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where the exchange constant J depends on the
ion position R,

possible following detailed calculations for the
various modes.

and so produces a coupling between spin system
and phonons. ' A quantitative comparison between
theory and experiment will, however, only be
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The effects of higher-order contributions to the linearized renormalization group equations
in critical phenomena are discussed. This analysis leads to three quite different results: (i)
An exact scaling law for redefined fields is obtained. These redefined fields are normally
analytic functions of the physical fields. Corrections to the standard power laws are derived
from this scaling law. (ii) The theory explains why logarithmic terms can exist in the free
energy. (iii) The case in which the energy scales like the dimensionality is analyzed to show
that quite anomalous results may be obtained in this special situation.

I. INTRODUCTION

It has been shown by several authors'~ that a
linearized form of the renormalization group equa-
tions leads to scaling laws for critical phenomena.
In this paper we use the renormalization group
equations to obtain corrections to the well-known
power laws for the singular part of the free energy
and for the expectation values of different opera-
tors and susceptibilities.

The free energy of a magnetic system and of super-
fluid helium as a function of the symmetry breaking

field h and 7~ T —T, isobtainedas an expansion

in which the redefined fields go, g~, and g, are
analytic functions of 7 ~ T —T, unless certain rela-
tions are fulfilled (see below). The function gs
vanishes for ~ =0, gs = a+ 0(r ). The first term go
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is the regular part of the free energy, the term
Ig~ I

'f' is the leading singular term. The func-
tions f ', f ;'depend on the sign of v. . The last term
of Eq. (l. 1) comes from the contributions of the
"irrelevant" operators to the energy density. We
note that the exponents b, are negative (the gap ex-
ponent b, = P+ y for the symmetry breaking field is
positive, of course). The exponent ~, of the lead-
ing correction is approximately —0. 5. For other
second-order phase transitions one has to replace
Rh by a function g„. Both g„and g~ are analytic
functions of gh and ~ vanishing at criticality. The
expansion (l. I) differs considerably from correc-
tions to scaling laws obtained by other authors'
since we take the "irrelevant" operators into ac-
count.

If certain relations between the critical exponents
are fulfilled then logarithmic singularities arise.
In particular if the critical exponent of the free en-
ergy 2 —n is an integer, then this theory predicts
a contribution to the free energy proportional to

I ~l ln I ~l. This behavior has been found for the
eight-vertex model. (For odd o the eight-vertex
model does not show this singularity. It follows
from symmetry arguments that this term vanishes
for odd + in the eight-vertex model. )

The ease in which the energy scales like the di-
mensionality leads to anomalous results. For this
case we obtain an asymptotic series in ~ for the
free energy. The free energy of the F model can
also be described by an asymptotic series' in ~.
We attribute the different asymptotic behavior in
the F model to the presence in this case of two
operators which scale like r ".

In Sec. II we outline briefly some basic ideas of
renormalization group theory and state our basic
equations and assumptions. In Sec. III we review
the derivation of the scaling laws from the linear-
ized renormalization group equations. Since the
energy is not an exact eigenoperator of the linear-
ized equation one obtains already in this order
corrections to the power laws. In Secs. IV and V
we consider the nonlinear equations which lead to
a scaling law in terms of the redefined fields.
From this scaling law we deduce the corrections
described by Eq. (1.1). In Sec. VI we discuss
some logarithmic contributions. In Sec. VII we
discuss some properties arising from operators
which scale like r ~. These operators may lead
to fixed lines which may produce a breakdown of
universality (eight-vertex model ' ). We also dis-
cuss the case of an energy density scaling like r 4

which leads to a singularity of the free energy in
infinite order and compare with the free energy of
the F model.

H, (N) = H, (z, . ..z„)= —ft(t, (2. I)

in which 3C is the Hamilton operator and 8= (kz T) '

with Boltzmann constant k~ and temperature T. We
assume that Ho(N) is translational invariant (apart
from the boundary conditions). Now we extend the

system in all linear dimensions by a scale factor
e'. Then we obtain a system with Ne"' degrees of
freedom in a box of length Le' described by

(2. 2)H()(Ne ') = H()(z( ~ ~ z„„(g))).
We transform to a new set of variables
z,' ~ ~ z„',„,«» and average over all variables z~

with k & N by taking the trace of exp[HO(Ne~))] over
all these variables. We denote the result by

exp[H, (N)] = exp[H, (z( ~ ~ z„')]

= Tr' exp[Ho(z(. . .z„,* (u)&)] ~ (2. 3)

If we have chosen the variables z„' in an appropriate
way then H, (N) is translational invariant also. We
denote the total operation of extending the system
and eliminating degrees of freedom by R',

H, (N) = R'(H()(N)) . (2 4)

According to our definition the partition function
Z= Tr exp(H) obeys

Z(H, (N)) = Z(H, (Ne")) (2. 8)

and we obtain (in the thermodynamic limit N- ~)

lnZ(H, (N)) = e 'lnZ(HO(N)) . (2. 6)

Denoting the free energy by 5 and introducing the
dimensionless free energy

F= —$$=lnZ,

one obtains

F(R'(H)) = z"F(H) .

(2 &)

(2. 8)

We may denote R'(R'(H)) by R '(H) since the system
is extended by a scale factor e ' and then reduced
to a system with N degrees of freedom. In general
R' generates a semigroup consisting of the ele-
ments R"' (with n a non-negative integer). In the
following we assume that we may define an opera-
tor R~ for infinitesimal 5. ' Then R' is defined for
any l, and we avoid unconveniently complicated
equations. For our further calculations we make
three basic assumptions: Firstly, we assume that
there exists an eigensolution

tion group theory leading to Eqs. (2. 8) and (2. 12).
We consider a d dimensional system with N degrees
of freedom z, ~ ~ z„ in a box of length L. The sys-
tem is described by the operator

II. RENORMALIZATION GROUP THEORY H*= R (H*), (2. 9)

We briefly outline the basic ideas of renormaliza- which is called a fixed point. Secondly, we assume
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R'(H +Z& p, 0,) = H*+Z& c&(p}0& (2. 10)

for a complete set of operators 0&. Moreover we

assume that c&g}has a power expansion in P around

the origin

f i
C)(Pj= ~ ~] ~ ~ ~; &)f ~ ~ ] P]1 ~ ~ j ( ~

1 'n 1 n n
n~1 ~

(2. 11)

Hamiltonian. For the symmetry-conserving Hamil-
tonian the fields p, ; of the symmetry-breaking oper-
ators vanish. For second-order phase transitions'
there are only two relevant operators which con-
serve the symmetry, the operator 00= 1 and an

operator we call OE.
The operator 1 and its field p, p are extremely easy

to treat since

The functions c and the coefficients a depend on l.
For infinitesimal 5 we write

F(&0 &1 . )=&0+F(0 &1 ) (3. 7)

R (H +Ziq p ( 0() = H +Z( pq Dg+ 5Zg cy(jl}Og

(2. 12)
with c,'= ac, /sl I, 0. Thirdly, we will assume
certain properties" for the matrix a&, = saJf/Bl
which we will state in Secs. III and V. Starting
from these assumptions we will discuss some
singularities of critical systems.

III. FIRST-ORDER THEORY: SCALING LAWS

H*=Q pPO, ,

-X=Zp, 0, .

Then we obtain

(3. 8)

(3. 9)

and yp=d. Although 1 is a relevant operator, it is
not necessary to fulfill p, p, = 0 at criticality because
of Eq. (3. 7). We call po the regular part of F and

F(0, p, , ~ ~ ~ ) the singular part of F Let u.s expand
H~ and X in the operators 0&:

In this section we derive the scaling laws from
the linearized form of Eq. (2.12) for infintesimal5:

Ho =H~+Z p, O, ,

with

(3. 10)

R (H +Z( p) gO)= H+M( pgO(+6 Mgy Qgg pgOg ~

(3. 1)
We assume that the matrix a&, can be diagonalized"

R (H++2( pi 0() =H +2( p((i + Ay() Og (3. 2)

W&=PP& —~& .0 (3. 11)

Since criticality is defined by the condition that the
fields of all relevant operators but the operator 1
vanish, the field p E has to vanish at criticality.
This defines the critical temperature

where the coefficients y, are the eigenvalues of a'
and the 0; are the eigenoperators of the Eq. (3. 1).
We mention that the density O, (r) scales like r *~,

where x, +y, =d. ' From Eq. (3. 2), we obtain

R'(H ++~( p( 0() =H*+Z( p. ( e~&'Oq,' (3. 3)

and from Eqs. (3. 3) and (2. 8), one obtains the scal-
ing law

(3.4)

ks T = Ps/0$ .

We now define T, &, l, and 4& by
'

r= VE= pe(P P.), -0

2 —&=~/y e,
84'- T 2

y I/XE ~

Then we obtain, from Eqs. (3.4) and (3. 7),

(3. 12)

(3. 13)

(3. 14)

(3. 15)

(3. 16)

The operators 0; with y; &0 are called relevant,
since an application of R' leads to an increase of p&

leading away from H*, whereas the operators with

y& &0 are called irrelevant since the application of
R leads to a decrease of p, (the limiting case y, = 0
will be discussed in Sec. VII). If the repeated ap-
plication of R on a Hamiltonian H, converges to the
fixed point 0*,

f '„„{q,}=F (I 0= 0 i e = + I q ).

From Eq. (3. 17) one obtains

(3. 18)

(3. 17)

The function f;,~ depends only on the reduced fields

q, = n, I r I
' (is 0, E) and on the sign of 7, since qe

= sgnT,

1im R '(H, ) = H ~,
gazoo

(3. 5)
9q)

(3. 19)

H, =H +Q, n;, 0(, (3 6)

then we say we are at criticality. Within the linear-
ized approximation the Hamiltonian

and

'(oi) s«~) 1,
1

„,s'fi..
8p& Bp & Bq& Bq&

(3. 20)

with p. &,= 0 for all relevant operators, defines criti-
cality. Normally there is only a small number of
relevant operators. Several of these (magnetiza-
tion, anisotropy, etc. ) break the symmetry of the

with

P~= 2 —™—rh~

y]~= 6)+ 4~ —2+ &,

(3. 21)

(3. 22)
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which leads to the scaling law H '(H(g»)) = HIg, e "' ) (4. 3)

&+ P;+ P~+ y];= 2 . (3. 23)

Since the reduced fields q& depend on the temper-
ature one obtains corrections to the power laws
(0}4X: 17 I and S(0)/Su c»- lr I "for fixed X. If we
assume that f„„canbe expanded in powers of the

q& for irrelevant operators 0&, then one obtains

'f. -(o),g l, l,-,„ f. -(o)
eq,

' ' "& aq,.aq,
(3. 24)

For irrelevant operators one has 4& &0, hence the
leading term is proportional to !7 l '. However if
~, is close to zero, then the correction might be
important although the operator 0& is "irrelevant. "
From expansions of the critical exponents in &= 4
-d one obtains the estimation 4~= —0. 5 for the
leading correction term [ha~= —~e+ 0(e ) from Ref.
15] in three dimensions. This agrees exactly with

the result of Wortjs who predicted from empiri-
cal analysis of susceptibility series a behavior
y= Ir I "(ko+ k, I r I ) for Ising models with spin S
with constant y and P = 0. 5 for all S.

We obtain the energy of the system from

—(H)=„—=u.(2- &)rl~l f.».I
dE

++» rl~l '(u»ue &»ue-u&) "" . (3. 25)1»na

q&

From this one obtains the energy at criticality

—(».= uo . (3. 26)

In Sec. III we derived the scaling laws from the
linearized renormalization group equations. In
this section we take into account higher-order terms
in u. In the basis of the operators 0, , Eq. (2. 12)
reads

H'(H*+ Q, u, 0, ) = H *+Q» u, 0; + 5 Z& e&(u )0»

1= H" + Z; (1+ by; ) u» 0»+ 5 Z —,Z»»&z uz 0»,

(4. 1)
with the notation I for i„ i~, . . . , i „and

Pl= P) (4 2)

In Sec. III we obtained the Hamiltonian H*+ gu» 0»
with the transformation property (3. 3) which led
to the scaling law (3. 4). This does no longer hold
if we take into account the higher-order terms in

u [Eq. (4. 1)]. To overcome this we try to define
an operator H(g») parametrized by scaling fields
g; so that

Deviations from —(H ) —u o
~ r I r I

' come explicitly
from the sum in Eq. (3. 25} and from the dependence
of f;„,on the temperature-dependent fields q».

IV. HIGHER-ORDER CONTRIBUTIONS

still holds. H does not depend linearly on g, but we

expect

H[g, )=H'+Z, u, (g,) 0, (4. 4)

in which the real fields p& are nonlinear functions
of the "scaling fields" g& with an expansion

1
&z b»ig»

n*i
(4. 5)

gl =g& 1 n
(4. 6)

To first order we expect from Eq. (3. 3) u, =g,
+ 0(g'}, that is b„= 5&». We postpone the calcula-
tion of the coefficients b from the coefficients a to
Sec. V and discuss the consequence of Eqs. (4. 3)
and (4. 4). From Eq. (4. 3) we again obtain the
scaling law

F[g,)=e "'F[g»e'»'), (4. 7)

which is exact for the Hamiltonian (4. 4).
Since the fields p,

&
are nonlinear functions of

the scaling fields g& one obtains power laws for
the field-dependent operators SH/&g:

+ (4. 9)

These scaling fields are (normally) analytic func-
tions of the fields p. . Suppose we may vary two
physical parameters, the temperature and the sym-
metry breaking field h:

H = —PK —PAM .
With the expansion for the order parameter

-bf =Z u,"o, ,

we obtain [compare Eq. (3. 11)]

~~=P~ +%~» —V~0

(4. 10)

(4. 11)

(4. 12)

Therefore, the fields p.
&

are linear functions of 7
and Ph. Then all redefined fields g, are analytic
functions of 7 and J3h. If the operators 0& and 0„
are the only relevant operators and if we assume
that we may expand in powers of all the other (ir-
relevant) fields g„ then we obtain the free energy

0;+ b ~];,g;, 0)+
(4. 8}

Therefore, we obtain deviations from the power
law (0;)~ I r I ', which comes from the correc-
tion terms bg(0) and higher-order terms. We may
convert expression (4. 5) into an expansion for the
scaling fields
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in which f ' is the function f;„„f ', the first deriva-
tive of f '„„with respect to qr and f';, the second
derivative. The function and derivatives are eval-
uated at all qj=0 except q&=g&tgEl . The fields
g„and gE vanish at criticality. From Wilson's ap-
proximation and from the exact recursion rela-
tions obtained by changing the momentum cut off
one finds that the magnetic field h for a ferromag-
net and the symmetry breaking field for superfluid
helium transform into themselves. In these cases
one obtains

(4. 14)

and all the other fields (go, gz, g, ) depend only on r.

V. HAMILTONIAN H{(iI.

In this section we will calculate the operator
H{g). We will find that in some cases H{gj cannot
be represented by a power series in the fields g.
But it can be written in the form (4. 4) and (4. 5) if
we allow the coefficients b to be polynomials of fi-
nite order in l. These polynomials can equally well
be replaced by polynomials in ln Ig l. Writing down
the equations for b we take into account the explicitde-
pendence of b on l by carrying also terms Sb/el.
From Eqs. (4. 3) and (4. 4), we obtain

—„II'(H{g,))= —„H{g,e'1'}

Er, ' „y,b„)o,
1

g bjI
n1 n jI

ft (H{g»e" ))=~, ~airpr{gie" )Or,n

(5. 1)

We first consider the case where a'jj is diagonal,
Ia„=y, e„

Then Eq. (5. 3) becomes

~fI + (yr y, )-b ir = fir

(5 'I)

(5 8)

and we may choose b jj = 6j& as before. Then Eqs.
(5. 5) and (5. 6) become

ffiiif2 (5. 9)

j 1j2jS f1j2 S j 1j1 f1jljS jj2 1
a' +5 a'

brr(l) = Jo f»(l') dl'+ const. (5. 12)

From Eqs. (5. 11) and (5. 12) we find that the co-
efficients b are polynomials of finite order in l.

Amatrix aj., of finite order" can always be
transformed by a similarity transformation into
the form

af, —-0 for i &j,
Iajj—- y

a j; = 0 if i &j and y j & y j.
(5. 13)

+ biiiiioaiioii ). (5. 10)

If yr bb yi, then Eq. (5. 8) has the solution

fir sfrrf sl s'frr&rrf '
bir —— — 2+, —~ ~ ~ . (5. 11)(yr-yi)

Hence b,r is a constant if f» is a constant. How-

ever, in the exceptional case yI =y j one obtains l
dependent coefficients b» (unless f» vanishes)
which lead to logarithmic terms:

with

yI yj +'''+yj
1 n

' (5. 2)
Therefore, the only nondiagonal terms are those
with i &j and y j = yf. Then for n = 1 the solution

&bfI
(y ~ —,')b ~ = f

f ~
(5. 3)

The inhomogeneity f depends on the coefficients a'
and the functions bj.&, ...j with m &n. One obtains

f,;=0, (5 4)

We used the group property R' = R'R'. Sub-
stituting»r {gre"")into Eq. (5. 1) and compar-
ing the coefficients of gI, we obtain the equation for
bfI ..

e(a'-y) l (5. 14)

leads to polynomials bi, (l) of finite order in l. For
n & l one obtains for yI = y j

brr(l) =Xi f' br, (l')f,r(l')dl'+ const (5. 15)

and for yI + y,

bf ())=rey -' )t f (() (y -' )f ''')--1 y -2 Sfrr
~l

(5. 16)

I
fii 11 2 ~r 112 i 1 ii 1212 i iii2

fii11213 ili213 ili1 i2)2 i313 yi112y3

(5. 5)

(5. 17)

Again the coefficients b» are finite polynomials in
We observe that we may replace l in the poly-

nomials by i+la, where l is a constant. Defining

~o= Io{gi)=&S

i1i2( i111 i2(213 i112 ili213

+ biiiob, 2... )aii i, etc.
2 (5. 6)

with constants S; which obey

we obtain

(5. 18)
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H(g)= H~+ Z
( Zbgi(l p(g)) giOy .

n=l n' jI
(5. 20)

From Eq. (3. 7) which is exact in any order in p, it
follows that a~, vanishes for n &1 if one of the in-
dices i is equal to 0. From Wilson's approxima-
tion as well as from the exact recursion relations
obtained by changing the momentum cut off one
finds that the homogeneous magnetization trans-
forms into itself. Therefore a', I vanishes for n &1

if one of the indices i corresponds to the homoge-
neous magnetization S,.p. Therefore,

a»=b;1=0 if n &1 and 0, =1 or S, p for one i g I .

(5. 21)

VI. LOGARITHMIC SINGULARITIES

(5. 19)

Therefore, H has an expansion in the scaling fields
g, and l, (g,):

For j= E we obtain

BPE I
y zg z= cz(pz)

~gE

which can be easily integrated
Id p'E aE2lngE= yE, = lnpE—

cz(pz) 2yz

l2 I
E2 E3 2+ 2 E —~ ~ ~

8yE 12y E

and converted into a series expansion for p, E:

2yE 12yE 4yE

For j= 0 Eq. (6. 7) reads

9/0 I
3'ogo+ s 3'zg'z=3'oPo+co(0 Pz)9gE

We may expand

(6 6)

(6. 9)

(6. 11)

In this section we discuss logarithmic singular-
ities in the specific heat using the results of Sec.
V and compare with the Ising model and the eight-
vertex model. We restrict ourselves to the opera-
tors Op and Oz. We find from Eq. (5. 21) that the
only nonvanishing coefficients for n = 2 are a p EE
and aE, EE. For the two-dimensional Ising model"
one has y0= 2 and y E = 1 and, since the operator OE
is odd under the Kramers-Wannier transforma-
tion, one obtains solutions

I I

+ 02 E2 1 3+ o apo gz+ ' ' ' . (6. 12)
2yE

Then we obtain

(nyz-yp)bp =fp for nyzWyo,

whereas for ny E = y p, we obtain

(6. 13)

1 ~ 1 I 2co(l 0 0 l z)=~
n i fo, sgz = paoogz

rb p, EE= a p, EE and bE, EE ——0 ~

We choose lp= lnlgE! and obtain

(6 1) y. bo. =fo. ln lg. l
.

With yo/yz= 2 —o, we obtain

(6. 14)

F(0,gz)= gzF(0, +1)—sgzap zz ln lgz l, (6. 2) F(&z) = lgz l

' ' Fs —&o (0 gz), (6. 15)
which leads to the logarithmic singularity in the
specific heat. Now we take into account all coef-
ficients a» with i,j = 0, E. The only nonvanishing
coefficients are ap, p= yp ap, E...E for n ) 2, and
aE, E E. Denoting n indices E by n, we obtain,
from Eqs. (4. 1) and (4. 5),

where F(pz) is the free energy of H =H~+ pzOz and

F = F (P z(gz = + 1)1—Po(0 gz = + 1) (6 16)

If 2 —& is not an integer then one obtains a singular-
ity proportional to lpEl . If n=2 —& is an in-
teger then bp leads to the singularity

I 1
co(&o &z) = youp+ ~

If= 2

cz(&z)=
i az, &z

n=1 n t

1
I 0(gp gE) gp+ ~

t bp gE
Il 2

1
i z(gz)= Z

t
bz sgz

n 1

(6. 3)

(6. 4)

(6. 5)

(6. 6)

Fs|ss= fos3 z gz ln lgz l
(6. 17)

VII. LIMIT CASE y = 0

These logarithmic singularities were observed in
the eight-vertex model for even 2 —&. Because
of the symmetry under the Kramers-Wannier
transformation'o fp„vanishes for odd n The am. -
plitude fpjyz of the singularity is the same above
and below the critical point as already observed by
Widom, ' Griffiths, and Kadanoff. '

Neglecting the l dependence of b Eq. (5. 1) can be
written

(6. 7)

Et is beyond the scope of this paper to discuss all
the properties of operators with vanishing expo-
nent y. (These operators scale like x ".) We men-
tion the following four types of operators with y = 0:
(a) The stress tensor scales like r o (Kawasaki ').
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5H*=Q~ z»IsH /sza . (7. 1}

Therefore, the index y of the operator M*van-
ishes. (c) An operator O„(r) which scales like r
might break universality (Kadanoff ). An example
is the eight-vertex model. ' If the equation

(b) If the Hamiltonian Hn is a function of continuous
variables z and the trace, Eq. (2. 3) is the multi-
ple integral ?Ifdza, then a scale transformation
z - »az does not change the partition function Z (be-
sides a trivial factor). An infinitesimal scale
transformation & = 1+ c changes H* by &5H* with

p1 = 2dl»»'Ea, po = 2d»»za /( 3»»''Ea) . (7. 10)

The solution of Eq. (7. 13) is

F(! E) F0 (uE) f" d! Fo'(&)co (&)/cz(&)
(7. 11)

This integral leads to an asymptotic expansion in
p. E. In particular, for

in which P is a polynomial

P(!1E)= 1+d [2»»'Ea/(9»aza) —az4/(6aza)]»»z+

(7. 9)
and

R'(H4»= 5».g.))=Hfg; = 5».~.) (7. 2)
CE(l E) auE2 OE 'CO(l" E) 2 +02! E (V. 12)

holds for any g„, then there is a whole line of fixed
points H" (g„). To fulfill Eq. (7. 2) it is necessary
to have y„= 0. This condition is not sufficient,
since Eq. (V. 2) has to hold for a whole line. (d)
If there is an operator O„with vanishing exponent
y„which is not of one of the above mentioned types
then it might lead to a bifurcation point of fixed
points as a function of dimensionality. This has
been demonstrated by Wilson and Fisher for the
break away of the fixed point for a whole class of
second order phase transitions at dimensionality 4
from the Gaussian fixed point. Such an operator
is a limit case of relevant and irrelevant opera-
tors. The limit

one obtains

P2 M/ E3 P1 M E4/(~83)

Po = d [3»» za/(10»» m) —3u z4/(8»»'E'3) j
(V. 15)

F(»»z) =daoaaza 2 (n - 1)! (uz/p»)" + c, exp(-p, /»»z)
)I~2

(7. 13)
If aE2 vanishes but aE3 40, then one obtains Eq.
(7. 18) with

Fo(!1E)= exp(-pa &E+p, !»z)!»EoP(!1E), (7, 14)

in which P is a polynomial different from that in
Eq. (7. 9) and

lim R»(Hn+!3„0„)
f ~oo

(7. 3) In particular, for

may or may not converge to H*. If, for example,
f„„„=a„',„„4»0, then we obtain

3 ) i ) 2CE(! E) = 3 aza Qz C (»0E)»= 2002!Az

one obtains

(7. 16}

R (Hn+!033)=nH* (»+»n+ 25a'n „n!12n)O„. (V. 4)

~FF = CE (!"E)+ Co (Qz) ~8P, E

The homogeneous equation

&F0 )dFO= c'E(»»z)
APE

(V. 6)

(V. 7)

For sgn(!»„)= —sgn(a„' ) the limit (7. 3) converges
to H*, whereas for sgn(!1„)= sgn(a'„„„) the limit
(7. 3) does not converge to H".

Now we discuss the behavior of the free energy if
the most singular operator with the symmetry of
the Hamiltonian (besides Oo) Oz has a vanishing
exponent yE. Considering only the operator Oo and
Oz, we obtain, from Eq. (2. 12),

R (H*+»»EOE)=H*+!1EOE+5(c'0(PE)+cz(!1E)Oz) .

(7 5)
Substituting into Eq. (2. 8) yields the differential
equation

) IZI

F(!»E)= '," Z (n 1). (!1'E/pa)"+c, exp(- pa!3 ) .E3
(7. 17)

The exponent yE for the operator OE in the F model
vanishes. Lieb has obtained an asymptotic series
for the free energy of the F model around the criti-
cal temperature. Approximating the coeff icients
8 and E in Eq. (16) of Ref. 7 by their asymptotic
values

1)In1 2(2n) E ( 1}n 4 (2n) '

(7. 18)
and neglecting 1 against E2„, the expansion for the
free energy of the F model reads

F~Z (2n —1)!(C»»z)", (7. 19)
in which c is a constant. Therefore, this expansion
is neither of the type (7. 13) nor (7. 17). We attrib-
ute this discrepancy to the occurrence of a second
operator O„with vanishing exponent y.

has the solution

Fo= exp(-P»/» E)» E"P(»), (7 8)
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A new method is developed to treat the problem of the antiferromagnetic ground state. Start-
ing with an approximate perturbation theory, a functional form for the ground-state wave func-
tion is found. This functional form is used as the basis for a variational calculation. The pres-
ent calculation is specialized to the case of spin 2 but can be generalized to higher spin. From
this calculation the ground-state energy and spin deviation are found for several lattices. An
advantage of this method is that it yields an explicit wave function for the ground-state quanti-
ties. A comparison between this method and previous techniques is also presented.

INTRODUCTION

Several methods have been developed to treat the
problem of the ground state of an antiferromagnet.

Spin-wave theory' was one of the earliest of these.
A calculation by Marshall in which he enumerates
all states of a local cluster and performs a varia-
tional calculation has given good results. A similar


