perimentally by NMR experiments on YCe alloys?®
and by nuclear orientation experiments on LaCe
alloys.*® Another consequence of a Hamiltonian
such as (3), i.e., the anisotropic Ruderman-
Kittel interaction between two cerium impurities,
has been also seen in the NMR experiments of
Silhouette on YCe alloys. %

We now describe the specific points introduced
by the CF. We can note first that the above-men-
tioned statement, i.e., that the Hamiltonian (3) is

Pexact “P Fk=1/2

( nQ cm a o
"at.% ) [ ‘\total resistivity
8r [ a0k
\
6F (o)/’ \‘P=92 o
| \
4r / pin disorder
! \ resistivity at 100K
2+ / \ R _7cnQcm
I \\?5—750?. 7
0 ]
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FIG. 8. Comparison between exact calculation and ap-
proximate calculation with f,=%. Plot of the difference
between them for the typical set of parameters of Fig. 3.
(a) Difference for the total resistivity and (b) for the spin-
disorder resistivity.
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more appropriate than the Hamiltonian (2) for the
study of Kondo effect for cerium impurities, is

not perfectly conclusive without considering the CF
effect, because Sugawara ? has invoked the argu-
ment of a CF to justify the use of the Hamiltonian
(2). I, for example, the ground state is the +3
doublet, the Hamiltonian (2) reduces effectively at
low temperatures to the Hamiltonian (1), the (g - 1)
factor is again positive, and the Kondo effect ap-
pears for a negative I" value. But, the preceding
derivation in presence of CF clarifies this prob-
lem: With the Hamiltonian (28), the Kondo effect
is always obtained for negative Jyy. values, what-
ever the importance of CF and the nature of the
ground state provided only that the ground state is
degenerate.

Another striking feature introduced by the CF is
the difference between the Hamiltonians (1) and
(3). These two Hamiltonians are profoundly dif-
ferent, because in the exchange processes the
change AM =M’ - M in the quantum numbers can be
equalto 0, £1, 2, ..., +£2j for (3) and is not
limited to 0, 1 as for (1). This difference cannot
be seen without CF and the Kondo resistivity is
qualitatively the same for (1) and (3). But the dif-
ference (1) and (3) appears clearly if we introduce
the CF.

As it was pointed out by Maranzana, if we
take the example of three +3, 3, +3 doublets
split by a hexagonal CF and also if the ground state
is the +3 doublet, there is no matrix element of
$-S between the M=+5 and the M=-$ states, so
that there is no diver_gency for €e~0. Thereis a
matrix element of § -S between the M=+3 and
M=+% states (or —% and - 3 states) separated
by the energy A,,; there is only a divergency for
energies € -+ 4A,,, corresponding to what
Maranzana®! calls the “Kondo sidebands.” As a
consequence, in the peculiar case of +3 (or also
£ %) ground state, there is no Kondo effect at low
temperatures with the 5.§ Hamiltonian. On the
contrary, the Hamiltonian (28) always gives a Kondo
effect at low temperatures, whatever the importance
of the CF and the nature of the ground state. This
critical difference has not yet been checked, in
absence of a good knowledge of the CF in alloys
and compounds with cerium or ytterbium impurites.
But we hope that new experiments will be decisive
in the near future on this question,

Another point coming directly from the form
(28) of the Hamiltonian is that, in the exchange
processes, the eigenvalue M of any eigenfunction
of the 4f localized state in presence of the CF can
be changed to any other eigenvalue M’. Without
CF and with CF in hexagonal symmetry, AM =M
- M’ is an integer, but in the cubic symmetry,

AM is no longer an integer. This new point due to
the CF is not important for the calculation of the

24,43
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resistivity, or more generally of transport prop-
erties, because only the degeneracy of each

level matters, but it would be very important

for magnetic measurements. For example, at low
temperatures, the resistivity of a doublet in hexag-
onal symmetry is the same as the resistivity of a
I'; doublet in cubic symmetry, but the correspond-
ing magnetic susceptibilities will be greatly differ-
ent. In the only known case of LaCe alloys which
have a ground-state doublet either in hexagonal or
cubic symmetry, it has been checked that the slope
of the Kondo resistivity at low temperatures is the
same* or almost the same® for a hexagonal or a
cubic Lanthanum host. But the magnetic suscep-
tibilities or the hyperfine fields would be different,
which has not been experimentally checked.

After this discussion of theoretical points, we
would like to compare our results to the available
experiments, First, it is clear that what the ex-
periments give as a 7T, value is at least subject to
discussion and depends onthe type of measurement
which determines it.

In the resistivity experiment, which in principle
gives the magnetic resistivity p after substracting
the phonon contribution, we can deduce the Kondo
temperatures 7;F and 7/ (and in some cases the
intermediate Kondo temperatures 7}') from the dif-
ferent temperature domains where p decreases
linearly with InT,

But all these Kondo temperatures do not have
the same physical meaning, We have seen, for the
physical parameters used for the determination of
Figs. 3-7, that the third-order term is smaller
than the second-order term for temperatures
larger than T,%, so that the perturbation theory is
still valid at T,¥ (or 7}7). In other words, the
lowest Kondo temperature T,F is the only one which
is really obtained, because p is linear in In7 around
T and departs from a linear behavior in InT be-
fore reaching the other Kondo temperatures. Con-
sequently, a complete Kondo compensation of the
total angular momentum is obtained only below T,”
and not below T (or 7)).

Thus in an experiment made at very low tempera-
tures which measures the compensation of the
magnetic moment, such as nuclear orientation on
LaCe alloys, NMR experiments on YCe alloys, 22
susceptibility measurements on a single crystal of
YCe*! or more directly magnetization curves versus
applied magnetic field, the measured Kondo tem-
perature, i.e., the temperature of magnetic mo-
ment compensation, is the 7% Kondo temperature
characteristic of the Kondo effect in the ground
state. But moreover, in contrast to the normal
Kondo effect, the magnetic moment does not reach
its maximum value or the magnetic susceptibility
does not behave as a Curie-Weiss law, at tempera-
tures larger than TE, because there is an impor-
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tant variation of the population in the different levels
split by the CF. So it is possible to have a very
small Tf temperature for the magnetism compen-
sation and furthermore to have departures from a
Curie-Weiss law for the magnetic susceptibility at
temperatures characteristic of the CF splitting and
very much larger than T%. A complete calculation
of the magnetic susceptibility will be made using
the present model, but we can already use these
ideas to clarify the situation for LaCe alloys. The
magnetic susceptibility measurements on LaCe
alloys give departures from a Curie-Weiss law
around 20-30 K and lead to an extrapolated Curie
temperature of - 27 K.!® It was concluded from
these experiments that the Kondo temperature of
LaCe alloys was of the order 10-20 K. On the
other hand, in order to explain the decrease of the
superconducting temperature T, of LaCe alloys at
normal pressure, it is essential to assume that the
lowest measured T, values, of order 0.4 K, are
always larger than the Kondo temperature, giving
a theoretical estimation of T, of the order of or
smaller than one-tenth of K, * 12141617 pecently,
the nuclear orientation experiments of Flouquet*?
clarified the situation and gave a Kondo temperature
of 0.15 K. Hence from the above discussion, we
can conclude that the real Kondo temperature corre-
sponding to magnetic compensation is TF=0.15 K
and that the departures of the magnetic suscepti-
bility around 10-20 K can probably be attributed

to the effect of the CF.

The same ambiguity on the value of the Kondo
temperature of LaCe could come from the inter-
pretation of thermoelectric power experiments.
Grobman*® has recently found a negative peak in
thermoelectric power of LaCe alloys at roughly
20 K and has located the Kondo temperature pre-
cisely at the temperature of this peak. In a similar
manner as the preceding discussion of the magnetic
susceptibility experiments, we think that the peak
of the thermoelectric power has probably no re-
lationship with the Kondo temperature and is con-
nected to the effect of the CF splitting. More
precisely, this peak appears for a temperature
close to that of the inflexion point of the p~vs-InT
curve, of order 0.34A, as pointed out by Peschel
and Fulde*® who derive the thermoelectric power
of two singlet states separated by the energy A with
the normal exchange Hamiltonian (1). The calcula-
tion of the thermoelectric power with the present
model will be reported elsewhere, but presently
we think that the temperature at which the peak oc-
curs (20 K) indicates a distance A,, between the
first excited state and the ground state of order
60-80 K in LaCe alloys, which is consistent with
the results of Yoshida and Sugawara®® in the similar
case of YCe alloys. Further experiments, especially
magnetization measurements, would be interesting
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to rule out definitively a 20 K Kondo temperature
in LaCe alloys and to verify the two present con-
clusions, i.e., T\ of order 0.1 K and A, of order
60-80 K.

On the other hand, the thermopower measure-
ments on YCe ® which give a positive peak around
20 K are probably an indication of a high Kondo
temperature located around this temperature. The
idea of a high Kondo temperature in YCe alloys is
supported by the NMR experiments and by the
resistivity measurements as we will immediately
see. From this point of view, the LaCe and YCe
alloys are different.

Now we consider the experiments on YCe and
LaCe alloys. The resistivity is linear in In7 in
LaCe® and YCe '*" alloys at low temperatures and
the deduced slope is given in Table I. More pre-
cise measurements®'!® have been made recently
and give almost the same slope for the (In7)-de-
pendent part of the magnetic resistivity. More-
over, for several concentrations of cerium in yt-
trium, the normalized p/c curve of the resistivity
is a unique curve which has a plateau from 0.4
to 2 K and a (InT)-dependent part from 2 to 30 K,
leading to a Kondo temperature of roughly 10 K in
YCe alloys. Recent measurement on the single
crystal of YCe gives 40 K*! for the Kondo temper-
ature.

Wollan and Finnemore'® have also studied the
resistivity of LaCe and found a negative slope of
0.11 pQcm/at. % between 3 and 10 K, which should
be compared to the values of 0.07 for hcp LaCe
and 0. 09 for fcc LaCe found previously by Sugawara
and Eguchi.® At about 1 K, p goes through a mag-
netic-field-dependent peak and decreases with de-
creasing temperature roughly as In7: The tem-
perature at which the resistivity goes through a
maximum T, moves with applied field H according
to kT, = LH, where p is just equal to 1u,. So,
this measurement indicates that there is a +3
doublet for the ground state split by the CF. The

TABLE I. Comparison between experimental data and
theory for the logarithmic slope of the resistivity for
LaCe and YCe alloys.

Deduced J values
Experimental values by fitting the
of the resistivity

Deduced J values
by fitting the
experimental slope experimental

slope dp/d InT to (111) .with slope to (111)
(in uQ cm/at.% Np) 1,=6 (ineV) with A, =2 (in eV)

LaCe

(hep) 7 0.047 0.107

(Ref. 3)

LaCe

(fee) 9 0.051 0.116

(Ref. 3)

YCe

(Ref. 5) 44 0.087 0,197
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magnetoresistivity is large and negative at low
temperatures while above T,, it becomes very much
smaller. With increasing concentration, T, in-
creases as T, =0.17+160c? leading to a charac-
teristic temperature for ¢ =0 and 0.17 K, to be
compared to the T Kondo temperature and giving
also a two-impurity interaction when the concentra-
tion increases. The magnetoresistivity experi-
ments are a good qualitative check of the existence
of CF effects in LaCe alloys.

Another indirect check comes from the experi-
mentally measured slope of the resistivity at low
temperatures. From formula (111) we easily see
that the slope at low temperatures has to be smaller
with CF than without CF. We compute by formula
(111) the J values by fitting the experimental slope
either to the low-temperature slope with A, =2 or
to the high-temperature slope with A, =6. We take
here a density of states equal to the experimental
value n(Ep)=2.2 state/eV atom for yttrium or
lanthanum hosts. These results are summarized
in Table I. It is rather difficult to conclude on
the different obtained J values, but we can think
that the largest J values obtained under the CF
assumption are more appropriate than those de-
duced without CF effect.

A last comment on alloys with cerium impurities
concerns the Kondo temperature. From all the
above described properties, the lowest Kondo tem-
perature, or more exactly the magnetism compen-
sation temperature, is of order 0.1 K in LaCe and
10 K in YCe alloys. A simple explanation of this
discrepancy can be found in Table I, because the
J value for YCe alloys is two times larger than
the J value for LaCe alloys.

At last, we compare our theoretical results to
experimental data on CeAl,373%8=5! 5pq
CeAl, %23 compounds. One advantage of the
cerium compounds is that p is sufficiently large
to have the total resistivity over an extended tem-
perature scale. However, there are two disad-
vantages. The first one is theoretical because we
apply our theoretical results to compounds which
cannot be considered as dilute alloys. But, be-
cause of the high localization of the 4f levels, we
think that it is possible to apply our results to such
concentrated compounds as it is usually done for
the spin-disorder resistivity of pure rare-earth
metals.® The second disadvantage is experimental
and in fact more serious. To obtain the magnetic
resistivity p, we have to substract all the other
contributions especially the phonon contribution,
and we assume here that all the other contribu-
tions are given by the resistivity of LaAl, and
LaAl; compounds, assuming implicitly a Mat-
thiessen rule for adding the magnetic contribution
and the other contributions.

For obtaining the magnetic resistivity p of CeAl,
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compound, we have substracted the LaAl, resis-
tivity from the total resistivity of CeAl, and we
obtain a negative slope at high temperatures as
shown on Figs. 9 and 10. But if, instead of sub-
tracting LaAl, resistivity, we had subtracted

the LuAl,, YbAl,, or YAl * resistivities, the
magnetic resistivity would have a much smaller
negative slope at high temperatures, but the nega-
tive slope of the magnetic resistivity would still be
present, which is the essential physical feature of
the model. After substracting the LaAl, resis-
tivity, the resulting p curve of CeAl, has a small
maximum at 4.6 K, a minimum at 13 K and, after
a large maximum at 65 K, decreases logarith-
mically up to 300 K. We attribute the low-temper-
ature maximum to the ordering of magnetic cerium
atoms, so that it cannot be described in the present
model. But, however, the large logarithmic de-

Ce A‘3

o exp.

1
0 100 200 300

FIG. 9. (i) Resistivity of CeAl, versus temperature.
The total resistivities of CeAl, (a) and LaAl, (b) (Ref. 46)
are plotted in dotted line and the magnetic contribution p
of CeAl, is plotted with triangles. The full line represents
the theoretical curve with the following set of parameters:
m=3 a.u., vy=234 a.u., 2=3, ®=2, 0vy=4, Ay =90 K,
Vpp=0.07 eV, E;=-640 K, J;; =—0.089 eV, D=380 K, U
=0.21 eV. (ii) Resistivity of CeAl; versus temperature.
The total resistivities of CeAl; (c) and LaAlg (d) (Ref. 34)
are plotted in dotted line and the magnetic contribution p
of CeAly is plotted with circles. The full line represents
the theoretical curve with the following set of parameters:
m=3 a.u., vg=234a.u., z=3, ¥;=0y 03=2, Ay=30 K,
A31=50 K, V =0.07 eV, E;=-450 K, J;y=-0.127 eV, D
=850 K, U=0.2eV.
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FIG. 10. Magnetic resistivity of CeAl, and CeAl; com~

pounds versus T (logarithmic scale). The triangles and
the circles represent, respectively, the experimental
curves of CeAl, and CeAl; compounds. Full lines repre-
sent the corresponding theoretical curves with the set of
parameters used in Fig, 9.

crease at high temperatures and the smaller de-
crease at low temperatures separated by a maxi-
mum at 65 K are typical of the CF effect and the
curve is similar to those presented in Figs. 3-6.
We can choose the parameters to best fit the ex-
perimental curve. The high-temperature slope
gives both the cutoff D and the product J*n(Ep)?;
by taking n(Eg)=2.2 state/eV atom as in pure
lanthanum, we fit the high-temperature slope oy
D=380 K, J;;,=-0.089 eV, E,=-640 K (with

Ve, =0.07 eV). We find that D is of order E; and

certainly not of the order of the Fermi energy as for

transition impurities in noble metals. The CeAl,
compound is cubic and the ground state is a doublet
as shown by magnetic measurements.* Moreover,
the experimental curve is better fitted by assuming
a;=2 than a, =4, as it can be seen on the different
curves of Fig, 6. The maximum of the p curve
gives the value of A;; =90 K. Finally, the fact that
the difference between the p value at its maximum
and the p value at its minimum is small compared
to the p value itself at its maximum means that the
U term is larger than the J term and we have
chosen V=0.21 eV to fit the experimental curve.
Figure 9(a) on a normal plot and the Fig. 10 on a
logarithmic plot give the experimental curve and the
theoretical one with the previously evaluated pa-
rameters. With the preceding parameters (113)
would give 77 =0.43 K and Tf =102 K.

The total resistivity curve of CeAl, decreases
at high temperatures so that there is no such
ambiguity as in CeAl, for subtracting other con-
tributions than the magnetic one to the resistivity
curve. So, we have subtracted the resistivity
curve of LaAL; to obtain the magnetic p curve of
CeAl;. But it maintains a small ambiguity be-
cause the residual resistivity of CeAl; is not giv-
en®' and we have taken the same residual resis-
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tivity for CeAl; as for CeAl,. Anyway, changing the
residual resistivity gives a translation of the p
curve, which can be accounted for by a small de-
crease of the U term. So, the resulting p curve
of CeAl; has a very large maximum at 35 K follow-
ed by a decrease which follows a logarithmic law
up to 300 K. The logarithmic law of p at high tem-
peratures in CeAls, as well as in CeAl,, is a very
good check of the validity of the application of the
present model to these compounds. From the high
temperature slope, we can deduce a larger Jy,
=-0.127 eV value in CeAl; than in CeAl, and a
E,=-450 K value by taking also n(Ez)=2, 2 state/
eV atom. Since CeAl; is hexagonal, there are
three levels and @,= &,= @3=2, The value of the
maximum gives the over-all splitting A5, =50 K
and the fact that there is only one broad maximum
means that A, is an important fraction of 4;,. We
have taken A, =30 K, which fits the experimental
curve, but the value of A,, is subject to error. As
we do not know the exact location of the minimum at
low temperatures and also the value of the residual
resistivity, we can only give an upper limit for
U chosen here to be 0U=0.2 eV. The experimental
and theoretical curves are plotted in Figs. 9(b) and
10 and the corresponding Kondo temperatures
would be 7.7 =88 K and T, =1.4x10™ K. Experi-
mentally, the resistivity of CeAl; has no minimum
down to 1.3 K, while the theoretical curve has a
minimum around 5 K. If we had taken smaller A,,
and U values, the minimum temperature and its
p value would be smaller, in better agreement with
available experiment. But the main question is
to know if the experimental curve has a minimum
at low temperatures, as predicted by the theo-
retical model, in contrast to the Kondo sideband
theory of Maranzana. 243743

We have chosen here to fit only the CeAl, and
CeAl; curves corresponding to N=2 and N=3
cases. But, on the basis of the same model, we
can fit the resistivity curves of Ce,_La Al,,
Ce,,Y,Al;, Ce,,Th Al; systems®7:4352:50:33 54
other related systems®! which generally present a
decrease at the high temperatures characteristic of
the Kondo effect and at a broad maximum at the
lower temperatures characteristic of the CF effect.

Hence, the fit of the experimental curves of
cerium compounds can give an estimate of the
position of the 4f level and of the CF splittings.
Further experiments would be interesting for check-
ing these values. Neutron diffraction experiments
would give the value of the CF splittings and pre-
liminary results on CeAl, agree very well with the
A, =90 K value found here.*® Moreover, since the
position of the 4f level increases relative to the
Fermi level under applied pressure, we can hope
that applying pressure on CeAl, or CeAl, com-
pounds will vary rapidly the high-temperature log-
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arithmic slope of the resistivity curve, as it has
been already shown in the case of dilute alloys with
cerium impurities. #'12:14:18:17:43 At ast  further
experiments at very low temperatures will be
necessary to see if the resistivity minimum is still
present or not.

The case of ytterbium impurities can be inves-
tigated on the same basis, especially the cases
of the ternary AuAg Yb alloys which present a Kondo
effect. ®*1° On this type of system, magnetic
resonance experiments can give information about
the nature of the ground state, such as the mea-
surements of Tao et al.* who give a I'; doublet
for the ground state of the cubic AxYb alloys.

In conclusion, the derivation of the Kondo effect
with crystalline field explains resistivity measure-
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ments on cerium alloys and compounds, illustrates
the different roles of the CF and the Kondo effect in
alloys such as LaCe, and improves the knowledge
of the Kondo effect in alloys with cerium impuri-
ties.
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The time- and temperature-dependent spin-spin correlation functions and their wave-vec-
tor-dependent frequency transforms are obtained exactly from the Wigner-Eckart theorem
in the Bethe-Peierls-Weiss cluster model of Heisenberg spin systems. The expressions ob-
tained are valid for all spin values and for all temperatures above the transition temperature.
The present results for the spin-3 simple-cubic lattice are compared with the theories of

Windsor and of Blume and Hubbard and with the experimental data on RbMnFj.

It has been possible to study dynamical proper-
ties of Heisenberg spin systems in terms of time-
and temperature-dependent spin-spin correlations
and their wave-vector-dependent frequency trans-
forms which are numerically evaluated in the Bethe-
Peierls-Weiss (BPW) cluster model for various
spin values and temperatures. L2 This paper re-
ports exact analytic expressions for these quanti-
ties obtained from the Wigner-Eckart theorem
and valid for all spin values and for all tempera-
tures above the transition temperature. The pres-
ent results for the spin-% sc lattice are compared
with other theories®™® and with RoMnF, data. ®

The two quantities of interest in this paper are
the dynamical spin correlation function defined by

(S§(0)SE (1)) = CZ e™®®1 (i[S§|j) (j|Sk|i) et BB,
i
1)

and the wave-vector-dependent frequency transform
given by

S(E, w) =2 efi-ﬁj'” L eiot (55 (0)S% (1)),

27

()
where C=1/s¢(s¢+ 1)Z, with Z being the partition
function and s the spin value per atom. These
quantities can be evaluated exactly in the BPW
cluster model of Heisenberg spin systems, which,
for temperatures above the transition temperature,
is characterized by the effective-spin Hamiltonian’

H=-J5,5,, 3)

where 8, represents the central spin of a cluster
and S, the total effective spin for the y, nearest
neighbors surrounding the central spin. This
Hamiltonian is diagonal in a representation charac-
terized by Isos,sm), in which S3, S2  $% and S*

are diagonal. In this representation the matrix
elements of the spin operators that appear in Eq.
(1) can be obtained exactly from the Wigner-Eck-
art theorem, ® and the nonvanishing elements of
these are

(s|Sg|s)(s|SE[s) = [s(s+1)+P(sy)]
x[s(s+1)xP(sy)](2s+1)/12s(s+1),
(s|S&|s+1)(s+1]S%|s) = + Q(s1, §), (4)

(s|S§|s =1(s - 1[S7[s) = £ Q(sy, s -1),

where the plus sign goes with »=0 and the minus
sign with n=1 and where

P(sy) = sg(sg+1)=5s(5;+1),
Q(S1, S) = (Sg+8,+2+8)(Sg+8,-8)
X (S;=Sg+1+5)(Sg~-81+1+8)/12(s+1).
From Egs. (1) and (4) it follows that
(85(0)S5(1)) = CLW(sy)exp{zd[s(s+1)=s,(s,+1)]8}
x{[s(s+1)+P(s1)][s(s+ l)tP(sl)]

x(2s+1)/12s (s + 1) £ V7Q(sy, )

te'’*Q(sy, s-1)}, (5)

where the summations are over s, and s, each in
the range of values given by 0 <s; <¥55gand Isg
-5,/ Ss<(sg+s,). The quantity W(s,) represents
the multiplicity of s; values. "’

A more relevant quantity of interest, directly
accessible by inelastic neutron scattering experi-
ments, is the frequency transform given by Eq.
(2), which now becomes



