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The Cullen-Callen Hartree-approximation band model of magnetite is solved self-consistently,
and it is found that if one starts with the three-order-parameter state of Cullen and Callen, the
solution iterates self-consistently to the Verwey ordered state. A charge-density-wave-state
ordering is proposed to explain recent neutron- and electron-diffraction, magnetic-resonance,
and Mossbauer-effect experiments on magnetite, which suggest a larger unit cell than occurs
in the Verwey ordering. It is argued that the Verwey ordering could very easily be unstable to
the formation of such a state. A discussion is also given of small polarons in a degenerate elec-
tron system and applied to magnetite.

I. INTRODUCTION

Recently, Cullen and Callen have proposed that
the low-temperature insulating phase of magnetite
(i.e. , below 120'K) could be described oy a Har-
tree-approximation band model in which the Har-
tree self-consistent field does not have the full
symmetry of the lattice. ' Within such a model,
it is possible to have a Verwey-type ordering~-
that is, an octahedral-site charge density per site
which alternates between two values on adjacent
planes of octahedral sites along one of the crys-
tallographic axes called the c axis. ~'4 (See Fig. 1 in
Ref. 4. ) The octahedral-site ions, however, need
not be pure Fe'3 or Fe~ as originally suggested by
Verwey. Recent neutron-diff raction, 5 electron-
microscopy, M5ssbauer-effect, ' and magnetic-
resonance experiments have shown that the order-
ing is apparently more complicated than the sim-
ple Verwey ordering. In this paper, the Cullen
and Callen model is reinvestigated. A self-con-
sistent calculation shows that the three-parameter
ordering suggested in Ref. 1 does not lead to a self-
consistent solution of the Hartree-approximation
equations. Rather, it is found that if we start with

the three-parameter ordering, successive inter-
actions in the self-consistency scheme take us to-
wards the Verwey ordering. It is proposed that
experimentally observed deviations from the Ver-
wey state can be explained as being due to an in-
stability of the Verwey state to the formation of
an excitonic insulating state. It is further shown
that if the Verwey order parameter is chosen small
enough for the insul. ating gap to just disappear, a
gap is not produced by also introducing the two
additional order parameters suggested by Cullen
and Callen. This fact together with the self-con-
sistency calculation, which is done for larger val-
ues oi the Verwey order parameter, castdoubt on
the existence of the three-parameter ordering, al-
though it is admittedly possible that for some partic-
ular values of the three order parameters sug-
gested by Cullen and Callen, a self-consistent solu-
tion might be possible. Although no gap is intro-
duced at the point Tc = (0, 0, v/a), it is still possible
for a gap to appear at other points in the zone.
Thus, the results are not conclusive.

II. SELF-CONSISTENCY OF THE CULLEN%ALLEN MODEL

Following Cullen and Callen, we assume a clos-
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est-neighbor tight-binding approximation. In the
absence of Verwey or any other type of ordering,
the secular matrix is given by

H~q(k)=1+ e '"'~ I (1)

if & e P and H, (k) = 0 (in units of the overlap inte-

gral), where T,~ is the vector connecting the ath
and Pth sites in the unit cell (a and P take values
from 1 to 4). ' This matrix is easily diagonalized
for wave vector k in the (100}directions to yield
the energies9 c (s)

2'

ei(k) = —2,

e~(k) = —2,

es (k) = 2 —4 cos 2 ka,

e, (k) =2+4 cos —,'ka,

(2a)

(2bl

(2c)

(2d)

0-

-2"

where k goes from 0 to w/a, the Brillouin-zone
boundary of the fcc primitive lattice of Fe30,. These
energies are plotted in Fig. 1. With the Verwey
ordering we write

H..(k) =~ Um=+e„

where the plus sign is taken for @=1, 3 and the
minus sign for e = 2, 4, and where

U= Ug —U.

Here

«4 ~-

FIG. 2. Band structure for k in [100j direction with
Verwey ordering with order parameter eo= 3 (energy in
units of the overlap integral and k in units of r/a.

6

4-

2

~ 6

-4

«2

Ug =Qg V(R(+ a~ —5) —a, N),

where am P and U=g& V(R, -R&), where R& label
unit cells and 'K gives the positions of atoms in
the unit cell. V is the Coulomb interaction of elec-
trons divided by an internal dielectric constant.
The Verwey-state energies for k in the [100], [TOO],
[010], and [OTO] directions are

e, (k) = —2 cos-,' ka+ [4(1 —cos —,
' ka)~+ eo]', (3a}

em(k) = 2 cos —,
' ka-[4(1+ cos —,

' ka)~+ eo~]'~~ (3b)

0 -0 e, (k}=—2 cos-,'ka —[4 (1- cos-,'ka) +eo]' (3c)

FIG. 1. Band structure for k in [100j direction with
no Verwey ordering (energy in units of the near-neighbor
overlap integral and k in units of ~/a).

e, (k =e, -2,
e,(k}=-e,—2,

&&(k) = 2+ [e~o+ 16 cos~-,'ka]'~~

e, (k) = 2 —[e'+ 16cos'-'ka)'"

(4a)

(4b)

(4c)

illustrated in Fig. 3. We see in Fig. 2 that the
lower two bands are split from the upper two bands

e, (k)=2 cos-,'ka+[4(1+cos-,'ka) +so]' ', (3d)

plotted in Fig. 2. Along the [001]direction, the
energies are
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fg —62+ 6'3- E4U= U, —U=-
gg —tip+ Q —S4

(6)

2"

0"

-2

-4.

FIG. 3. Band structure for k in [001] direction with
Verwey ordering with order parameter eo

——3 (energy in
units of the overlap integral and in units of ~/a).

H =& = —(Uq —U)n + Uq+Nnq, (5)

where n is the fraction of an electron on the nth
site. The last term can be absorbed into the chem-
ical potential. We can find U from the following
relationship:

in this direction of k. In fact, we find from Eq.
(3) that this splitting occurs for any nonzero value
of eo In the. [001]direction, a gap occurs for eo
&2. Using the computer to diagonalize the secular
matrix at many points throughout the Brillouin zone
and comparing the energies, it was found that the
highest energy of the second-lowest band occurs at
k = (w/a) (0, 0, 1) and the lowest energy of the second-
highest band occurs all along the [001]direction
Thus, if there is any Verwey ordering with eo&2,
the bands are split throughout the Brillouin zone;
that is, Verwey ordering alone can give an insulat-
ing ground state. This does not, however, explain
the experimentally observed deviations from Ver-
wey ordering.

In order to see if the three-order-parameter or-
dering suggested by Cullen and Callen is a stable
self-consistent solution, the model was solved self-
consistently as follows: For general ordering,
the diagonal elements of the matrix are given by

The question that arises now is how to explain
the experimental data which show that Verwey
ordering is not sufficient. As in Ref. 1, we have
not discussed states in which translational sym-

TABLE I. &), E2, &3, &4 in successive interactions
(bandwidth units).

Chemical potential = 0
f2 E'3 E4

4. 700
3.5825
2. 5128
2. 8015
2. 7399
2. 7174
2. 7100
2. 7076
2. 7068
2. 7065

—1.300
—1.3250
—1.8100
—1.3068
—1.2962
—1.2945
—1.2939
—1.2936
—1.2936
—1.2936

—1.3000
—1.2748
—1.7768
—1.2930
—1.2909
—1.2926
—1.2932
—1.2934
—1.2935
—1.2935

0. 7000
1.8177
1.9003
2. 5987
2. 6729
2. 6953
2. 7027
2. 7052
2. 7060
2. 7062

We begin the self-consistent-field calculation by
giving values to e„c~, cs, and e4, diagonalizing
the matrix to find n„nz, n3, and n4, calculating
U from Eq. (6), and then using U and the n's to
find the e's again from Eg. (5). We then use these
new e's to solve the resulting secular problem
again, and then repeat the procedure. This is not
the usual self-consistent calculation because we let
U vary, but we do this because we are interested
in seeing if self-consistency is possible for any
value of U. The same procedure has also been
used with U held fixed and the results are precisely
the same. The result of this procedure (shown in

Table I) is that if we start with e's corresponding
to the three-order-parameter ordering assumed
by Cullen and Callen, ' we find that this procedure
always leads to a Verwey ordering (but with frac-
tional occupancy of the atoms). The n's were cal-
culated by diagonalizing the secular matrix at over
3000 points in the Brillouin zone, taking the square
of the absolute value of those elements of the eigen-
vectors which correspond to each atom in the unit
cell, summing it over these 3000 points in the Bril-
louin zone, and dividing by the number of points.
This number of points used was found to be suffi-
cient by repeating the calculation using twice as
many points. The result was found to be changed
by only about 0. 2%. The calculation illustrated in
Table I was done starting with Um, =2, Umz= Um3
=1, asusedbyCullenandCallen. ' In fact, for
Um, less than 2, the system is not an insulator
(see Appendix A).

III. EXCITONIC-INSULATOR INSTABILITY OF THE VERWEY-
ORDERED STATE
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X= Qe~(k) Ct C + ~r Z V~r„r(k, k, q )
a }fr k'qr

ar& 7'r6

x Ct -, C~, , C-„,„-,„Cz-Hartree-potential terms,

(7a)
where e,(%} are the one-electron energies in the
Verwey-ordered state and

2

V,r„,(k, k, q)-
I

d'r d'r g-„"-,(r) err(r)

&& 0-„',,(r')0& „-,(r'), (7b)

where gf (r) is the one-electron wave function of
wave vector k of band n and ~ is the dielectric con-
stant in the crystal. (Note that spin does not enter
the problem because in magnetite below the Neel
temperature only spin-up octahedral-site states
are occupied by conduction electrons. "} Besides
the terms shown explicitly in Eq. (7a), we must
subtract off the Hartree potential for the Verwey
state. We will now make the Hartree approxima-
tion, and these terms will cancel those terms in
the Hartree potential already included in e (k). Ex-
change-interaction terms, which occur in the Har-
tree-Fock approximation, are secondary effects in
this problem. ' The only important terms in the
Hartree-approximation potential in a discussion
of a modification of the Verwey state are the fol-
lowing, which mix the highest valence band and

metry is broken so far. If we examine the Ver-
wey ordering, illustrated in Figs. 2 and 3 as well
as Eqs. (2) or (4), we see that the gap in the z di-
rection (i. e. , along the c axis) goes to zero when
eo becomes equal to 2, whereas in the x direction
it does not. Thus, we can make the gap in the z
direction nearly zero without making the gap in
the x direction that small. Furthermore, since
the maximum energy in the higher of the tyro low-
est bands occurs at k= (0, 0, v/a), there exists the
possibility that if eo were close to 2, the Verwey
state might be unstable to the formation of an ex-
citonic- insulating or charge-density-wave state, '
with wave vector along the z axis equal to Brillouin-
zone radius in this direction. This would double
the unit cell along the z axis, which would explain
the neutron-diffraction data of Samuelson. ' Since
the lower of the two highest bands is flat in the z
direction, however, we have no a priori reasonto
believe that the charge-density wave should have
this particular wave vector; it appears that it can
have any wave vector. To determine whether this
wave vector is the correct one, we must study the
possibility of such an instability in more detail.

We start with the following many-body Hamil. -
tonian written in second quantization, which uses
the Verwey bands as a basis:

U(Q) = ~ Q V r„r(k, k, Q),
flak'

the solution is identical to that for the itinerant-
electron-antiferromagnet ground state, and we
obtain the following self- consistency conditions
for the gap parameter g of the excitonic state

t'ai 1r Pl~r

2& - (-'[e, (k+Q)-e, (k)]'+ ')'"'
(10a)

where the new energies are given by

&(r& (k}= 2 [ei(k+4)+ ez(k}]

~ (-,'[e, (%+Q) —e, (k}]'+g') '",
(lob)

where 1 and 2 denote the bands in the charge-
density-wave state. '0'~" The Q which gives the
largest U(Q} will give the largest g, and hence,
the lowest-energy charge-density-wave state. To
find this g, we note that we may write Eq. (7b)
as

V r„r(k, k, q ) = Q E r ( q + r, fc) E„,(q + r, k )

where

E~(q+r, %) = f d'r rg-, (r) e"e"v'~ger(r)

(1lb)
and 7 is a reciprocal-lattice vector. We will make
the approximation of neglecting values of 7 in the
summation for which q +7' is greater than a recip-
rocal-lattice vector since for such values of q
+r, both F and 1/~q'+7~ become small enough
for these contributions to be neglected. With this
approximation, we can easily show that

1/I q'+ r
I

=2 2a / (12a)

for q = (0, 0, v/2a), and that for q = (0, 0, v/a),

1/I q + r I' =14 4a / (12b)

Similarly we find that this quantity is smaller for
most values of q along the z axis than for q = v/a.
Near q = 0, the r =0 term diverges as 1/q, but
since ,E(qz, k) goes to zero as q ', " V actually

the lowest conduction band (call them 1 and 2):

Vr r(k k Q)(C„rCr~ )Cl~o C~
a87 6~1 r2 only

a%, y4t6

(8)
where Q is the wave vector of the assumed excitonic
or charge-density-wave state. If we make the
rough approximation of replacing V by an average
over k and k such that



4500 J. B. SOKOLOFF

goes to zero for small q . We havealsoevaluated
the quantity

TABLE III. Reciprocal-effective-mass tensor (1/m)
for Verwey state with &0=3.

for three values of Q along the [001]direction,
as shown in Table II. The values in Table II are
actually E divided by the atomic form factor, "
but the atomic form factor remains close to 1 for
Q c il/a. t4 The right-hand side of Eq. (10a) has
also been evaluated at zero temperature for g= 0.
That is, we have found

1

e, (k+Q) —ea(Tt)

TABLE II. E(Q) and (I/N)gk(l/[e~((t+Q) —et(k))) for
Verwey state with &0=2. 1, Q in [100) direction.

S'(Q)
N 1 e, ((t+Q) —stat) —: atomic form factor

0
0. 5m'/g

1.Om/gg

96.4121
96.6066
96.9071

0. 0000
0. 0312
0. 0343

for three values of Q in the [001] direction from 0
to w/a. The results are also listed in Table II.
We see that both I' and this quantity increase slight-
ly as we go from @=0 to v/a. This combined with
our evaluation given in Eqs. (12) indicates that the
Verwey state may be unstable to a charge-density-
wave or excitonic-insulating state of wave vector
(0, 0, v/a) if the Verwey-state gap is sufficiently
small, thus explaining the neutron-diffraction
data. '

The additional spectral lines found by electron-
microscopy, e M5ssbauer-effect, '8 and magnetic-
resonance experiments can be explained using a
suggestion made by Kohn. ' He proposed that the
excitonic-insulating phase might itself be unstable
against the formation of an additional excitonic-
insulating phase of smaller wave vector. In fact,
he proposed that there might be a whole nested
sequence of excitonic-insulating phases. This
would lead to an almost unlimited number of lines
in the electron- and neutron-diffraction, Mossbauer,
and magnetic-resonance spectra. It would be in-
teresting to see these experiments repeated at
various temperatures up to the transition tempera-
ture and under applied pressure to see if Kohn's
suggested phase diagram for such states is ob-
served.

In order to have such an excitonic-insulating-
state instability of the Verwey state, the gap for
k along the c axis must be small and possiblyneg-
ative, ' '" certainly smaller than for k along any
other direction. This is consistent with Calhoun's
data, '~ which show larger conductivity along the c

Point in zone

(0, 0, 1)If/g
= top of valence band

(0, 0, 0)
=bottom of conduction band

(arbitrary units)

0. 0015

—12.1738

(arbi rary units)

5.3802

—14. 1144

axis than in any other direction. This will be found
in the present model if we assume that below T„
the conductivity is due to tunneling from valence to
conduction bands rather than due to band conduc-
tion by thermally activated carriers. We neglect
the charge-density-wave distortion of the Verwey
state here. If the conductivity in the Verwey-or-
dered state were due to thermally activated car-
riers, the reciprocal-effective-mass tensor would
have to be larger along the c axis than in any other
direction to explain Calhoun's data. We find ex-
actly the opposite. Table III shows the reciprocal-
effective-mass-tensor components (1/m)„and
(I/m)„(where z is the c axis) at the highest point
in the valence band and lowest point in the con-
duction band. Thus, the major part of the con-
ductivity must be due to tunneling. As we ap-
proach T„, the conductivity becomes less aniso-
tropic, because there are more thermally activated
carriers as we approach T„.

IV. DEGENERATE-SMALL-POLARON THEORY APPLIED
TO MAGNETITE

It has been suggested by many people" that elec-
trical conductivity in magnetite may be described
by small-polaron hopping. For one thing, as the
temperature increases above T„, the conductivity
continues to increase. It would also do this in a
degenerate semiconductor. ' Since the gap has
already disappeared, however, magnetite should
behave more like a metal, in which the conductivity
decreases with temperature, than like a semicon-
ductor. If the conductivity above T„were described
by thermally activated small-polaron hopping,
however, this behavior could easily be understood.
The question then arises as to what right we have
to describe the electronic states below T„by band
theory. It would have to be quite a coincidence
for the band conductivity to become smaller than
the hopping conductivity at precisely T„, so that
we can use band theory below T„but not above.
As showninthe Appendix B, however, the twolower
bands are completely flat in the absence of the
Verwey ordering. Since the slope (and hence veloc-
ity) of the next-highest band is zero at the point
where it touches the lowest bands [as seen in Eq.
(2)], there can be no significant band conductivity
above T„.
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One question regarding the possibility of small-
polaron hopping in magnetite that has never been
answered with any degree of rigor is how to de-
scribe polarons in a many-electron system, since
the usual polaron problem is only a one-electron
problem. It can easily be seen that in a many-
electron system, the formation of a lattice distor-
tion around one electron may be interfered with

by the presence of a second electron that is nearby.
Clearly a treatment of a many-electron polaron
system is in order. In magnetite the number of
electrons is not small compared to the number of
lattice sites, as it is in doped-semiconducting and
-insulating crystals to which conventional polaron
theory is usually applied. Rather, the number of
conduction el.ectrons is half the number of octahe-
dral sites onwhichthey reside. Our discussion in
this section will make use of Holstein's one-dimen-
sional treatment of small polarons. " The one-di-
mensional treatment should be sufficient to give
the important physical results. Other one-dimen-
sional models will also be discussed. We will first
examine a straightforward generalization of Hol-
stein's model to the case of a many-carrier sys-
tem.

The equation of motion corresponding to Eq. (5)
in Holstein's'9 second paper is

&s(~(({q~}) k s i a (n( a~ +-,M(u, , (q,. —q~ )
at

l («l"')') i«((«()

«f Z Pm(a((((', m«1 + a(n(«, m-l) t

m

where the equilibrium positions qk"' are given by

(16)

2A{n}kM(g2 g P sin(km+ —'v) .m 2
k m

x sin(km+ —,
'

v) sin(km + —,
'

m}. (18)

This term gives an effective interaction between
all pairs of electrons, caused by distortion of the
lattice. It is this type of interaction which can

give rise to the phenomenon of superconductivity
in metals. If we neglect phonon dispersion by
setting (d, in Eq. (1) equal to zero (i. e. , replace
~, above by ~o), we find that the interaction in

Eq. (18) becomes

Thus, there is now a binding-energy term givenby

2A2™a(qII} = +M a & +PPm'
M(dk &mm

2zea(} h, 2 2, 2

~t . 2M &x2 + 2 MN P X m+ 2M+ 1 +tn+m+1

+ m m {n} m {n}',m+1+ {n}',m1

(13}
where a{„}is the vibrational wave function when
there are electrons located at the set of lattice
sites denoted by {n}. The subscript {n}m+1
means that the mth occupied site in the set {n}is
replaced by m+1, and P is 0 if site m is unoc-
cupied and 1 of it is occupied by an electron. In
order to focus attention on electron-lattice effects,
we will ignore the Coulomb interaction of electrons
for the moment. We now transform to the normal
coordinates qk used by Holstein, i.e. ,

x„= (2/f(t)'~~+, q, sin(kn+ —,
'

v) . (14)

We then obtain the equation

jsa(„,({q,}) h ~ s=Z — + '* M «tt«)

1(2
Aq„, g P sin(k'm+, '-7() a(„(({q,})

m

—&Z P [a&„~~,„,& ({q,})+a(„(, , ({q,})]. (15)

Completing the square in Eq. (15), we get the fol-
lowing equation for a displaced harmonic oscillator:

where N, is the number of electrons in the crystal.
Thus, there is no electron-electron interactionbe-
cause the basic lattice distortion is intramol. ecular
and hence does not affect neighboring molecules.
Since phonon dispersion introduces intermolecular
effects, there is an interaction when there ispho-
non dispersion.

Let us now consider another model, which, al-
though it does not give a correct description of
magnetite, indicates what effects to expect in a
degenerate-polaron system. The model consists
of a linear chain of atoms of separation a. Every
other atom will be taken to be a "metallic ion"
which is capable of holding electrons, and the rest
of the atoms will be "ligand atoms" which cannot
hold electrons. There will be an overlap integral
J between "metallic ions" as in Holstein's model.
This can be understood as a parameter which de-
scribes electron hopping between metallic atoms,
primarily by an indirect process occurring through
the "ligand atoms" similar to superexchange.
The energy reduction in an electron on site p due
to displacement of neighboring ligand atoms away
from it will be assumed for simplicity to be lin-
ear in their displacement and of the following form:

A(x~ —x~,),
where x~ is the displacement of the ligand in the
pth unit cell and A is a positive constant. We will
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also take the mass of the metallic ions to be much

greater than that of the ligand atoms, and hence, we
will assume that the optical phonon consists only of

motion of the ligand atoms for simplicity. The
resulting equation of motion for the phonon ampli-
tudes will have exactly the same form as Eq. (13),
but with the term

Transforming to normal coordinates as done in
Holstein's model, we again obtain an equation of
the same form of Eq. (16}, but with the equilibrium
position qk~

' given by

1/2 N

q', '=, — g P, f„sin(kp+ —,'w)
k Pal

—sin[k(p —1)+ —,
'

v] }. (21)

replaced by

-AQ P.(x —x,). (20)
The binding-energy term corresponding to Eq. (18}
now becomes

——, M Q ~, (q,' ') = ————g, ~ g», P~P~. {sin(kp+ —, v) sin(kp + —,
'

v) + sin[ k(p —1)+ —,
'

p]

x sin[k(p —1)+ —,
'

v] —sin(kp+ —,
'

w) sin[k(p —1)+ —,
' x] —sin[ k(p —1)+ —,

'
w] sin(kp + —,

'
w)] . (22)

This is again clearly an electron-electron inter-
action. If we neglect phonon dispersion (i. e. ,
write ~,= ~0), we obtain

2 2 N
—2M+ (uq (qq ) = —

3 N, + p Q PqP», ~

1 2 (m) 2 A A

k Mo ' M+o p.,
(23)

where N, is the number of electrons in the system.
This is clearly a near-neighbor repulsive electron-
electron interaction of the same magnitude as the
polaron binding energy, and thus much greater
than the hopping integral J. Its physical origin
is the fact that when the metallic sites on both
sides of a ligand are occupied, displacement of
the ligand does not affect the energy of these elec-
trons in this model [this is a consequence of the
linearity of Eq. (19) in lattice displacement]. The
ground state of such a system is a state with an
electron on every other metallic site if there are
half as many electrons as metallic sites, as occurs
in magnetite. If there are fewer electrons, we
have a strongly interacting system of polarons
with bandwidth

p= (1 —n) D/kT,

where

n= (e ~'+ I) ',

(26a)

(26b)

where p is the chemical potential and P=1/kT. ~~

Another interesting one-dimensional model is
a chain of atoms containing electrons where the
electron on a particular lattice site interacts with
other ions in the system by a Coulomb interaction.
Then, the electron-ion interaction can be written

—A Q 3 Pqx„(1 —&~„).p„(P —n I

(26}

problem. As the temperature increases, we go
over to the hopping regime in which the system be-
haves as a system of electrons which hop from
site to site but with the restriction that no two
electrons can hop onto the same site, because of
the exclusion principle. The diffusion constant D
is found from the hopping rate as in Holstein's
paper and from it the mobility p, is easily shown
to be

2Je-&'/ "}~uk

where

(24a)
If we carry through the previously described pro-
cedures and neglect phonon dispersion, the effective
electron-electron interaction becomes

y, = (4A /M (u,')(N„+ —,') sin —,'k, (24b)

obtained by the methods used by Holstein. '~ Holstein's
model has sin —,

' k instead of sin —,'k in the expres-
sion for yk.

" Thus, we see that although both the
bandwidth and interaction of the polarons depend
on the model used, in both models considered the
picture is basically that noninteracting electrons
in a polarizable crystal behave at low temperature
as a typical many-electron system with an effec-
tive interaction caused by lattice distortion and
with the bandwidth reduced as in the single-pol. aron

A (p-n)(p'-n)
Mo &pp )P —n ( )P —n )

(27)

This interaction is attractive if P and p are suf-
ficiently close, because then there will be more
values of n for which (p —n) and (p —n) are nega-
tive than for which one is negative and one positive.
To this term we must add the Coulomb interaction
between the electrons themselves.

Let us now try to apply these ideas to magnetite.
We consider a row of octahedral. -site metallic ions
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FIG. 4. Row of iron atoms in
magnetite (labeled Fe). Neighbor-
ing oxygen atoms are labeled O.

in magnetite and some neighboring oxygen atoms,
as illustrated in Fig. 4. There are also oxygen
atoms directly below and above each of the metallic
ions shown, but they will not contribute to the ef-
fective interaction of electrons due to lattice dis-
tortion to lowest order. Since we have seen that
the major part of the effective electron interaction
can be accounted for in an Einstein model, we will
assume one here. Then, making the commonly
made assumption that each oxygen atom can vibrate
only along or perpendicular to its bond with a me-
tallic ion, each oxygen can be treated as a harmonic
oscillator described by the following Hamiltonian:

X'= (1/2M) (P'„+P',)+ —,'Mu)', (x'+y'), (28)

where x and y directions are the directions of the
bonds connecting it to its two nearest-neighbor
metallic ions (shown in Fig. 4). Placing an elec-
tron on a metallic site displaces its four near-neigh-
bor oxygen atoms. If we assume the resulting en-
ergy change of the electron due to an oxygen dis-
placement can be treated by adding a term Ax or
Ay to Eq. (28), depending on whether it is an x or
y bond from the electron to the oxygen atom, we
find that the oxygen is displaced by an amount

x, =A/M~',

in either the x or y direction, and the energy of the
system is reduced by

1 2 2~Mpxp.

For each electron, the total reduction due to its
four oxygen neighbors is four times this. It is
easily seen that this energy is the same for each
electron in the system, independent of their reI.a-
tive positions. Thus, they do not have an effec-
tive interaction in the linear approximation. This
implies that there may possibly not be a large ef-
fective interaction between electrons in magnetite
and that they might be described as polarons in-
teracting just with the screened electron-electron
Coulomb interaction. Of course, if terms higher
order in the oxygen displacement were included,
there could be an effective interaction due to oxy-
gen displacement.

We know that in magnetite the interactions of

0
0
2

0
e2 —A

2
0

0
2

0

2
0
0

e4 —A

=0

using Eq. (1) with

H..(k) = e. .
The solutions are

the electrons are actually affected by lattice dis-
placements and polarization. For example, since
T„ is very low compared to energies usually as-
sociated with Coulomb interactions, the inter-
action of electrons in the crystal must be greatly
reduced by an internal dielectric constant due to
long-range polarization caused by the electrons's
electric fields. Also, it has been shown that the
first-order nature of the transition and several
other experimental results can be explained in
terms of nonlinear effects due to polarizatjon of
near-neighbor oxygen electronic charge. 2

In conclusion, we have discussed how magnetite
can be described as a degenerate system of polar-
ons below T„. To test these conclusions, it would
be necessary to measure conductivity in doped
systems of magnetite below T„ to see if the added
carriers truly behave as polarons. The flatness
of the lower two bands above T„ is purely a pecu-
liarity of the near-neighbor tight-binding approxi-
mation. It would certainly not be true if next-
nearest neighbors were included, but since they
are far away, this should be a good approximation.
The existence of small-polaron hopping conductivity
above but not below T„ is borne out by Hall-effect
experiments. 22

APPENDIX A

We can see from Eqs. (4) that for eo equal to 2,
the system is not an insulator because the lowest-
conduction and highest-valence bands cross at k
= (0, 0, v/a). Let us see if the three-parameter
ordering of Cullen and Callen can make the sys-
tem an insulator. To investigate this possibility
let us find the eigenvalues at the point k= (0, 0, v/a).
At this point the secular determinant is found tobe
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X= 2 (cg+ 64}6[ g (eg —e4} + 4]

or

A = 2 (f3+ e$}k qg(eg —fg) + 4]
The f's for the three-parameter ordering can al-
ways be written

If1=fp+f 7

II
f2= —fp+ f

IIf3= - fp-f
If4=fp-f

Then, the eigenvalues are

[4 (&
')2]1/2

q= —e, -[4+ (e")']'",

Q = so+ [4+ (e')']'",

X4 = —f0+ [4+ (e ) ]

The numbering of the levels corresponds to pre-
ciseiy the numbering in Eqs. (4). [This identifica-
tion is made by examining these equations for f = f
=0 and comparing with Eqs. (4) with k= vaja. ] We
find in this way that bands 1 and 4 are made to

I IIcross more by increasing f and f from zero;
the bands are not split by the addition of two new
parameters at point k= (0, 0,

vaja).

Of course, the
addition of the two new order parameters could
possibly introduce a gap at another point in the
Brillouin zone. Nevertheless, the Verwey order

parameter chosen for the self-consistent calcu-
lation is the smallest parameter which will give
an insulating Verwey state, and thus, we would

assume that if three-parameter ordering was a
more favorable situation, this would be a situa-
tian in which it should shaw itself; yet it does
not.

APPENDIX B

We will shaw that the lower two bands are flat
throughout the Brillouin zone. To find the eigen-
values, we must evaluate the secular determinant

where

e25k'T fgg
aB

and X=E+2 (energy defined as in the text). This
may be written as a polynomial in A as follows:

det
I

i+ & s "~ sl = det I&+ &es I

a, /=1, 4 e,/~1, 4

det
I
1+ a ~ I

+ higher order terms in A..
ay I g4

Using a well-known theorem for determinants, 23

each determinant may be written

detI a,~I

plus all the determinants found by replacing a col-
umn of I a ~) by a column of ones. From the defini-
tion of a ~, thesedeterminants canbe shown to be
equal to zero. Thus, the first twobands mustbe
flat with E= —2 throughout the Brillouin zone.
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An induced moment system containing a substitutional impurity is studied using the Green's-
function method in the random phase approximation. All the ions are assumed to have a singlet
crystal field ground state and a singlet excited state. We focus our attention on the paramagnet-
ic phase, without local polarization, in this paper. Two s-type modes are predicted in a lattice
with only nearest-neighbor exchange interactions. The energies of the impurity modes have

been calculated as functions of the impurity parameters and the temperature for a simple-
cubic lattice. Similar to an ordinary impure magnetic system, local modes can appear above
the energy band of the host and/or in the energy gap. The spectral weight function at the im-
purity site is discussed. Local susceptibilities, which are proportional to the temperature-
dependent part of the NMR Knight shift, are calculated and compared with predictions of the
molecular-field theory. The experimental situation is also reviewed.

I. INTRODUCTION

The problem of the effects of impurities in mag-
netic spin systems has been an active field of study
in recent years. In particular, the localized exci-
tations, the magnetization at the impurities, and
the effects of impurities on the spin-wave spectrum
of the host crystal are the central topics of discus-
sions for impure magnetic insulators. ' They are
of interest both theoretically and experimentally,
as the measurements of these quantities provide
valuable information on the interactions of the im-
purity ions with the host ions. In this paper, we
examine an induced moment system containing a
substitutional impurity. Along with the behavior
similar to an impure ordinary spin system, we also
note the interesting features unique to the impure
induced moment systems.

Induced moment systems with a singlet crystal-
field ground state have been discussed by Tram
mel and Bleaney' in the molecular-field approxi-
mation, and by Wang and Cooper using a Green's-
function method. It was shown that for rare-earth
compounds with a singlet crystal field ground state
for the rare-earth ions, the exchange interaction
between neighboring ions must exceed a certain
critical value relative to the crystal field to have
magnetic ordering even at zero temperature. The
magnetic moment which then occurs is essentially
an induced moment corresponding to the Van Vleck
susceptibility, where the exchange field takes the
place of an applied magnetic field. When the ex-

change is less than the critical value the system
is paramagnetic, as is a system with larger ex-
change above its critical temperature. Collective
spin-wave-like exciton modes have been predicted
in the ordered phase as well as in the paramagnetic
phase. " Indeed, a large dispersion in the exci-
ton energies in the paramagnetic phase has been
observed recently by neutron inelastic scattering
on praseodymium single crystals.

In this calculation we consider an impure induced
moment system in the paramagnetic phase. This
requires not only that the pure host be a paramag-
net, but also that the impurity be either a nonmag-
netic ion or an ion with a nonmagnetic crystal field
ground state. For the latter case we also assume
that the local self-polarization centered at the im-
purity does not occur. 'o Localized excitations and
local susceptibilites are of special interest as they
are accessible to experimental measurements.
Neutron inelastic scattering and Rmnan scattering"
are the well-known techniques used to probe the
localized excitations of an impure system. Specif-
ic-heat measurement can also be a possibility,
especially when the localized modes occur in the
energy gap (as will be discussed later). To mea-
sure local susceptibilities, NMR or Mossbauer
techniques can be used.

A method of thermal Green's functions is em-
ployed for the theoretical calculation. To simplify
the algebra, we assume that each ion can be repre-
sented by a two energy-level system. That is,
in the crystal field, each ion has a singlet ground


