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An induced moment system containing a substitutional impurity is studied using the Green's-
function method in the random phase approximation. All the ions are assumed to have a singlet
crystal field ground state and a singlet excited state. We focus our attention on the paramagnet-
ic phase, without local polarization, in this paper. Two s-type modes are predicted in a lattice
with only nearest-neighbor exchange interactions. The energies of the impurity modes have

been calculated as functions of the impurity parameters and the temperature for a simple-
cubic lattice. Similar to an ordinary impure magnetic system, local modes can appear above
the energy band of the host and/or in the energy gap. The spectral weight function at the im-
purity site is discussed. Local susceptibilities, which are proportional to the temperature-
dependent part of the NMR Knight shift, are calculated and compared with predictions of the
molecular-field theory. The experimental situation is also reviewed.

I. INTRODUCTION

The problem of the effects of impurities in mag-
netic spin systems has been an active field of study
in recent years. In particular, the localized exci-
tations, the magnetization at the impurities, and
the effects of impurities on the spin-wave spectrum
of the host crystal are the central topics of discus-
sions for impure magnetic insulators. ' They are
of interest both theoretically and experimentally,
as the measurements of these quantities provide
valuable information on the interactions of the im-
purity ions with the host ions. In this paper, we
examine an induced moment system containing a
substitutional impurity. Along with the behavior
similar to an impure ordinary spin system, we also
note the interesting features unique to the impure
induced moment systems.

Induced moment systems with a singlet crystal-
field ground state have been discussed by Tram
mel and Bleaney' in the molecular-field approxi-
mation, and by Wang and Cooper using a Green's-
function method. It was shown that for rare-earth
compounds with a singlet crystal field ground state
for the rare-earth ions, the exchange interaction
between neighboring ions must exceed a certain
critical value relative to the crystal field to have
magnetic ordering even at zero temperature. The
magnetic moment which then occurs is essentially
an induced moment corresponding to the Van Vleck
susceptibility, where the exchange field takes the
place of an applied magnetic field. When the ex-

change is less than the critical value the system
is paramagnetic, as is a system with larger ex-
change above its critical temperature. Collective
spin-wave-like exciton modes have been predicted
in the ordered phase as well as in the paramagnetic
phase. " Indeed, a large dispersion in the exci-
ton energies in the paramagnetic phase has been
observed recently by neutron inelastic scattering
on praseodymium single crystals.

In this calculation we consider an impure induced
moment system in the paramagnetic phase. This
requires not only that the pure host be a paramag-
net, but also that the impurity be either a nonmag-
netic ion or an ion with a nonmagnetic crystal field
ground state. For the latter case we also assume
that the local self-polarization centered at the im-
purity does not occur. 'o Localized excitations and
local susceptibilites are of special interest as they
are accessible to experimental measurements.
Neutron inelastic scattering and Rmnan scattering"
are the well-known techniques used to probe the
localized excitations of an impure system. Specif-
ic-heat measurement can also be a possibility,
especially when the localized modes occur in the
energy gap (as will be discussed later). To mea-
sure local susceptibilities, NMR or Mossbauer
techniques can be used.

A method of thermal Green's functions is em-
ployed for the theoretical calculation. To simplify
the algebra, we assume that each ion can be repre-
sented by a two energy-level system. That is,
in the crystal field, each ion has a singlet ground
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state and a singlet first excited state; all other en-
ergy levels have much higher energies and can be
neglected in our discussion. The pseudospin for-
malism of Wang and Cooper~ is used and the
Green's functions of interest are calculated in the
random phase approximation. The explicit results
are presented for a simple-cubic crystal with ex-
change interactions only between an ion and its
nearest neighbors. These simplifications will ob-
viously not allow a detailed study of the real crys-
tals but the qualitative features of the problem will
not be greatly affected. Only a single impurity is
considered; this is a good approximation when the
impurity concentration is small and the irapurities
are largely isolated from each other. Finally, we
require that the thermal average of the z compo-
nent of pseudospin (S& &, which measures the popu-
lation of elementary excitations at a given site j,
differs from the pure-crystal value only at the im-
purity site. That the perturbation due to the im-
purity ion is localized has been discussed by many
authors. This approximation enables us to solve
for the Green's functions within the small cluster
consisting of the impurity ion and its nearest-
neighbor host ions.

With these assumptions we find that the only pos-
sible impurity modes are of s type, and they may
appear abovethe host energyband and/or in the gap,
depending on the impurity-host exchange-coupling
strength and the impurity crystal field energy-
level splitting. The energy of the local mode is
calculated as a function of the impurity parameters
and temperature. This local-mode energy greatly
affects the population of excitations at the impurity
site and therefore the susceptibility of the impurity
ion. The temperature dependence of the local sus-
ceptibility of the impurity in the present Green's-
function theory is then compared with the molecu-
lar-field calculation. In Sec. II we formulate the
Green's-function theory for the two-level induced
moment system containing a single impurity which
can also be represented by two energy levels. The
localized impurity modes are discussed in Sec.
III. Section IV contains the numerical results for
the energies of the local modes and the local sus-
ceptibility at the impurity site. A discussion of
the experimental situation is also included. Nu-
merical calculations of the pure-crystal Green's
functions are described in the Appendix.

II. GREEN'S-FUNCTION FORMALISM

The Hamiltonian for the induced moment system
containing a single impurity at the origin of the co-
ordinates, with only nearest-neighbor exchange
coupling between magnetic ions, can be written

H = Z, V„—8Z, Z, J, ' J, ,~
—2 (,'Jo —8 )Ze JO ~ Je,

(2. 1)

where V„ is the single-ion crystal field potential
at site l, which gives a singlet, ground state and a
singlet excited state separated by an energy gap A

for the host ions and an energy gap ~p for the im-
purity ion. As the impurity is introduced into the

lattice to substitute for a host ion, we assume that
the crystal field is not affected appreciably even for
the host ions around the impurity. 9 and Pp are,
respectively, the host-host and host-impurity ex-
change-coupling parameters. J, is the to~al angular
momentum of the ion at site l and g represents a
vector directed from an ion to one of its nearest
neighbors.

As discussed in Ref. 10, local self-polarization
can occur as the impurity (even if it is an ion with

singlet crystal field ground state) is added to a
paramagnetic host crystal. To recapitulate the
results, let 10„&and ll„& be the two singlet crys-
tal field energy states for the ion at site l. In the
presence of exchange interaction, the molecular-
field eigenstates for ion l can be written

10i &=cos8il0.i &+stn8ill. ), (2. 2a)

ll, ) = -sin8,
l 0„)+ cos8,

l 1., ), (2. 2b)

tan28q= Q J~ .
ZQp

(2. 3b)

Here we have defined A —= 4g zn /n and Ao= 4/~no/
zp, where z is the number of nearest neighbors of
an ion, and n and op are the matrix elements of
J' between the crystal field ground state and excited
state for the host ions and the impurity ion, re-
spectively. J, denotes the thermal-averaged value
of the z component of the total angular momentum

J, , and z, , is the Kronecker g function. The J,
in Eqs. (2. 3) are to be determined self-consistently.
At zero temperature,

(2. 4)

Combining Eqs. (2. 3) and (2. 4), we obtain

2-„gyp
Jo= —Ao(Z J, ) 1+ —AOZ ~

Z 6 Z
Q QQ

(2. 5a)

-AZz „~ ~ —o)
I g A

1 J, 9AJx 1+ -AZ "' +a —-a
Z 6. Q pg Z Q

6+6' 40 (2. 5b)

where

too21= —Z ,J...~ -o —r)Z, Z o, , for l ~ D,
A

6 6

(2. 3a)
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G„(o) = —Z (1 —Ay„)-& .1
N -„

(2. 7)

Here the summation is over the first Brillouin
zone of the lattice; N is the total number of atoms
in the crystal, and y& is defined in the usual way,
y„-= (1/z) gp

e'»' P. Equation (2. 6) can be rewritten in
another form, which displays the impurity param-
eters of the system,

(
boa, '

~a 1
n 1- [G(O)]-' (2. 8)

For the finite-temperature case, we need only to
redefine A and Ap in Eq. (2. 6) as

A = (4@zap/ 6) tanh(&/2kzT)

1 2 -1/2
g = —A(Z J, ) 1+ —AZ "' (for 1&0, 5) .z, " z, n

(2. 5c)

For our case of interest, the pure-host crystal is
an induced moment paramagnet. Thus we take
A & 1 and there is no long-range magnetic ordering. '
The local self-polarization can occur, however,
and the criterion for its occurrence must be con-
sidered. This has been presented in Ref. 10, where
a, classical Green's-function method similar to
that used in the impurity problem of a harmonic
lattice'P'P was adopted to solve the Eqs. (2. 5)
near the critical point at which the local self-po-
larization vanishes. The criterion for the local
self-polarization is, in molecular-field theory, '

A =(4/4 ) A/(1 [G(0)I (2. 6)

where

(2. 1o)

G;, (f) = —fe(f) &[s;(f),s, (o)] )-=«s;(f); s;(o) )),
(2. 11)

G;, (f) = -fe(f) & [s, (f), s;(0)] )-=«s;(f); s, (o) )),
(2. 12)

where 8(t) is a unit step function and the canonical
thermal average is indicated by the single angular
brackets.

To calculate the Green's functions, we use the
equation-of -motion method. The higher-order
Green' s functions are decoupled in the random
phase approximation,

« s;(f)s' (f); s;(o)» —
& s; ) «s.'(f); s;(o)» .

(2. 13)

changes Eq. (2. 9) by replacing the ratio of the
population factors, tanh(n/2kp T)/tanh(np/2kp T),
by the corresponding Green's-function result. To
ensure that the local self-polarization does not oc-
cur we choose the ratio of 8pap/8n to be less than
the critical ratio for a given np /n ratio and pa-
rameter A of the host crystal.

Following Wang and Cooper we introduce the
pseudospin S=-,' for each ion. We assign S'=-,' to
the molecular-field ground state (the crystal field
ground singlet here) and S'= ——,

' to the excited
state. The Hamiltonian, Eq. (2. 1), in the pseudo-
spin variables is then

H= —nels)+(np —a)S(') —4 go Z ZS",S*, p
r

—8o.(Apap —Pa)spg S", .
6

We consider the following Green's functions':

Ap= (4alpzcPp/4 ) tanh(&, /2k T)

Equation (2. 8) then becomes

(
J pnp ~n tanh(a/2k p T) 1

go, n tanh(np/2kz T) 1 [G(0)1

Here G„(0) is evaluated at

A = (4gzn /a) tanh(n/2kz T) .

(2. 9)
IO.O

8.0

6.0

A plot of (/pop/8n) vs np/n for various values of
A is shown in Fig. 1 for a simply-cubic lattice at
T=O. The same figure can also be regarded as a
Plot of (Jpap/8n) vs [nptanh(n/2kp T)]/[ntanh(np/
2kp T)] for finite T. This then enables one to find
the critical temperature at which the local self-
polarization vanishes. It should be noted that
Eq. (2. 9) can be easily generalized to account for
cases where the excited state is a multiplet instead
of a singlet. A more accurate criterion taking in-
to account the excitation waves in the system can
be obtained as the condition for the vanishing of
the energy of a local mode (calculated later). This

4.0

2.0

I .0 2.0

FIG. 1. Plot of (r9p&p/J&) vs bp/4 of the critical con-
dition for the onset of local self-polarization predicted by
the molecular-f ield approximation. A simple-cubic lat-
tice is assumed. The curves are labeled by the host param-
eter A. Local self-polarization occurs in the region
above the corresponding straight line.
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'9
&, (t) —= Gt, (t)+ G&&(t) (2. 14a)

Then the equations are solved in terms of the com-
bined Green's functions,

Noticing that the left-hand side of Eq. (2. 19) is
identical to the left-hand side of a corresponding
equation for the pure-crystal Green's function
g„', we can express8, ', in terms off f/".

8„(t)-=G;, (t) —G„(t) . (2. 14b) Q(l —
( g) 1+ g f(Tgl

b,
(2. 2i)

&&~ ((So )Bor&(,o+ (So)Bo(«o]=-
d

(2. iS)
where we have defined (I), = (I/w)(1 +E/«); for a
host ion, 8, =(I/v)(1+E/n), and for the impurity
ion, So= (1/v)(1+E/no).

g,-, is related to g,', ,
—1, F.

gt( = (S', )«, +n Q« .
i

(2. 16)

Before solving Eq. (2. 15), we recall that for a
pure crystal, that is, taking b, , =g 9~+0=8&, and
(S()= (S'), the Green'sfunctionwasfound to be

In the energy Fourier space, 9;,(E) satisfies the
equation

(E . 8()a~ (,)g . $8 ~ g, a.,
)6 CV

If z, is limited in range, being appreciable only in
the vicinity of the impurity, T» is essentially zero
outside a small cluster of iona centered at the im-
purity and the summation in Eq. (2. 21) is limited.
This enables us to solve for the g,', easily as they
are related to each other by a finite number of linear
equations. The approximation that (S', ) deviates
from (S*) (the value for the pure host) only in the
vicinity of the impurity has been fully discussed
by Hone, Callen, and Walker for a fixed spin sys-
tem. We believe that a similar argument applies
to the present system, and we shall adopt the ap-
proximation that &, = 0 for all the host ions. We
then only have to solve a set of z+1 equations.
Finally, (So)= (S*)(1+oo) is determined self-con-
sistently from g. We postpone its discussion to
the end of this section.

The z+1 equations maybe written in matrix form

(Ss)(Ep t) ) sfo ~ (i-I&

vN o E —Eo
(2. Isa)

Mg'=X,

with the solution for 8' as

g'=M X

(2. 22)

(2. 23)
E-= n (1 —2 (S')Ayo) (2. 1Vb)

gives the dispersion relation of the collective exci-
tation modes in the pure crystal. To solve for the
perturbed Green's function g,', we first define

Here g' is a 1 by z+1 matrix, M is z+1 by z+1,
and X is z+1 by 1. The explicit form of M can be
obtained from Eqs. (2. 21) and (2. 20). Equation
(2. 23) can also be written

q, = (S;)/(S') —1, (2. 16) + (- 1)' "Minor(Mq()
detIMI

(2. 24)

E 1, Sion (S') g, T„ (2. IO)

where (S') is the value in the pure crystal (or the
value for an ion at long distance from the impurity
in an impure crystal) Equati. on (2. 16) can be
written

where the summation is over the z+1 sites centered
at the impurity. The impurity modes are at the
poles of Q« that are not common to Q„', i.e. , they
are given by the zeros of detl Ml. To find these
zeros we first utilize the symmetry of the impurity
cluster to block diagonalize M. This can be ac-
complished by a unitary transformation

where the impurity term T« is
M =v Mv . (2. 26)

1 1—T„= (S') (1 ~ e, )(l, a„~, ~-1)a, s();,

Z' z, 84~' . SA~'

1 4,ego, )+&),ogsi 1+q& ~ 2 20
eJ

Since det I M'I =detI M I, the zeros of det I MI are
correctly given by the zeros of the determinant of
the block-diagonalized matrix M'. Furthermore,
the unitary matrix v reveals the symmetry proper-
ties of the various impurity modes. To exhibit the
explicit results, the crystal structure must be
specified. We choose the simple-cubic lattice for
this calculation. The unitary matrix v is then'
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o 0 0 0 0 0 (S'). For spin -'„S'=-,'-S S; so we seek

p = (y2)-'/3

0 2

0 2

O 2'/' O

O 2"' O

61/8 31/2

0 —6 -3 —1

0 2i/a 6i/3 0

p 21/2 61/ 2 p

0 21/2 p 61/8 0

O 2"' O —6"' o

(S,') = —,
' —(S,S;) (2. 32)

I (&w)~o(Sp)= —,'+v»g&, r . dE .-1 (2. 33)

The correlation function (S S') can be expressed
in terms of G' which is related to g' by Eq. (2. 14);
finally o) is related to g' by Eq. (2. 16). We obtain,
at temperature T,

g" = (M')-'X',

where

9"=v 8'

(2. 27)

(2. 26a)

X'=v X

The explicit expressions of M' and X' are

Moo= —So& ~oo+48&oaon~ 'pa+

M,', = 6(6)"'&j,8 'g~, -

f/2 0+0 g& g& gO+io- g 0 ~

Mqq = 1+48(yjoS Bo, ,

M(( =1 (ill)
&

M((. = 0 (i»i'& i& i' &I)
&

(2. 26b)

(2. 29a)

(2. 29b)

(2. 29c)

(2. 29d)

(2. 29e)

(2. 29f)

where

2 2 2 2ho-E g, 6 —E' n (S'& '
& (S'&

j()=goao(1+ co) 8n . -
It can be shown easily that

(2. 26)
which consists of two basis vectors of s symmetry,
three of p symmetry, and two of d symmetry. The
matrix equation (2. 22) in the new coordinates is
then

RedetIM'I = D~qDu=0, (3 1)

where D~ = M,', (i = 2, 3, 4), D, = M,', (i = 5, 6), and

'Ihe explicit expression for goo will be given and
discussed in Sec. III, as its structure depends on
the energies of the impurity modes. It is interest-
ing to note that the contribution of the integration
for negative energy in Eq. (2. 33) gives the zero-
temperature pseudospin deviation similar to the
phenomena in an ordinary antiferromagnet or that
of a pure induced moment system discussed in
Ref. 6. The integrand of Eq. (2. 33) involves
(Si), hence this quantity must be determined
self-consistently. A numerical calculation of ($$)
for various temperatures and values of the impuri-
ty parameters is given in Sec. IV.

III. IMPURITY MODES AND LOCAL SUSCEPTIBILITIES

Similar to the ordinary ordered magnetic systems
containing impurities, ' an impure induced mo-
ment system exhibits local modes outside the exci-
tation wave band or resonance modes in the band.
The local-mode energies are given by the zeros of
detiM'I, as shown in Sec. II, and M' is pure real
in this case. On the other hand, at a resonance-
mode energy, the pure-crystal Green's functions,
and hence M', have both real and imaginary parts.
The energy of the resonance mode is given approxi-
mately by Redet I

M'
I =0, with the imaginary part

defining a width or lifetime of the excitation due
to the presence of nearby host states into which it
may decay. (A more detailed description of the
appearance of resonance modes has been given by
Wolfram and Callaway. ') Thus, for both cases we
find the energies of the impurity modes by taking

8,",=46 a «'Sm+&) ~

48/ n (2. 31)
I I

D =det Moo M
M M (3. 2)

Therefore we need only calculate a single host
Green's function g~ numerically to find all the
matrix elements of M'. This is true only in the
present approximation of zero range in q, . The
impurity-mode energies and symmetries can now
be obtained from det f M I and the matrix v and will
be discussed in Sec. III.

We turn now to a discussion of the calculation of

The components of M' are given by Eq. (2. 29). We
see that D~ = D, = 1, so that there are neither p- nor
d-type impurity modes in our model. There may
be s-type resonance or local modes, depending,
respectively, on whether the zeros of Reo, fall
inside or outside the host-excitation-wave energy
band; two s-type modes are predicted. It should
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Im($ g' )= —v$, Re($ 'g

where

E( ( e«, ) e—eIReD ) ) eg (e(i' —g')d
~dE 0

(s. 8)

e=('; )'(s:&~('& (3. 8)

for E outside the host energy band, where the sum-
mation is over the s-type local modes. The real
and imaginary parts of D, are

be noted that, in fact, the above discussion can
be shown to be true for a general lattice.

The energies of impurity modes of s-symmetry
are given by the vanishing of ReD, It. can be writ-
ten in the following form, revealing clearly the depen-
dence of the energies on the impurity parameters
phono/9n and ro/r"

(' )': ('--') --:.(+--.")
x nv ~oo ~o&o (So)

1+E/n (S') ga (S')
The fact that the exchange-interaction parameters
J and go enter the equation as squared quantities
shows that the exchange couplings can be either
ferromagnetic or antiferromagnetic and the s-type
impurity modes will appear at the same energies.
(The relative phases of the pseudospins of the im-
purity and its set of nearest neighbors will be in-
terchanged as the sign of the ratio 9oc(o/gn is
reversed, as discussed in Sec. IV. ) We note that
by setting E= 0 in Eq. (3. 3), we easily recover
the self-polarization criterion, Eq. (2. 9), with the
self-consistently calculated ratio (S*)/(So) re-
placing the corresponding molecular -field approxi-
mation result. The ratio (S') /(So) is not unity
in general even at T = 0 because of the different
zero-point fluctuations on the host and the im-
purity ions; this is in contrast to the molecular-
field theory as shown in Eq. (2. 8).

We see that (S') and (So) are required in order
to determine the energies of the impurity modes.
(S') depends only on the pure-host crystal and its
calculation has been given by Wang and Cooper. ~

(So) is obtained from expression (2. 33), where
Im($o8) has the form

Im($() goo)

$o (So ) [-Re($ 'go(&) ImD. +Im($ '9(t(t)ReD, ]
(S') (ReD,)'+ (ImD, )'

(3.4)
for E in the host excitation wave band and

ReD, = (q$' —$o) Re($ 'got))+7),

ImD, = (g$' —$o) Im($ 'go(t) .
(3.7a)

(s. 7b)

As it is clear that the local-mode energies depend
on (So ), which in turn depends on the local-mode
energies, a self-consistent procedure is necessary
to determine both quantities simultaneously. The
numerical work and a quantitative discussion are
presented in Sec. IV.

The quantity (So ), which measures the population
of excitations at the impurity site, is related to the

local susceptibility at that site. This is of interest
as the local susceptibility can be measured by NMH

or Mossbauer techniques. In the present approxi-
mation it can be shown that the susceptibility of the
impurity ion is

Xo=2(So)(AoXgolg'+2goPac(o/no) e

where y is the susceptibility of a host ion,

(s. 8)

2z o z 2(S')
1-2(S') ' (s. 9)

and g and go are the Landb g factors for the host
and impurity ions, respectively. Measuring the
suscePtibilities in units of 2g Poonz/n, we rewrite
Eq. (3.8) as

B+ 2 g g ~+ gJ} 0&Q

2A(S')
1 —2(S )A g

(s. 10)

This expression shows that yo depends on, in addi-
tion to the impurity parameters characterizing the
impurity modes, two more impurity parameters
no/n and g, /g.

IV. NUMERICAL RESULTS AND DISCUSSIONS

The Green's functions describing the behavior
of a two-level induced moment system containing
a single two-level impurity have been calculated in
Secs. II and III. In this section we select explicit
examples to demonstrate the various impurity ef-
fects. Possible experiments are also discussed.

We choose for the host crystal a two-level in-
duced moment system with A =49za /6 =0.993.
This is a close approximation to praseodymium,
as this crystal may be a suitable paramagnetic
host. The dispersion of the excitation wave ener-
gies has been found to be large and no magnetic
ordering has been detected by neutron diffraction
experiments on a single crystal Pr. In reality,
praseodymium has a more complicated structure;
residing in a double-hexagonal close-packed lattice,
half of the Pr ions have local environment of cubic
symmetry and half have hexagonal symmetry. The
two-level model in the present theory applies only
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to the ions of hexagonal sites. As we are not at-
tempting a detailed study of any particular crystal,
we will remain with the simplified model to avoid
the formidable algebra.

The calculations of impurity-mode energies and
of (Sp ) for a specified host crystal require the two
impurity parameters 8pnp/Ao and np/n. As dis-
cussed in Sec. III, local-mode energies and (Sp)
are mutually dependent on each other and need to

FIG. 2. Local-mode energy as function of go&0/9&.
The curves are labeled by the parameter /& and temper-
ature T/&. The host parameter A = 0. 993. The dashed
lines, labeled by temperature T/4, indicate the edge of
the energy band of the host. (a) Local modes above the
energy band. (b) Local modes in the gap.

be determined simultaneously. We first calculate
(S* ), which depends on the pure-crystal parameter
A and the temperature measured in units of b„
the crystal field splitting. Re/00 for energies out-
side the host energy band and Re/00 and Imgoo for
energies in the band are then calculated. Energy
derivatives of Ref~a are calculated for energies
outside the band for use in computing the contribu-
tion to the integration of Eq. (2. 33) due to the local
modes. The integration is done using Simpson's
rule. A value of (Sp) is chosen to start the pro-
cess, and a new value of (Sp) is obtained after the
process. Using the new value as the intial one,
the process is repeated until a chosen convergence
criterion is satisfied. The local-mode energies are
obtained at the sa,me time. Figures 2(a) and 2(b)
show the local-mode energies as a function of ratio
of impurity-host to host-host exchange interactions
for various values of np/A and temperature. Fig-
ure 2(a) shows local modes above the energy band.
This occurs when bo is close to or greater than the
top of the host energy band. We recall that a limit
has been imposed on the ratio /pop/gn so that
local self-polarization does not occur. This pre-
vents the impurity mode from lying above the en-
ergy band for small values of zo. However, it is
seen that as temperature increases the top of the
band as well as the local-mode energy is lowered,
but the latter is less affected. It is therefore pos-
sible for an impurity mode to split off the energy
band as temperature is increased, a phenomenon
similar to that predicted for an ordinary impure
spin system. This is also true when the energy of
the impurity mode is close to the bottom of the
energy band; an impurity mode in the gap can split
off from within the band as temperature is in-
creased. The effects of a change of the impurity-
host coupling on the energy of a local mode above
the band is, however, opposite to that on the energy
of a local mode in the gap shown in Fig. 2(a). As

8pap /ga increases the energy of a local mode above
the band increases while the energy of a local mode
in the gap decreases. This can be explained in a
semiclassical picture of precessing pseudospins.
(For an ordinary magnetic spin system, see Shiles
and Hone. ") Evaluation of the matrix elements
Mpp Mpg & M(p &

and M&& of Eqs. (2. 29) shows that
for ferromagnetic impurity-host exchange coupling
the impurity pseudospin is 180 out of phase with
its nearest-neighbor pseudospins for the above-band
local modes and exactly in phase for the gap local
modes. The opposite picture holds true for an anti-
ferromagnetic impurity-host coupling. In either
case an increase of the magnitude of g pop/gn drives
the local-mode energies away from the host energy
band as shown in Figs. 2(a) and 2(b). It is also to
be noted that although only one localized mode oc-
curs in each case shown in Figs. 2(a) and 2(b), it
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FIG. 3. Spectral weight function Im900/6 ' inside the
energy band (T/4=0. 02, A =0.993). Curve P corresponds
to a pure crystal. Curve A shows the effect of reduction
of impurity-host coupling. Curves B and C are cases when
local mode occurs. There is a local mode above the band
at 1.Vb for B and a local mode in the gap at 0.114 for C.

to go=1. 50 and poco=2. 25gn, a case where a local
mode occurs above the energy band at F. = 1.7s.
(The 5 functions for local modes are not shown in
the figure. ) The large impurity-host coupling,
which is near the limit imposed to restrain the
system in a paramagnetic phase without local self-
polarization, has shifted the local mode from 1.5z
(when 80no = 0) to 1.Vn, and at the same time pushed
a large portion of the spectralweight inside the en-
ergy band to the bottom of the band. An increase of
temperature and/or Jouo will enable an additional
local mode to split off and appear in the gap as
mentioned above. Curve C corresponds to a case
with a local mode in the gap. The impurity crystal
field splitting has been chosen to be just below
the bottom of the band [60=0.2n, see Fig. 2(b)].
The large impurity-host coupling (!)Oo'0 = 0. 88n)
which shifts the local-mode energy to 0. 11~ has
not been able to push the spectral weight too much
from the bottom of the band.

Because of the fundamental role (Sa) plays in the
impurity problems, we show, in Fig. 4, its tem-
perature behavior for a few representative cases.
The dashed curve representing (S') for apure crys-
tal is included for comparison. Solid curves A1 and
A2 describe the cases when a local mode is above
the band. We have taken Ao= 1.5~ for both curves
but ~pro=0 for A1 and ~o&o=2 25gn for A2. When

Qpno = 0 the zero-point excitation fluctuation van-
ishes and (So)=0. 5 at T=0. At finite temperature,
it is given by

is by no means true that the other impurity mode
always resides in the energy band. It is possible
for two local modes to appear in a system, one
above the energy band and one in the gap. In this
connection we examine the "spectral weight func-
tion" Imgoo in Fig. 3. This quantity is not only
indispensable in the calculation of (So ) and the
impurity-mode energies but also used along with
the other Green's functions in determination of the
cross section for neutron inelastic scattering on
the impure system. We have plotted only the
positive-energy portion of the spectral weight func-
tion. The negative-energy portion which gives rise
to zero-point excitation Quctuations is small and is
only important at very low temperatures. The
dashed curve corresponds to the pure crystal (i.e. ,
kp= 6 oloQO= AQ) at T/n = 0.02. It shows the well-
known Van Hove singularities. Assuming that the
crystal field splitting of the impurity is the same
as that of a, host ion but the impurity-host coupling
is reduced by a factor 2 from the host-host coupling,
the spectral weight becomes narrowed, centered at
E = b, as shown in the same figure by the solid curve
labeled A. As expected, it develops into a 5 func-
tion as 4ono approaches zero. Curve B corresponds

a result identical to that using the molecular-field
approximation even in the presence of impurity-
host coupling (i. e. , Aonov0), in the paramagnetic
state. Thus, comparing A2 with Al one sees the
effects of the excitation waves calculated in the
present Green's-function theory. As discussed
previously in this section, the impurity-host cou-
pling drives the local mode above the band to a
higher energy and at the same time introduces
spectral weight inside the band (for both positive
and negative energy). The effects are: At low tem-
peratures, appreciable zero-point excitation Quc-
tuations reduce (So) from saturation; at high tem-
peratures, the decrease of (So) is slowed down be-
cause of a higher-lying local mode. Curves 81
and 82 represent cases with a local mode in the
energy gap. ~o=0. 2h for both curves, but goo.o
=0 for Bl and gono=0. 8gcy for B2. Similar argu-
ments can be applied to understand the behavior.
However, here B2 decreases more rapidly than B1
at T- bo as the impurity-host coupling drives the
local mode to a lower energy when the local mode
is in the gap.

Local susceptibilities can be obtained from (So )
and (S') according to Eqs. (3.8)-(3.10). Figure
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FIG. 4. (So) as a function of temperature. Curve P,
the dashed line, for a pure system is also included for
comparison. The effects of the impurity-host coupling
are shown. The impurity parameters (no/n eIpno/aTn)

for Al are (1.5, 0); A2, (1.5, 2. 25); B1, (0, 2, 0); and

B2, (0. 2, 0.8). Comparing A1 withA2 or B1 with B2,
one also sees the effects of collective waves, as Al and
B1 would be the results of neglecting the effects of col-
lective excitations should there be finite impurity-host
coupling (in the paramagnetic phase).

5 shows the temperature behavior of go in units of
2iis g n/d, the susceptibility of a host ion at Z'= 0
in the absence of exchange interaction. Ne have
chosen gona=0. 5gn, no= a, and go=g for our il-
lustration, and the curves are labeled by nc /n.
The dashed curve represents the susceptibility of
a host ion. ho= 0. 2b, is a case where a local mode
exists in the gap, while for ~=1.56 and b,~=2. 0~
there are local modes above the energy band.
= A is a case with no localized modes. A compari-
son with the molecular-field theory is shown in
Fig. 6 for ~0=0.2~ and+=1. 5b, . The susceptibil-
ities calculated in the Green's-function theory are
substantially lower. This is because in the molec-
ular-field theory collective motions and short-
range correlations are neglected. The error with
the molecular-field theory is more serious the
closer the exchange interaction of the host crystal
ions is to the condition for magnetic ordering.
In the same figure we also show the effects of the
variation of impurity-host coupling by keeping ne
constant. It is interesting to note that, from Eq.
(3.10), for negative Acne/gn, the local susceptibil-
ity at the impurity site ge can be negative at low
temperatures. This is possible when the first
term in the parentheses is greater than the second
term. It eventually becomes positive at high enough
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FIG. 5. Local susceptibilities at the impurity-ion site
as function of temperature. This is directly proportion-
al to the temperature-dependent part of the Knight shift
observed in NMR. Here we show the effects of changing
nv/n with constant ratio 80no/gn The curv.es are la-
beled by the value of no/n. The dashed curve shows the
temperature behavior of the local susceptibility of a host
ion.

temperature.
In conclusion we remark on the experimental

situation. There has been considerable increase
of interest in induced moment systems recently.
Praseodymium still appears to attract most of the
attention. Specific-heat and susceptibility mea-
surements'6' have been done on the powdered sam-
ples of Pr. Based on these, Bleaney" determined
the crystal field energy-level schemes. He con-
cluded that all Pr ions have a singlet crystal field
ground state and that while a singlet first-excited
state is predicted for ions on the hexagonal sites,
the first-excited state for ions on cubic sites is
a degenerate triplet. This, however, does not pre-
vent the use of the present theory on the system in
the paramagnetic phase, since the energy gap of the
singlet and the triplet of the cubic ions is much
larger than that between the two singlets of the hex-
agonal ions; the collective wave effects on the prop-
erties of a cubic ion will not be appreciable because
of the existence of a large energy gap in the excita-
tion wave spectrum. On the other hand, because
of the fact that the exchange interaction between Pr
ions is close to the ordering criterion, the collec-
tive wave will greatly affect the properties of the
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FIG. 6. Local susceptibilities at the impurity site as
calculated by Green's-function theory (solid curves) are
compared with those calculated using the molecular-field
approximation (dashed curve). The effects of varying im-
purity-host coupling are also shown.

hexagonal ions. Indeed, neutron diffraction ex-
periments' performed on polycrystalline Pr showed
a rather complex antiferromagnetic structure with
comparatively small ordered moments. Our theory
developed in this paper therefore can only be ap-
plied to the polycrystalline Pr above its ordering
temperature (-25 'K). On the other hand, neutron
diffraction on a single-crystal Pr shows that it is
paramagnetic, and furthermore, neutron inelastic
scattering shows a large dispersion in the energies
of the collective excitations on hexagonal sites and
a large energy gap for the waves on the cubic sites.
Hence single-crystal Pr provides an ideal example
for the present theory. 'Ihe impurity can be chosen
from other rare-earth ions with integral J, as it
was observed that the crystal field ground state of
their compounds of NaCl structure with Group-V
elements is generally a singlet. a' In a more de-
tailed calculation for Pr of double-hexagonal closed-
packed structure, while Green's-function theory of
this paper should be applied to the ions on hexagonal
sites, a molecular-field approximation is sufficient
for ions of cubic sites. To alter the situation a
little, it is to be noted that very recent susceptibil-
ity22 and magnetization measurements~3 on single-
crystal Pr show a large anisotropy opposite to that
predicted by Bleaney's theory with an isotropic
exchange interaction. It has been suggested by

Rainford that the crystal field energy scheme of
Bleaney is not correct. While the ground state of
the ions remains as a singlet, the first-excited
state of the ions on hexagonal sites may be a
doublet instead of a singlet. There are many more
rare-earth compounds, as the rare-earth Group-V
compounds mentioned above, which can be used as
host crystals for experimental study. The crystal
field energy scheme is, however, in general,
singlet-triplet instead of the simple singlet-singlet
configuration. While the simple calculation is not
applicable to account for the quantitative behavior,
many of the qualitative features predicted here
should remain.

As mentioned in Sec. I, it appears that neutron
inelastic scattering is the most valuable technique
in studying an impure induced moment system.
Temperature variations of the local-mode energies
along with temperature and impurity effects on the
excitation wave energy band can be studied and

compared with the theory.
NMR can be performed at the singlet ground-state

ions in the paramagnetic state because the complete
quenching of the ionic moment destroys the effective
hyperfine field felt by the nucleus as discussed by
Jones. ' Indeed, Pr' ' and Tm' NMR in the para-
magnetic compounds PrP, PrAs, TmP, TmAs, and
TmSb have been observed and giant Knight shifts
reported. ' Since the temperature-dependent part
of the Knight shift is proportional to the local sus-
ceptibility of the ion, this technique can also be
useful in studying such impure induced moment sys-
tems as Tm-Pr-P mixed crystals, etc. Observing
NMR in the anions may provide indirect information
about the local susceptibilities at the impurity- and
host-ion sites. Such experiments for ordinary mag-
netic systems with impurities have proved fruitful.
Mossbauer techniques, on a similar basis, may
also be employed to measure the local susceptibil-
ities and their temperature variations. The bulk
susceptibility of an impure system could reveal
some of the collective wave effects if the tempera-
ture and impurity-concentration dependence of such
a quantity are analyzed. Bulk susceptibilities of
the Pr-La system with variable La concentration
have been measured. A theoretical consideration
of this particular induced moment system with
vacancies will be given in a separate publication.

Finally, we mention that specific-heat measure-
ment can also be a possibility in obtaining informa-
tion from the impure system, especially when
there is a local mode in the energy gap. A low-
temperature anomaly characterizing the local
mode could then be observed.

Note added in manuscript; P. Fulde and
I. Peschel [Z. Physik 241, 82 (1971)]have dis-
cussed some of the topics of this work using a re-
lated method.
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(S') 1
vN(E —n) „-1+II„-(E) ' (A1)

where Q(E)=2A( S') ny~/(E —n ). This expres-
sion has no poles for energy F outside the pure-
crystal excitation energy band, so that at these
energies the part under the z summation may be
expanded in a simple series in powers of II-„(E)
[I Q„(E) I is always smaller than unity for energies
outside the band] We obtain

go = "' Zcn00 (E n) n (A2)

where the odd-order terms are all zero, the C„are
constants, and f)=2A(S')n /(E —n'). In the cal-
culation of the results given below, we have taken
the sum to n = 20. We also calculated the energy
derivative of Qpp outside the band, using a similar
series. When the energy E is inside the band, the
simple series is no longer valid. For these ener-
gies we first convert the summation in (A2) into an
integration and perform the integration numerically
using Gaussian quadratures. 8 Employing the meth-
od of Ref. 1, we express (A2) in terms of the Bes-

APPENDIX: NUMERICAL CALCULATION OF g~

Equation (2. 17) gives the expression for g~«. We
require numerical values only for Q~p, which may
be written

sel function Zo(v), reducing the triple integral (over
the three components of g) to a single integral over

As mentioned earlier, g'„' has both real and
imaginary parts for energies in the host band
(where go; has poles):

Re/i'= d7. sin(E~)[JO(r )]', (A3)o, (s')(E+n)
~

mC

Imo)00~= d7 cos(E~)[jo(T)]', (A4)
(s' (E+n) "

"o

where C= 16/ n n. (S' ) and E = (E —n )/C. In the
numerical integration we employ 1600 six-point
quadratures, truncating the integral at z = 50, and
for Jo(T) we use polynomial expressions accurate
to 10 '. For a partial check on the results, we
have also performed the numerical integration for
some energies above the band and compared these
results with those from the series calculation; the
agreement was within 0. 01/0 for energies not too
close to the band (close to the band the series trun-
cation may contribute a large error). Another
check on the method is to calculate Imgpp above the
band using expression (A4). These values were
found to be very small compared to Re/op, as re-
quired (in an exact treatment Imgoo = 0. outside the
band}.
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