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Extensive earlier work has indicated that dysprosium aluminum garnet (DAG) in a magnetic
field along a (111)axis should approximate to a two-sublattice Ising-model antiferromagnet,
and in this paper we examine this correspondence critically. Quantitative estimates are de-
rived for the differences between the ideal model and the real material, and it is shown that
they are in fact very small and that appropriate corrections can be applied to allow for most
of the deviations. General expressions based on the Ising model are derived for the magne-
tization, differential susceptibility, and specific heat in field and temperature regions where
exact asymptotic expansions are valid, and these are fitted to available experimental data on
DAG. The results of the analysis can be expressed in terms of two sets of parameters which
describe, respectively, the single-ion properties and combinations of the spin-spin interactions.
The relation of these parameters to the microscopic Hamiltonian is deferred to a later paper,
but a number of empirical cross checks indicate excellent consistency in the results. In
addition, a number of parameters describing the cooperative behavior are extracted from the
experimental data and there is a discussion of some of the general problems of analyzing criti-
cal-point data. The significance of most of these parameters must await further theoretical
work on Ising models with competing and long-range interactions.

I. INTRODUCTION

In a previous paper, ' which we shall henceforth
refer to as I, we described a series of magnetic and
thermal measurements on single crystals of dyspro-
sium aluminum garnet (DAG) with magnetic fields
applied along one of the (111)directions. The re-
sults, together with those of numerous earlier ex-
periments referred to in I, showed that DAG under-
goes an unusual and interesting magnetic phase
transition at low temperatures, which is dominated
by an extremely high magnetic anisotropy. As a
result of this, there is no spin-flop phase as com-
monly found in antiferromagnets, and the proper-
ties resemble those of a simple two-sublattice Ising
model in a magnetic field. It is the purpose of the
present paper to pursue this correspondence in
some detail and to extract from the data a number
of parameters characteristic of the Ising model.

In particular, we shall show that one can define a
number of characteristic parameters which do not
require explicit knowledge of the microscopic de-
tails of the corresponding Ising model, but which
can still be used to describe the system accurately
for fields and temperatures far from the phase tran-
sition. The parameters are of two kinds: "single-
ion" parameters which do not depend on the spin-
spin interactions, such as g values, Curie con-
stants, and the Van Vleck temperature-independent
susceptibility, and "collective parameters "which
include the Curie-Weiss constant and the energy
gap for elementary excitations at T = 0'K.

Given a specific Ising-model Hamiltonian such
parameters can of course be related to the micro-

scopic interactions, and indeed such an analysis
can be used to determine the terms in the Hamil-
tonian and to check the validity of the Ising-model
approximation. However, we choose to defer this
part of the analysis until we can include the results
of additional experiments with magnetic fields ap-
plied in directions other than (111)and these we plan
to discuss in a separate paper in the present series. '
The detailed microscopic analysis will therefore not
be given until Paper IV.

For the present we shall therefore restrict our-
selves to an analysis of the temperature and field
variations of observable properties with H along
(111), in those regions where asymptotically exact
expressions can be obtained in terms of appropriate
combinations of microscopic interactions. The ad-
vantage of such an approach is that it emphasizes
the essential simplicity of DAG without introducing
the geometrical complexity of the garnet structure,
which only becomes important in the final micro-
scopic analysis.

In order to establish the correspondence with a
simple Ising model it is necessary to show that at
least three conditions are satisfied: (i) Each Dy'
ion can be represented completely by an effective
spin S =-, . (ii) The effective interaction between
neighboring spins is given by terms of the form
S„S+. (iii) The interaction of each spin with an
applied magnetic field is given by g, & p& S„H~, where
the effective g factors g„are preferably equal for
all i.

We shall consider these conditions in connection
with the complete Hamiltonian for DAG in Sec. II,
and we shall show that we would indeed expect the
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correspondence to be very close, at least for the
case of H along (ill). For other orientations of H
the correspondence is more complex, and we shall
defer the discussion of this to Paper III.

Taking the Ising model as a working approxima-
tion we shall derive in Sec. III expressions for the
magnetization and specific heat for "high" and
"low" fields and temperatures, where "high" and
"low" are suitably defined in terms of appropriate
relative energies. The derived expressions should
be applicable generally to all Ising-like systems,
and in Sec. IV we use them specifically to extract
the appropriate parameters for DAG from the data
presented in I.

In addition to parameters which can be related to
theories which are asymptotically exact far from
the phase transition, one can also extract from the
data "critical parameters" which characterize the
phase transition and a number of these will be ob-
tained in Sec. IVB. Such parameters include the
Neel temperature and its variation with field, the
temperature for the onset of the first-order tran-
sition (the tricritical point), '5 and the parameters
describing the singularity in the specific heat. The
comparison of these parameters with theory would
entail very much more complicated statistical ap-
proximations than the expansions involving the "col-
lective parameters" far from the phase transition,
and at this stage we present them essentially as
empirical results.

All three sets of parameters, the single ion, col-
lective, and critical, are summarized in five tables
(Tables II-&I) which include both results obtained
from the present work as well as from previous
studies.

II. HAMILTONIAN

A. Effective-Spin Approximation

The low-lying energy levels of the Dy
' ion have

been studied extensively by microwave resonance
and optical spectroscopy. ' ' It was found that all
ions are magnetically equivalent except for their
orientation with respect to the crystal axes, as ex-
pected from the known crystal structure, ' ' and
that the energy separation between the lowest
Kramers doublet and the first excited state, E„ is
about 70 cm ' (-100'K). At temperatures in the
liquid-helium range, therefore, the population of
the first excited state is entirely negligible, and
providing that the effects of magnetic fields and
other interactions are also small compared with E&,
each ion can be accurately described in terms of
the two states spanning this doublet. Within this
manifold any operator can then be represented
completely by an equivalent operator expressed in
terms of the components of an effective spin S = &.

In particular the linear Zeeman effect can be

represented by p~H g ~ S, where g defines the
magnetic properties of the doublet. For garnets
the principal axes of g coincide with the local D2
axes at each site, and the orientation of these axes
has been discussed in a number of earlier publica-
tions. For the present we want to consider only
the case of fields applied along one of the (111)
crystal axes, and for this orientation half the ions
will have an effective g factor given by" g„= (3g,
+-', g„)' 'while for the other half g,a=(-,'g, +-,'g,')'
where g„, g„and g, are the three principal values
of g . There is a considerable amount of evi-
dence"' " that g, »g„, g, with g, =18, but
the accurate determination of g„and g„presents a
major difficulty since they appear to be extremely
small and errors can easily arise from small mis-
alignments. The best quantitative estimate at pres-
ent is based on optical measurements" and this gives
g„=g, =0.5+0. 2. However recent Mossbauer ex-
periments indicate that the values may be even
smaller, with I g„ag, l &0.5. In any case, it seems
a very good approximation to neglect both g~ and

g, in the expressions for g„and g, 2 and to take

for all sites, when H is parallel to (111).
We have discussed this particular point at some

length because we want to emphasize the fact that
the spins are not quite identical magnetically, and
that g, &

and g, 2 might in fact differ by as much as
0. 1% for the two types of sites. For most purposes
such a difference would be entirely negligible, but
it could become relevant in the analysis of the high-
resolution data of the field-induced first-order phase
transition. However, in general we can certainly
use Eq. (1), which is physically equivalent to con-
sidering only components of H along the local z axis
of each spin.

8. Ising-Model Approximation

From the observed g-value anisotropy one can
make some general statements about the nature of
the ground-state doublet and a qualitative prediction
that the interactions coupling different neighbors
might be Ising-like. However, in order to make
a more quantitative statement about the validity of
the Ising-model approximation one requires con-
siderably more information and a detailed analysis
is, in fact, quite difficult.

From the large value of g, we can infer that the
ground state must be predominately I J= ~2, J,= + ~2)
but the details of the adxnixtures allowed by D2
symmetry (AJ, =2, 4, 6. . . ) can only be obtained
from a full crystal-field analysis. Two such anal-
yses have recently been reported, one by Grunberg
et al. ' using optical data for Dy

' diluted into
yttrium aluminum garnet (YAG) and the other by
Wadsack et al. ' using Raman-scatteringdata for
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pure DAG. The two analyses are in general agree-
ment and the one for pure DAG has been used to
calculate a detailed description of the ground-state
doublet. Nonzero admixtures of altogether 52 basis
states were found, but most of these were very
small. The dominant terms were

0. 824 I~ V&+0. 820I~~~~ &+0. 141I+2) -0.18el+~3)

—0.008l+~&+0 027 l+ a &+0 044I+ 2&+0 0»I+ 9 &

(2)
where each of these components belongs to the
'H»&2 term and we specify J, along the local g, axis.
Admixtures of all other states were less than 0.03.

The coupling of two ions specified by such states
can obviously be quite complex and in general we
might expect an effective spin-spin interaction of
the most general form 5, q, ~ Ã, . However, we
note that the off-diagonal matrix elements of all
operators which transform like vectors (which are
nonzero for aJ,= +1) will be relatively small, con-
sistent with the anisotropy of the Zeeman effect,
and any interactions involving only products of vec-
tor operators will therefore be mainly diagonal.
This includes magnetic dipole-dipole coupling and
the isotropic part of the exchange interaction, and
to the extent that these are dominant we might
therefore expect a predominately Ising-like cou-
pling.

However, it is always possible that there might
be sizable interactions of a more complex form,
such as quadrupole-quadrupole or anisotropic ex-
change, and indeed evidence for such terms has
been found in other rare-earth insulators. 7 Such
interactions would generally not be diagonal within
the states given by Eq. (2), and in terms of the spin
Hamiltonian this would imply non-Ising forms such
as Q~S„]S„).

In the absence of a detailed microscopic theory
for the actual interactions in DAG we must resort
to additional experimental data to place an upper
limit on such terms. Fortunately such a limit can
be obtained readily from the observed fact that the
Mossbauer spectrum at 4. 2 'K shows the fully re-
solved hyperfine structure~ even though ordering
does not start until 2. 5 'K. This implies an un-
usually slow electron spin-spin relaxation time

-10 sec, and using a simple uncertainty-prin-
ciple argument this puts an upper limit of 10 'K
on the largest of the non-Ising' 's. In fact this limit
represents the sum of the different nonsecular in-
teractions between all neighbors as well as the ef-
fects of other possible relaxation mechanisms, and
we might therefore conjecture that the individual
g~'s might be at least an order of magnitude smaller.
This ca+ be compared to the Ising-like terms which
are typically 0. 1-0.7 K, ' so that we can conclude
that the Ising model should indeed be quite a good

approximation for the interactions in DAG.
As in the case of the g„we must caution that this

approximation might well break down in some crit-
ical regions, and it will certainly be important for
all relaxation effects. However, for most proper-
ties we can write an effective interaction Hamil-
tonian of the form

K= Z K ( g o ( og + 2 g~ p,s H Q 0' (
i&f

I
where we have changed from S „=+ ~ to g, = + 1 to
conform to the usual Ising-model notation, and we
have also included the term corresponding to an
applied field along (111).

The coupling constants K,&
will generally not be

restricted to any particular near neighbors, since
we know that magnetic dipole-dipole coupling will
play some role in DAG, as it does in all real crys-
tals. Since DAG is a relatively dense material with
a large magnetic moment per spin, we might expect
the cumulative effects of the long-range interactions
to be larger than usual, and indeed we have already
shown in I that this leads to a marked shape depen-
dence of the magnetic and thermal properties. For
the purposes of the present paper, this shape depen-
dence will be important only insofar as the fitted
parameters must be determined for specified
shapes, but in the final microscopic analysis the
long-range dipole sums will have to be evaluated
explicitly.

Moreover, it will be important to note that the
magnitudes and signs of the K's for different near
neighbors could well be such as to produce a com-
petition between different magnetic states, and in
this respect DAG will be more complex than the
usual nearest-neighbor Ising model. However,
away from the phase-transition region these com-
plications will not affect the form of the asymptotic
expressions and we can use simple Ising-model
ideas.

C. Minor Complications and Corrections

In addition to the intrinsic approximations implicit
in Eq. (3), there are a number of relatively minor
complications which must be considered before a
comparison with the experimental results is possi-
ble. The effects are all very small and it is con-
venient to remove them by applying appropriate
corrections to the data before analyzing the more
interesting cooperative properties.

1. Excited Electronic States

As explained above, the first excited electronic
state lies at an energy of about 100 'K and its popu-
lation at 4. 2'K is thus negligible. However, some
of the specific-heat measurements extended up to
8 K, and for these one must allow for a smal. l con-
tribution from the excited state. The contribution
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m = XvvH1 —X«aH2, (4)

where H, and H, are appropriate local magnetic
fields. The accurate computation of Hj and H,
in a complex system such as DAG is actually quite
difficult since one must note that X» will be aniso-
tropic for each type of site. Thus the individual
contributions to m will generally not be parallel to
the applied field, or to the total magnetic moment
M, even though both X» and X«, for the whole crys-
tal must be isotropic by cubic symmetry. Fortu-
nately the effects on DAG are very small and we can
readily derive an approximate expression for m
which is sufficiently accurate. The diamagnetic
contribution can be estimated from earlier measure-
ments" on Yb3Ga, Q», which show that X«,- —2x10 '
emu/cm which as we shall find is negligible com-
pared with Xvv. For the Van Vleck term we need
an expression for H& and this can be estimated using
mean field theory and assuming only magnetic dipole
interactions. The result is'2

m =gvv(Ho+aM) ~ (5)

where a=1.5

Deem�

/emu and )tvv is found from the
experimental data to be (12.3+1.0) x10 ~ emu/cm
(see Sec. IIID). A correction of this magnitude
was subtracted from all the data and in general this
involves a negligible error. Thus at 10 koe and
1.1 'K the contribution of m is less than 2)0 and the
uncertainty is less than a tenth of this.

However, there are two regions where the effect
of X» becomes very important, and neglecting it
would cause a serious error in the analysis of the
data. The two regions are the low- and high-tem-
perature ends of the low-field susceptibility mea-
surements, where the electronic susceptibility be-
comes small and therefore comparable with the

is readily estimated as

C „,~/R=(E /k T) exp(-Eg/ksT),

and this amount was subtracted from all measure-
ments. The largest correction was about 2%. There
is also a small contribution to the susceptibility due
to the population of the first excited state, but even
at the highest temperatures of our measurements
(20 '

K) the effect was less than 0.3% and could be
neglected.

2. Van Vleck Paramagnetism and Diamagnetism

In addition to the linear Zeeman effect there is a
term quadratic in the field, and even for small H
this contributes a finite term to the magnetic sus-
ceptibility. The major part of this arises from ad-
mixtures of excited electronic states' and there is
also a small negative contribution due to diamagne-
tism. Both effects are independent of all the other
magnetic effects, and they simply contribute an
additional moment

temperature-indePendent z». Fortunately, M is
small under these conditions, and the approximate
calculation of the constant a in Eq. (5) introduces no
significant error. However, it is necessary to
estimate Xvv as accurately as possible, and this
can best be done by finding the slope of the high-
field low-temperature magnetization curve (see
Sec. IIID. )

3. Phonon Effects

The principal effect of the crystal lattice is the
contribution of a phonon specific heat which must
be subtracted from the measured data to extract the
electronic properties. Since DAG orders at a rel-
atively low temperature this contribution is ex-
tremely small in the critical region, and the only
sizable correction which must be applied is at the
highest measured temperatures (8 '

K), and even
there the effect is quite small. This correction can
be made fairly accurately using measurements on
diamagnetic garnets, as discussed in I.

In general, phonons can introduce additional
complications due to magnetoelastic effects. ""
However, we would expect these effects also to be
very small in DAG since the crystal is extremely
hard (Sn-500'IO while the magnetic interactions
are both weak and not very strain sensitive. ' Addi-
tional experimental evidence that magnetoelastic
effects are small was presented in I.

4. Nuclear Effects

Another effect which must be removed to isolate
the intrinsic electronic properties is the contribution
of the nuclear moments. There are seven stable Dy
isotopes and two of them, Dy' (18.9%) and Dy'
(25.), have nonzero nuclear spine. Bothhave spin
I= $. No detailed study of the hyperfine structure
has been made specifically for DAG, but we can
estimate the principal constants from experiments
on other Dy compounds. In general we would expect
an hyperfine interaction given by

X„„,=Q Q A'S I +P'I

where Q P = 0 and where the magnetic hyperfine
coefficients A' are approximately proportional to
the corresponding g values. "' For DAG it is there-
fore a good approximation to neglect A„' and A,'. A,'
can be determined from measured values of A/g for
dysprosium acetate, "and we find

A =72. 0x10 'K,

A,' = 100.9x10 'K .
For the case of Dy'", this estimate can be

checked against a direct Mossbauer-effect measure-
ment which gives

A,' = 73.9x 10 'K
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C„~~/R=(2. 8/T )&&10 (1 —0.1/T+ ) . (8)

Compared with the electronic specific heat this is
negligible above about 1 'K, but at the lowest tem-
peratures the effect dominates the total specific
heat. In this region an accurate correction for hy-
perfine effects is therefore important for estimating
the small electronic contribution.

We shall show in Sec. IV that the expression given
in Eq. (8) is in fa,ct not completely adequate to yield
the expected form for the electronic part, and we
have therefore allowed for a possible variation in the
coefficients in Eq. (8). Fitting the data with an ef-
fective hyperfine specific heat of the form b,«/T
we find b~, = (3.1+0.3}&&10 ' ('K) which is some
2(g higher than the estimated value, and it is not
clear at this time whether this is due to an error in
the analysis, such as an error in the sign of P„or
whether there is in fact some additional mechanism
which contributes a specific heat of the order of
10 'R/T~. " However, the effect is really quite
small and it seems to be accounted for adequately
by using the fitted value of b~f.

While this allows for the nuclear effects in the
region where they are relatively large, we should
also consider the possibility of significant nuclear
effects at higher temperatures, and in particular in
the vicinity of the phase transition. The factoriza-
tion of the partition function used to calculate nu-
clear effects independently of electronic interactions
has been shown to be valid only for systems where
both the electronic and hyperfine interactions have
only z components. This is certainly a very good
approximation for DAG, but there are nevertheless

in reasonable agreement. The measurements also
yield a value for P', =5.3&&10 'K, making the
reasonable assumption that P ' and P„' ' are small.
Using the known ratio of the quadrupole moments, 3~

this gives P',"=—6.3&10 ''K, with P„'" and P,' '
again small.

Combining these parameters we can estimate the
contribution to the specific heat. (The effect on
other magnetic properties will be negligible. ) For
a system which is essentially Ising-like, the hyper-
fine contribution can be calculated independently of
the electronic interactions and one can use the
high-temperature expansion given by Bleaney. ' For
temperatures above 0.5 'K one thus finds

Ch„, /R =Fax((b, /T +c&/T + ' ' ~ ),
where

b, = I (A,')'+ P (P,') '
and

14 (Al)2Pi 1+ (Pi)3

and x, are the abundances of the isotopes. Substi-
tuting values, this gives

small terms both of the
kinds�„„$

„,S,&
and AP„I„.

It is possible, though it can be argued not very like-
ly,

"that cross terms between such interactions
and the main z components could modify the over-
all magnetic behavior, especially in the region
where intrinsic electronic properties diverge.
Further theoretical study of this question would
seem to be called for.

III. ASYMPTOTICALLY EXACT THEORIES

Having established the appropriate form for the
effective spin-spin Hamiltonian [Eq. (3)], we are
now in a position to derive theoretical expressions
to compare with the observed data (corrected for
the minor complications discussed above). Such
expressions can readily be found in regions of
"high" and "low" field and temperature using ap-
propriate series expansions. The scale of "high"
and "low" is set by three energies: kpT g p~Hp,
and K„(-ksT„), and since the interactions cannot
be treated exactly, we are generally restricted to
regions where k~T»K, ~ or k~T«K„. In each of
these regions one can readily derive partition func-
tions for fields both low and high compared to k&T,
and one can thus find thermodynamic functions which
are asymptotically exact as k& T and g p&Hp tend to
zero or infinity. 44

A. High-Temperature Zero-Field Specific Heat and Susceptibility

The method of series expansion in powers of 1/T
for low fields is well known ' ' and we shall follow
the notation of Daniels. The free energy F can
be written in terms of the traces of powers of the
interaction Hamiltonian (defined with Tr X = 0}as

F= —Ãk& T ln2

B C D —B/2 E —BC-kgT ~+ ~+ 4 + 5
+''', (9

Tr(X ) Tr(X )
2!ks Tr(1) ' 3!ks Tr(l} '

Tr(X') Tr(X')
4!ks Tr(1) ' 5!ks Tr(1)

Differentiating with respect to T one obtains the
entropy

eI" kgBS= ——=R ln2—
eT T2

2ksC 3 ks(D —B /2)
T T4

—~ ~ ~ (10)

and hence the specific heat for constant field, C~,
(which is equal to C„ for H=0) is given by

Cg= T
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2B 6C 12(D —B /2)
T2+ T T4

Differentiating Eq. (9) twice with respect to H one
obtains the zero-field susceptibility

8H T 8H T 8H

k 8 8+~s, D'- — + ~ . (12)
T 8H 2

and

S/R= ln2 —8 /4 T —8 /QT + ~ ~ ~

c/R= e, /2r'+ e, /3r'+ ~ ~,
(13)

(14)

Applying these expressions specifically to a system
described by the Hamiltonian given in Eq. (3), one
finds

and it shows that if we reexpress Eq. (15) as a se-
ries for 1/xp in powers of 1/T, the entire shapede-
pendence will appear in the constant term —8,/X:

1/Xp ——(T/x)[1 —8,/T+8 /T + ~ ~ ~ ] . (16)

B. High-Temperature High-Magnetic-Field Specific Heat

and Magnetization

The case of kBT»K, f and arbitrarily high mag-
netic fields has been considered quite generally by
Van Vleck. ' Treating the magnetic field exactly
(but always within the effective-spin approximation}
one can evaluate the first- and second-order per-
turbations of the interactions, and hence derive a
partition function from which the free energy can be
found. The derivation is straightforward but some-
what tedious and we shall not give the details here'
but simply quote the result for the free energy,

x, =( x/T)[ 1+e,/r+(e, '-e,)/r'+ "]
where

-1
81=

kB

1ep=~ Q K&~,
B f

—6
83 ——

~ ~ Kif Kf qK]I, ,
kB

(16) W 81]F/R = —T ln 2 cosh
kT 2

2e,'t'(1 t')+ e,(1 -t'-)'
4T

where t= tanh(W/k»T), W=
g, t&»Hp/2, and R =t&tpks.

Differentiating with respect to T we find the entropy
and hence the specific heat at constant applied field:

C„,/R = (W/k»T)'sech (W/ksr)[1+5, + 5p], (20)

g +& / x f&t & = 8't & + x t&t&
p &

1 F F (16)

and x=npg, t&J&/4ke. Here np is the number of spine,
and this is usually taken as Avogadro's number
NO=6. 025&10 . A. is then the Curie constant per
g atom of Dy ', which we may also call the Curie
constant per mole, A.„, since we are exclusively in-
terested in the magnetic spins. For some purposes
it is more convenient to use np= Np/V p, where Vp is
the gram-atomic volume, and this gives A.„, the
Curie constant per unit volume. V can be calculated
from the crystal structure" ' and is estimated to
be 43.8+0.2 cm .

The form of Eqs. (13)-(15)will be valid quite
generally, but the specific expressions for the 8's
assume that all sites in the lattice are equivalent,
so that any ion can be taken as the origin. In the
case of 8„ this is only valid for ellipsoidal sample
shapes, since the K's always include some contri-
bution from long-range dipolar interactions and the
sum will be shape dependent. Since the shape de-
pendence is really a macroscopic effect, it can bp
treated classically, and the values of 8, for two
sample shapes defined by demagnetizing factors
N ' and N' ' are related by

The leading term in this expression is a simple
Schottky anomaly corresponding to the splitting in
the field, as we would expect. For zero field only
the term 5p remains, and this reduces to gp/2TP in
agreement with the previous result [Eq. (14)].

Differentiating the expression for the free energy,
Eq. (19), with respect to H we can derive a similar
expression for the high-temperature magnetization:

M =Mptanh(W/ks T)[1+y&+ yp],
where

y& = (8,/T}(1 t'), -
»= (8,/T)'(1- t')(1 —2t') - (e, /r)(1 t')', -

(21)

where

5& = 8&(k»/W)[2 t+ (W/k» T)(l —3t )]

and

5p= 8&(ks/W) [t +4(W/kpT) t (1 —2t )

+(W/k»T) (1 —Qt +10t )]

+ gp(k»/W) [p(1 —t ) —4(W/ksr)t (1 —t )

- (W/ksr) (1 —6t +5t )] .

This is entirely equivalent to the usual relation be-
tween the susceptibilities

and

M p=Hpg, t&s/2 .
1/x'" In the absence of interactions this reduces to a
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simple Brillouin function for S = 2 as it should, and
in the limit as H- 0 it reduces to the expression
corresponding to the previously derived suscepti-
bility [Eq, (15)].

C. Low-Temperature Zero-Field Specific Heat and Susceptibility

For low temperatures a different series-expansion
technique must be used. In general one must first
determine the ground state and then calculate the
energies of the possible elementary excitations and
their statistical probabilities. For an Ising-like
system very close to T=0'K this is very easy. The
only elementary excitations are simple spin re-
versals, and if all sites are magnetically equivalent
we can associate a single parameter &0 with the ex-
citation energy. The total internal energy at
T=O'K, Up is then related to 40 by

pendent of sample shape, in contradiction in our
usual ideas, but this paradox is resolved if we re-
call that Eq. (24) is strictly valid only as T- 0,
where y- 0, so that the demagnetizing field vanishes
as well. At finite temperatures the asymptotic form
must be modified and we can proceed as in the case
of the specific heat by defining a n.,«(T).

The potential accuracy of both these methods of
estimating 40 is quite good because errors in the
absolute values of C/R or g have relatively little
effect on the fitted value of &,«. For example, if
the true specific heat C,/R is characterized by 4z
while the experimental specific heat C2/R corre-
sponds to 42, then

1 1 2 1

1—Up= ~N&p, (22)

g, =(X/T) exp( —rz, /kaT) . (24)

We may note that this result appears to be inde-

where half of the factor 4 comes from the usual
self-energy and half from the fact that the energy to
remove one spin from the ordered lattice costs only

(As in I, we take the energy to the completely
disordered state as zero. )

Corresponding to an energy gap 40 the low-tem-
perature specific heat is readily derived to be

«2—=ie, /e, z)'(e e ' z ~ eep '-, (ee)kBT B

as for a simple Schottky anomaly. As T increases,
more complex excitations become probable, and a
detailed analysis involving the microscopic struc-
ture is necessary to derive a form for C/R. How-
ever, we can proceed empirically and attempt to
derive a value of 40 from the measured data even
in a range where Eq. {23) is no longer valid. If we
define a temperature-dependent quantity &,«(T)
such that it reproduces the observed C/R when sub-
stituted in Eq. (23), we know that 4„z—b 0 as
T- 0 'K, and plotting rz„z(T) as a function of T one
should therefore be able to extrapolate to find bp.
In practice it may be more accurate to plot b,«
against a more rapidly varying function of T which
tends to zero with T, and in particular, we have
found that plotting 4„z against C/R itself aids the
extrapolation significantly. ' We shall give the re-
sults of such an extrapolation in Sec. IV, but we
shall defer until Paper IV a discussion of the rela-
tionship between 40 and the individual E,&

in Eq. {3).
The same sort of analysis can be applied to the

low-field susceptibility. If the ground state is anti-
ferromagnetic the moment in a weak field is directly
proportional to the number of spin excitations, and
this in turn is proportional to exp( —rzo/kaT). The
susceptibility as T tends to zero is thus given by

&0(HO) =g, izzz(HO+ Iz;)

gz. I BH0+ +0 y (27)

where 40 is a constant independent of Hp. In fact
&0 can be related very simply to the interaction
constants in Eq. (3) since the reversal of a single
spin from the ground state clearly involves an en-
ergy

40 = —2+~K;, , (23)

where we assume, as before, that all sites are
equivalent. Thus 40 is directly proportional to the
"high-temperature" parameter 81 defined in Eq.
(»),

for &2 —&1«kBT. If we express the error in C as
x= (Ca —Cz)/Cz we ca.n express the corresponding
error 'n &, 5= (42 —4z)/Az, jn terms of x. For small
x and 5 this gives

'=
~, /T 2- (25)

The ratio & /Tais typically 5 to 10, so that even a
5%0 error in C leads to an error of less than 1% in

g f Even so, care must be taken in app lying this
method, since it involves using measurements of C
and X where both are necessarily very small and
thus especially sensitive to systematic errors such
as an incorrect subtraction of nuclear effects or
the temperature -independent paramagnetism.

D. Low-Temperature High-Field Specific Heat and Magnetization

The same general method can be used for handling
high fields and low temperatures. The ground state
is now the fully magnetized configuration, p, = —1
for all i, and the lowest elementary excitations are
again single spin flips. In the absence of interac-
tions, the energy of these excitations is g, pBH0 and
including interactions this is changed to



MAGNE TIC AND THERMAL PROPERTIES OF. . . II. . . 4479

I
&p= 2kg8g, (29)

and it will reflect the same shape dependence.
Both 4p and 6& may be interpreted very simply in

terms of mean field theory which becomes asymp-
totically exact at very high temperatures in all
cases and at very low temperatures in the case of
an Ising-like system. In mean field theory the ef-
fect of the interactions from neighboring spins is
replaced by a field H„(0) . (M/M, ) and at high tem-
peratures this leads to the usual Curie-Weiss law,
with

8 = &, = [H„(0)/M, ] X = H„(0)(g, p,,/2k ) .
At low temperatures and high fields M/Mo-1 and
the internal field tends to H„(0). The energy of
reversing a single spin in this field is g, psH„(0)
= +p and hence 4~ = 2k' &g as before.

The low-temperature specific heat in a field fol-
lows directly from Eq. (23) with 4o replaced by
&o(Ho), and we can use the same procedure of de-
fining a 4,«(Ho, T) and extrapolating to T=O'K.
The resulting values of ho(Ho) should vary linearly
with Hp and the slope should be proportional to g, .
Since g, is already well determined from other ex-
periments this provides a useful check in the pres-
ent case, but it could, in principle, be used as an
independent determination of g, .~4

The low-temperature magnetization can be ob-
tained similarly by considering single-spin rever-
sals as the excitations above the fully magnetized
state. The probability of an excitation with energy
ho(Ho) is simply given by the Boltzmann factor,
e "/(1+e ") with x= ho(Ho)/ksT, and the moment
associated with each excitation is g, p,~, so that the
total moment is given by

the intercept gives Mo(1 -aXvv) where the constant
g can be estimated as discussed in Sec. IIC 2. For
DAG the correction term apvv turns out to be very
small (-0.0019) but for other systems the induced
moment could well be much larger.

E. Phase Transition at T=O'K

The zero-field ground state of an Ising antiferro-
magnet is unaffected by magnetic fields and since
there is a finite energy gap to excited states, it will
completely dominate the low-field properties as
T- 0 K. At higher fields, on the other hand, one
or more of the excited states will be depressed in

energy by the field until one of them becomes the
new ground state, and at T=O K this will manifest
itself as an abrupt (first-order) phase transition as
the field is increased. In a simple two-sublattice
system there is only one such transition, corre-
sponding to the crossing of the fully saturated state
(M =Mo) with the ground state, and we denote the
field for this condition by H'(0). This field can be
estimated by extrapolation of the H'(T} vs T phase
diagram determined at finite temperatures, as will
be described in Sec. IV B4.

H'(0) is readily related to parameters already
discussed above. The transition will occur when
the free energies of the two states become equal,
but at T = 0 ' K this is equivalent to equating the
spectroscopic energies. The zero-field energy is
given in terms of ao by Eq. (22) and the energy in
a large field, E„, is likewise related to &o(Ho) and

&p by
1 1

EHo= o Noge )is (H oo+k )

= —
o No[+o(Ho} o+o]

= -MpHp —qNAp, (32)
M = Noge ps (1 —e ")/2(1 + e ")

= Mo tanh [&o(Ho)/2ks T] (30)

as we might expect. If the sum of the interactions
in the aligned state is small, i.e. , &p«g, pBH„ this
expression again reduces to the simple Brillouin
function for S =-, . This in fact turns out to be the
case for DAG in fields above a few kQe, and one
should therefore be able to estimate M p by evaluating
M/tanh(g, psHo/2koT) and , extrapolating to high
fields.

However, before this can be done it is necessary
to take into account the temperature-independent
contributions to M discussed in Sec. IIC 2. These
simply add a term m = Xvv(Ho+aM), Eq. (5), and
the high-field asymptote of y =M/tanh(g, psHo/2ks T)
plotted as a function of Hp is thus not a constant,
but is given by

where the factor a multiplying h, and 4p again re-
flects the difference in counting energies in applied
and internal fields. Equating Uo (= EH. o} with—
EH p Hc~p& we thus find

H'(0) = (&o —&t)/2 genes . (33)

Throughout this discussion we have assumed
implicitly that all spins in the sample will behave
in a similar manner, but this is in fact only true if
we have no domains. As discussed in some detail
by Wyatt and also in I this is the case only for a
sample with no demagnetizing field, e. g. , a long
thin needle, and Eq. (33) thus applies directly to
the internal critical field H';(0). Correspondingly,
the value of no in Eq. (33) must be that appropriate
to a shape with zero demagnetizing factor and it
must be related to estimates of &p or 8& made on
other shapes using Eqs. (16) and (29).

y =Mo(1 —aXvv)+XvvHo ~ (31) F. Application of Asymptotic Expressions

The slope of this line immediately gives X«, while It should be emphasized again that the expressions
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derived in the previous sections are only asymptot-
ically exact and that care must be taken in corn-
paring them with experimental data taken in some
particular region of H and T. However, given
proper care the expressions can in fact be extreme-
ly useful, in that they allow a large amount of ex-
perimental information to be reduced to a relatively
small set of characteristic parameters, which can
then be related directly to a microscopic Hamilto-
nian such as Eq. (3).

IV. ANALYSIS OF EXPERIMENTAL RESULTS

A. Determination of Single-Ion and Collective Parameters

rate enough to determine this. These results are
also in good agreement with recent high-frequency
relaxation measurements of C& which give'

8, =(3.7+0. 2) ('K)',

8, =(6.0+2. 7) ('K)'.
We can use these values to estimate the contribu-

tions to the entropy and the internal energy from the
temperature region above that over which direct
measurements were made, and these estimates may
be used to relate S/R and U/R to appropriate zeros,
as described in I. We thus find

The theoretical expressions derived above con-
tain four single-ion parameters (g„MO, X, and

ltvv) and six collective parameters [8„8„8„60,
Uo, H'(0)] and we shall now determine values of
these using the experimental data given previously
in I. The parameters are of course not independent,
and a number of cross checks are therefore possi-
ble which test both the consistency of the experi-
mental data and the theoretical assumptions. We
shall discuss this consistency in more detail in
Paper IV, and for the present we will concentrate
on using each type of measurement to extract the
best values for the corresponding parameters in-
volved in the theoretical expressions. A brief dis-
cussion of some of the simpler correlations which
can immediately be made is given in Sec. IVA9
below, which also includes two tables summarizing
the single-ion and collective parameters determined
in this work and in earlier publications.

and

C
R

--1 dT=0. 016+0.002
T=S K

(34)

&U C—dT= 0. 23 +0. 03 ~

0
T*8 K

which are the values used in I.

(35)

lo 8 6
I I

2. High-Temperature Zero-Field Susceptibility

An accurate analysis of the high-temperature
susceptibility in terms of the interactions is much
harder than for the specific heat, since the sus-
ceptibility is dominated by the leading Curie-law
term while the interactions contribute only to the

1. High-Temperature Zero-Field Specific Heat

The specific heat corresponding to the effective
spin-spin interactions C„was obtained from the
measured total by subtracting estimates for the
sample holder, the lattice contribution, and the
Schottky tail due to the level of E&, as described in
Paper I and Secs. II and III above. The results are
shown in Fig. 1, in which C„T /R is plotted as a
function of 1/T. It can be seen that the errors be-
come quite large at the highest temperatures and
that there is some uncertainty in the extrapolation
of the curve to 1/T = 0. Even so, we can obtain a
fairly good estimate of the intercept and a rough
estimate of the initial slope, and using Eq. (14) we
find

82 = (3.5 + 0. 4) (' K) 2

and

8~ = (5. 1 + 3.0) (' K)

The rather large error limits on 83 reflect an addi-
tional uncertainty due to the possibility that the next
term in the series may not be entirely negligible,
but the experimental results are clearly not accu-

2.5—

av 20-Y

e,—s l.75-'0.20~ ~P%2 ~ e Osage~p

K

I
5

l5-

I

O. I

I

0.2
(.K)-'

05

FIG. 1. High-temperature zero-field magnetic specific
heat of DAG, plotted as CzT /R as a function of T . The
three sets of experimental points, denoted by o, ~, and
~, represent the extreme limits and the best estimate
for the lattice and Schottky contributions which must be
subtracted from the total specific heat to obtain C~. Typi-
cal experimental uncertainties in the measured total spe-
cific heat are indicated by the error bars. Extrapolation
to 1 ~=0determines the asymptotic behavior of the form
C T /R = —'8 + —83/T, with 8 =3.5 + 0.4 ('K) and 8 =5.1
+ 3.0 ('K)3.
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FIG. 2. Analysis of high-temperature susceptibility
of DAG, showing effect of temperature-independent con-
tribution yvv and higher-order interaction terms in the
series expansion fEq. (15)]. «& =XT as measured on a
spherical sample (after Refs. 6 and 55); ooo =(X —X&V)T
with pvv=-0. 054 emu/mole; i= (X -y~)T —X(8) —82)/T
with X=10.3 emu'K/mole 8&=0.2'K and 82=3.5 ('K);——= estimated high-temperature asymptote corresponding
to &=10.45 + 0.15 emu'K/mole; 8&= (+0.20 + 0.15) 'K.

higher-order terms. Moreover, the effect of the
temperature-independent susceptibility can be quite
significant and care must be taken to ensure that
the various competing terms are taken into account
properly. In this respect DAG is no different from
many other magnetic systems, ' but our ability to
cross check specific parameters with independent
determinations makes it possible in the present
case to make proper allowance for these complica-
tions.

High-temperature susceptibility results extending
up to 20 ' K have been reported by Ball et al. ,

' but
these measurements were made on a loosely packed
powder sample and it was therefore not possible to
apply an accurate correction for demagnetizing ef-
fects. However this correction can be estimated
quite accurately by comparing the powder values of
I/g with corresponding values obtained by Wyatt"
for a spherical single crystal at temperatures below
4. 2'K. In the region over which the two sets of
data overlap there is an essentially constant differ-
ence, and using Eq. (17}one can estimate the ef-
fective value of N for the powder sample. This
value can then be used to correct the powder sus-
ceptibility to that corresponding to a 10(P/& dense
spherical sample. In Fig. 2 we plot as triangles
the values of p,»„,T as obtained in this way as a
function of T ' and it can be seen that the results
appear to fall quite close to a straight line, as might
be expected from Eq. (15) if the first two terms
were dominant. However, if this were the case,
the line would imply a Curie constant of about 12.2
emu ' K/mole and this is significantly larger than the
value 10.3 a 0. 2 emu K/mole calculated from the g

values determined from optical, thermal, and high-
field magnetization measurements. It is clear
therefore that a naive analysis of X gives a com-
pletely wrong result in the present case.

To resolve the discrepancy, we note first that the
high-field magnetization results give a direct mea-
sure of the Van Vleck temperature-independent
susceptibility (see Sec. IVA3 below), which though
small (0.054 emu/mole) is significant. Before one
can apply Eq. (15) one must of course subtract the
temperature-independent contribution, and the re-
sult of this subtraction is shown by the open circles
in Fig. 2. It can be seen that the extrapolation to
T '= 0 now gives a value for the Curie constant much
closer to our independent estimate, but there is now

a significant amount of curvature as T ' increases,
in contrast to the previous straight line l

This suggests that the third- (and possibly high-
er-) order terms in Eq. (15) are in fact not negligi-
ble and this is confirmed by our previous estimates
of 8, and 8, (see Sec. IVA1 above}. Since the high-
er-order coefficients in the expansion of X cannot
be obtained simply, we will only use the term (8,
-82) to estimate their effect, and in Fig. 2 we show

by the filled circles the result of plotting

X T=(X.g, .-Xvv}&-&(8i-82)/T

as a function of T, with 82= 3.5 ('K), &= 10.3
emu ' K/mole, and 8, = 0. 2

' K as determined self-
consistently from the final result. It can be seen
that there is now curvature only at the lowest tem-
peratures, due primarily to the neglected higher-
order terms in the series. These will presumably
have only a small effect on the points in the range
T =0.05 to 0. 07 ('K) ' and we can therefore obtain
a reasonably good estimate of the high-temperature
asymptote from these points. This is shown by the
broken line in Fig. 2 and it corresponds to

X„=10.45 + 0. 15 emu 'K/mole,

8, = (+0.20+0. 15) 'K,
where the error limits include the uncertainties in
the corrections due to g» and 82 as well as in the
experimental data. The small value of 8, is quite
remarkable and it will be confirmed by other mea-
surements (see Secs. IV A7 and IVAS). It arises
from an unusual cancellation of the interactions be-
tween otherwise equivalent neighbors due to the
predominantly dipolar nature of the interactions and
the complex structure of the garnet lattice. We
shall discuss this further in Paper IV.

3. High-Temperature High-Field Magnetization

The same sorts of difficulties complicate the anal-
ysis of the magnetization in higher fields and in
practice no useful parameters can be extracted from
these data although they are generally consistent
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with Eq. (21) and the parameters already derived.
However, the form of the field variation predicted
by Eq. (21) is interesting in that it explains the pre-
viously noted bump in (SM/&H, )r as a function of
field' at temperatures between 2. 5 and 3.8'K. If
we simplify Eq. (21) by taking 8, = 0, the term in ym

indicates a depression of the magnetization curve
below the ideal Brillouin function for S =-,', but as
the field increases t- 1 and the whole term tends
to zero corresponding to a relative increase in M.
This can give rise to an inflexion in the M vs H
curve and hence a bump in (SM/SHO)r. No attempt
has been made to analyze this effect in deta, il as it
appears to be an essentially trivial result arising
from the particular relation of 8&, 8~, and g, p.~HO.
However it is interesting to note that such a varia-
tion could not have been predicted on the basis of
mean field theory, so that the effect is intrinsically
a result of short-range order.

4. High- Temperature High-Field Specific Heat

Specific-heat measurements in magnetic fields
have only been made up to 4. 2'K and we would
really not expect the asymptotic high-temperature
form of Eq. (20) to be valid quantitatively at this
temperature. However, we may note that the cor-
rection terms D& and 5& become progressively less
important as Ho increases, so that we might hope
that the asymptotic form would fit the results for
the highest fields quite closely, at least near the
upper end of the measured temperature range.

The results of measurements at 14.33 kOe taken
from I are shown in Fig. 3, and it may be seen
that the curve does indeed follow an unmodified
Schottky anomaly corresponding to 6, = 5 ~ = 0 quite
closely. To allow for the interactions we fitted
Eq. (20) under several constraints and this pro-
vides some insight into the accuracy with which
the parameters can be determined.

When all of the data points between 1 and 4. 2 'K
were included, both the convergence of the fit and
the final standard deviation were poor. However
when only the points above 2. 5'K were included,
the convergence was rapid and yielded g, =11.1,
8, = —0. 57 'K, and 82 —- 4. 1 ('K) . Constraining 83
to the value previously found from the zero-field
specific heat, 82=3. 5 ( K)e, a good fit for g, and
8, could again be obtained, this time yielding g,
=10.8 and 8, = -0.46'K. Repeating this procedure
but including only data points above 3.0 'K gave
g, =10.2, 8, = —0. 23'K, and 8&=2. 0 ('K) with all
three parameters allowed to vary, and it gave g,
= 10.8 and 8, = - 0.47 'K with 8z again fixed at 3. 5
('K)e. The calculation corresponding to these
parameters is shown as the solid curve in Fig. 3.
When more points were deleted from the low-tem-
perature part of the curve the fitted parameters
fluctuated with the number of data points, showing

that scatter in the data was becoming important
and that fits to the remaining data points were not
meaningful.

From this analysis we can conclude that the high-
temperature specific heat in a field of 14.33 kOe is
represented quite well by Eq. (20) with

g, =10.6+0. 5,
8, = (- 0.4 + 0. 3) 'K,

8~=3. 1 a l. 0 ('K),
where the errors have been estimated to allow for
the limitations in the analysis as well as experi-
mental uncertainties. All three results are general-
ly consistent with other determinations of the same
parameters but, as we might expect, the accuracy
of several alternative methods is intrinsically high-
er.

In comparing the value of 8, with other results
we must note that 8& will be shape dependent and
that the present value applies to a sample with de-
magnetizing factor N= 5. 35. Using Eq. (16) we
can calculate the corresponding value for a sphere
and find 8 ~ = —(0. 13 +0.30)'K, confirming again
the unusually small value of 8&~"'

5. Lo~-Temperature Zero-Field Specific Heat

An early analysis of specific-heat measurements
down to 1.3 'K by Ball et al. ' has given a value for
the energy gap 4/ks = 7. 2 K, but at these tempera-
tures the excitation of multiple spin flips is not en-
tirely negligible and we might expect the fitted

f f to diff er somewhat for the true 40 ~ We have
therefore extended the measurements down to
0. 5 'K, as described in I, and this range should

I I I

Specific Heat of DAG with

14.33 kOe along [III]

0.4—

~ 0.3—CL'

0.2—

0.1—

0

FIG. 3. Comparison between the measured and calcu-
lated magnetic specific heat of DAG in a field of 14.33 kOe
applied along [111]. ooo = measured specific heat (lattice
and hyperfine contributions negligible) after Ref. 1; -—
= calculated for no interactions [Eq. (20) with p& =&2=0 and
g~ = 10.6]; = calculated curve including interactions
to second order [Eq. (20)] with Hg= —0.47'K, g2=3e5 ( K),
and go=10.8.
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FIG. 4. Low-temperature zero-field specific heat of
DAG compared with theory including hyperfine interaction
and the effect of low-lying spin excitations. ~ and ~ = ex-
perimental points (after Ref. 1); —-= calculated variation
[Eqs. (7) and (23) j using the hyperfine parameters esti-
mated in Eq. (8) and /k=7. 60'K; calculated
variation using an empirically fitted hyperfine contribu-
tion Ch /R= {3.1x 10 )/T and /k =7.60'K.

&0/ka = (7. 60+ 0 .05) 'K

and

certainly be low enough to give the correct asymp-
totic value without any further extrapolation.

However, we first have to isolate the true elec-
tronic specific heat, and this entails a sizable cor-
rection for nuclear effects. In principle this
should be straightforward and we can use the esti-
mate discussed in Sec. DC4, which we might ex-
pect to be quite accurate (+5%, say). However,
when we used a correction of the magnitude of Eq.
(6) we found that the remaining specific heat did not
in fact go to zero as it should, so that we must con-
clude that the correction used was not quite big
enough. This could arise either from a systematic
error in the measurements of the specific heat,
which is very small in this region, or from an er-
ror in the analysis of the nuclear effects, or from
an additional mechanism such as a magnetic im-
purity, which could also give a 1/T specific heat
in this region. The effect is quite small and the
simplest solution is to treat the total nonelectronic
correction in terms of a single adjustable constant
b «/Tm and to fit b„, to the data together with 40.
The possible error in such a procedure is likely
to be quite smaB especially in the region 0. 7-
l. 0 'K where the total correction is quite small.

The results of such a fit are shown in Fig. 4,
and it can be seen that the agreement is indeed very
good over the whole range. The corresponding
parameters are

As discussed in I, the low-field magnetization
leads to a zero-field susceptibility yo which agrees
with direct ac measurements, and we can analyze
the temperature variation of this using Eq. (24).
However, we must first subtract the ubiquitous
temperature-independent susceptibility y», and
for this we again use the value 0.054 emu/mole
obtained from the high-field data (Sec. 1V A 7).

g Iio-Ifvv to Eq. (24), we obtain a series of
values of b.,«(T) and these are shown in Fig. 5,
where we plot b,«(T) as a function of yo

—1(». As
explained before, this type of plot should be better
than a direct plot against T for extrapolating 4,ff
to T = 0 K, and it leads to an intercept

40/ka = (7. 54 a 0. 06) 'K,

in excellent agreement with the values derived pre-
viously. The close agreement, especially for the
points at the lowest temperatures, shows that the
estimate of y» is essentially correct since yo be-
comes equal to 2gvv at about 1 2 K

7.6— I I I I I I I I I I

/Ic =(7.54+0.06) K

7.0—

6.8
0 0.2 0.4 0.6 1.0

(X-Xy„)
FIG. 5. Determination of low-temperature energy gap

of DAG in zero field from measurements of the differential
susceptibility. ~f(T) calculated from measured values
of yp using Eq. (24). Extrapolation to Xp &vv = 0 (equiva-
lent to T=O'K) gives /k~=(7. 54+0. 06) 'K.

0.8

b„,= (3. 1 q 0. 3) x10~ ('K)a .
The difference between this value of 40 and the
earlier estimate is in the direction we might ex-
pect, inasmuch as the neglect of multiple excita-
tions will. generally increase the specific heat and

thus lead to smaller value of &,«. The value is
also in excellent agreement with optical determina-
tions' '" and this agreement provides additional
evidence for the validity of the Ising-model approxi-
mation. We shall discuss this point further in

Paper IV.

6. Low Temperature Low-Field Magnetization
and Suscepdbility
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TABLE I. Saturation magnetization and Van Vleck
temperature-independent paramagnetism from analysis
of isothermal magnetization curves.

1.138
1.254
l.355
1.464
1.506
1.600

Average

M 0(emu/cm3)

667. 2
666.4
666.0
665.4
665.4
667. 1

666. 2

)(vv(104 emu/cm')

12.7
12.2
12.3
12.7
11.4
12.4

12.3

7. Low Temperature High-Field Magnetization

The high-field magnetization is readily analyzed
using Etl. (31). At each temperature we plot
M/tanh(g, itsHp/2ks T} as a function of Hp and de-
termine the slope and intercept of the straight lines
to which the plots become asymptotic. Using the

correction (I-sgvv} discussed before, this leads to
the results shown in Table I. It can be seen that
there is no systematic variation of either Mo or
y», showing that the method of extrapolation is
valid, and taking the average we conclude that

Ms=666+4 emu/cm'

)Ivv = (12.3 a 1.0}&& 10 ' emu/cms,

where the error limits include estimates of syste-
matic errors. Using the value V=43. 8 cm for
the gram-atomic volume these results may also be
expressed as

Mp= (2. 90+0.02) && IO~ emu/mole,

corresponding to (5. 19 + 0.04) its /atom, and

)(«= (5.4+0.4}X 10 emu/mole,

ternatively one can use the available data down to
0. 5'K and assume that 4,« is approximately equal
to 4o in this range, but one must then fit a value
of b,« for the hyperfine and other low-temperature
contributions. We have used both methods and it
is of interest to compare the results.

In Fig. 6 we plot the values of d.,«(T)/ks cor-
responding to an applied field of 14.33 kOe as a
function C/R, and it can be seen that the asymptotic
value is reached for C/R& 0. 06. This value is
(9.62+ 0.05) K and this can be compared with the
value of g,psHp/ks = 10.1 'K which would corre-
spond to a simple Schottky tail with zero interac-
tions. The small negative difference indicates that
8, is quite small and antiferromagnetic, but we
shall defer extracting value for 8, until we have
analyzed some of the other results.

Measurements in various fields between 8 and 14
kOe were made down to 0. 5'K as reported in I,
and these were fitted to expressions of the form

HP e'tf( P} ( g (H )/k Zv) off
equi O a +

Z, P
B

(36)
for each value of Ho. To ensure that this asymptot-
ic form should be valid, only values of C/R&0. 06
were used, as indicated by the results shown in
Fig. 6. The resulting values of hp(Hp) are plotted
as a function of Ho in Fig. 7. It can be seen that
the results lie on a good straight line which has an
intercept close to but not at the origin. From the
slope of the line we can get a value of g„

g, = 10.6 + 0.2,
and from the intercept we get

h& = —670+ 200 Oe,

which corresponds to

&p/ks= 28, = (-0.470+0. 140) 'K.

where 1 mole is again understood to denote No ions
of Dys'. This estimate of X» may be compared
with the value 6. 2 x 10 a emu/mole previously de-
termined for 5% Dys' in diamagnetic YAG. P The
small difference is readily explained by the some-
what smaller crystal-field splittings found in the
diluted system. "' '4 As we shall see later, the
result for Mo is in excellent agreement with a
number of other determinations of the effective
magnetic moment.

1QQ

I
& 9.5

1.3
l

1.6
1

1.9
t

do/ks (9.82+0.05) K

S. Low-Temperature High-Field Specific Heat

The specific heat in high magnetic fields may be
analyzed in the same way as the zero-field specific
heat. If one uses only measurements above about
1.2 'K one can neglect the nuclear contributions,
but it is then necessary to extrapolate the fitted
values of 4,« to obtain the correct Ap(Hp). Al-

C/R

FIG. 6. Variation of ~~(T)/k~ with T for DAG in a
field of 14.33 kOe applied along [111], as calculated from
specific-heat measurements using Eq. (23). The asymptot-
ic value which is found for C/R& 0.06 is (9.82 + 0.05) 'K.
This may be compared with g~psH p/ks = (10.1 a 0.2) 'K
which would be expected if there were no interactions,
taking g~ = 10.5 + 0.2.
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FIG. 7. Low-temperature energy gap (8&) for BAG
in applied fields along [111]. The straight line represents
the best fit corresponding to 60(HO) =g p~wo+~g),
g, =10.6+ 0.2 and h&=-670+ 200 Oe. The intercept h&

is related to 8& I'see Eqs. (27) and (29)] and after applying
a correction for shape (Eq. 16) it gives e~ '= (0.04
+ 0.07) 'K.

9. Summary of Single-Ion and Collective Parameters

The parameters determined in the previous sec-
tions are summarized in Tables II and III, which
include also corresponding values reported in the
literature. It may be seen that there is generally
good agreement between the many experiments
which have been performed on DAG. We shall
defer a discussion of the collective parameters
until Paper IV since this will involve the details

As before, this value corresponds to an ellipsoid
with X= 5. 35, and using Eq. (16) to correct the
value to that of a sphere we get

8""'"=(0 04+0. 07) 'K.

The fitted values of b,«showed no field depen-
dence and gave an average value 5,« = (3.3 + 0. 5)
& 10 ' ('K}, in good agreement with the value de-
termined in zero field. The fact that b,«does not
vary significantly with Hp suggests that the differ-
ence from the calculated value of 3.6 (1 —0. I/T)
& 10 ('K) may perhaps be due to systematic er-
rors in either the experiment or the analysis and
not due to magnetic impurities, but at the moment
we are not able to resolve this question.

In any case there is no doubt that e~"' is again
determined to be very small and that g, is close to
the value we find from other data (see Sec. IV A4).

The parameters characterizing the phase transi-
tion from the paramagnetic to the antiferromagnetic
state are quite different from the single-ion and

collective parameters discussed in Sec. IVA.
The latter are related by expressions which are
asymptotically exact, and the statistical approxi-
mations depend on the model Hamiltonian in a very
direct way. The critical parameters on the other
hand generally imply very profound statistical
approximations and it is by no means trivial to
relate most of them to our model Hamiltonian.
However, it seems appropriate to extract a number
of such parameters from the data at this time so
as to provide a well-defined basis for further theo-
retical work on DAG. We can identify four charac-
teristic regions on the phase diagram as we shall
consider each in turn.

1. Zero-Field SIpeeifie Heat near T&

A preliminary analysis of our results has been
given previously ' but there are a number of im-
portant developments which warrant further dis-
cussion. Current theory indicates that specific
heat should diverge at T„according to

C T —T~A, +B, , (37)

where the suffix + indicates T ~ T„and itis custom-
ary to write e, = e and e = o, . This expression
contains seven undetermined parameters and it
is clearly not easy to fit them unambiguously, even

of the interaction Hamiltonian, but we can readily
correlate some of the single-ion parameters using
the discussion already given here.

In particular, if we assume that g~ and g~ are
small compared to g~„we can relate the empiri-
cally determined values of g, to g, using Eq. (1),
and we can then also relate X and Mo(111) to g,
using Eqs. (15}and (21). The values of g, derived
in this way are shown in Table II and it can be seen
that they are in excellent agreement with the more
direct determinations using fields applied along one
of the local z axes. All the variable data are thus
seen to be consistent with the conclusion that the

g tensor in DAG is indeed very highly anisotropic,
as has been assumed for some time.

The collective parameters can be checked in a
purely empirical way, since we have several in-
dependent determinations of each of the quantities

60, Bf»(0), 8„and 8z. We again find generally
good consistency, lending support to both the ex-
perimental results and the general method of
analysis. The relationship of these four param-
eters to a microscopic Hamiltonian of the form
given in Eq. (3) will be discussed in paper IV.

B. Determination of Critical Parameters
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TABLE II. Single-ion parameters for DAG.

Parameter

gz (emu K/mole)

Mp (111) (emu/cm )

Xvv (emu/cm3)

ap(A)

Vp (cm )

C~ T2/a ( K)'

8& (K)

Ej/kg ('K)

Value

18.1 + 0.2
18.0

18.2 + 0.2
18.3~ 0.3'
18.2+ 0.2
18.0+ 1.0
17.5+ 0.9

18.7
18.4+ 0.5
18.3 ~ 0.4

0.5 + 0.2

~g. +g, ~«5
0.73 + 0. 15; 0.4 + 0.2

10.45 + 0.15

666~ 4
670

(12.3 + 1.0)&&10 4

12.04+ 0.020

43.8 + 0.2

2.8 x 10 (1—0.1/T)

(3.1 + 0.3) x 10 3

500 ~ 30

VO. 1'
70 3
vo. o'
VO. 2'

69

Method of determination

Magnetization: H tl [111]
c
d

Low-T, high-H specific heat~
Curie constant
Neutron scattering I
Optical absorption"

1

EPR of Dy
' in YAG

Optical absorption ~

Mossbauer effect
EPR of Dy in YAG"

High-T susceptibility

Low-T, high-H magnetization
c

Low-T, high-H magnetization ™
x-ray diffraction '

Calculated from x-ray structure'

Calculated from EPR and
Mossbauer results (Ref 1) [Eq (8)]

Low-T zero-field specific heat"

Estimated from specific heat of
YAG and LuAG~

Optical absorption ~

1

s
Raman scattering t

u

'3'ore accurately this value corresponds to ~[|g, + 2g„)'
+ tg2+ 2g2) «2]

this work.
'Reference 20, neglecting yvv.
Reference 22, neglecting yvv.

'Assuming single value for g, =g /W.
More accurately this value corresponds to (g„+g

2) i/2

'Reference 21.
"Reference 10.
Reference 8.

~Reference 11.
Reference 6. The value of g» is a somewhat more

accurate redetermination of the published value 17.7 + 0.7
[M. T. Hutchings (private communication)]'.

Reference 23.
Includes an estimated contribution of —0.02 x 10 4

emu/cm3 from diamagnetism.
'Allows for variation between different samples and the

effect of thermal contraction.
'References 15, 17, and 1.
Reference 37.

~Reference 1. Note that OD was defined in terms of only
the Dy ions. Including all atoms increases HD by a factor
1.88 to (940 + 60) 'K.

'No error limits were quoted for any optical determina-
tions of E& but the uncertainty is probably - 1 cm . Within
this range no difference was found between measurements
made at 77'K (Refs. 8, 10, 11, and 14) and those made at
1.5'K (Ref. 79).

'Reference 12.
~Reference 79.
"Reference 14.

if good experimental data are available. However,
in practice the problem is even more difficult, as
there is always some rounding of the peak and the
form of this cannot even be parametrized at the
present time. Judging from the general similarity
between the results found for four different DAG
samples' '9 it seems not entirely unlikely that at
least some of the rounding may in fact be an in-

trinsic property in DAG and not only due to im-
purities or random strains, as is generally as-
sumed.

However, if we neglect the rounding for the pres-
ent and concentrate on the region which seems
relatively unaffected (we can never be quite sure
how large this is), we meet the difficulty that the
asymptotic form of Eq. (37) should in fact be valid
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TABLE III. Characteristic parameters determined from
asymptotically exact theory.

Parameter

~la, ('K)

—4Up/R ( K)

Hi'11(0) (Oe)

esphere (oK)
1

Value

7.60 + 0.05
7.2+ 0.7

7.54+ 0.06
7.4

7.62+ 0.1~
7. ~8 + 0.1~

7.68 a 0.20
7.6 ~ 0.6

3770 + 40
3780 ~ 40
3800 + 60
3900 x 200

0.04+ 0.07
0. 20 + O. lv

—0. 13 * 0.30

Xlethod of determination

Low-T zero-field specific heat
b

Low-T susceptibility
c

Optical absorption 4

e

Integrated specific heata

Low-T

Low-T
Optical

b
magne tiz ation a

f
latent heat a

absorption '
Low-T high-field specific heat a

High- T susceptibility»
High-T high-field specific heat

e, ('K)'
3.7
3.1

High-T

High-T

zero-field specific heat

g
high-H specific heat

e ('K)'
6.0

High-T zero-field specific heat
g

'This work.
Beference 58.

'Reference 55.
Reference 1Q.

'Reference 11.
Reference 22.

~Reference 56.

only for values of e = 1(T—T„)/T„I less than some
e, - 10-4, so that if there is any significant round-
ing, the true critical behavior will be completely
concealed. It is quite pointless therefore to use an
expression of the form of Eq. (37), even though
an apparently satisfactory fit can be obtained.

Thus in our preliminary analysis we found an
excellent fit to Eq. (37) with a =0 (corresponding
to a logarithmic divergence) for 10 & e & 5 x 10~,
but this must now be regarded as an entirely em-
pirical statement, and not related to theoretical
predictions of the asymptotic form. It is more
than likely that a number of other critical-point
sPecific heat ana-lysesrePorted in the literature
are subject to the same limitations.

In an attempt to extend the range of the theoret-
ical predictions, Gaunt and Domb' constructed an
interpolation formula linking the exact low-tem-
perature expansion to the asymptotic form, and they
were able to obtain a good fit to our data using only
one adjustable constant TN. In particular, they
were able to show that the interpolation formula
approximates closely to a logarithmic form in the
range over which our data indicated such a varia-
tion, even though the asymptotic variation corre-
sponds to o. = 8. However, any such fit can also
not really be regarded as unique since it is neces-
sarily based on a nearest-neighbor Ising model
and thus neglects the complex nature of the actual
interactions in DAG. It can be argued that these
details are not important in the critical region, but
they wil. l surely affect the interpolation region to

some extent. We can conclude from all this that
it is going to be extremely difficult to fit the data
below TN with any expression based on simple
theoretical approximations, and it would seem that

only a detailed numerical calculation of the appro-
priate interpolation formula will ultimately prove
to be completely satisfactory.

In the region above TN the situation is slightly
more hopeful since the asymptotic form should be
valid over a considerably wider range (e, -10 ),
but as we shall see, there are still severe difficul-
ties. The main problem, of course, is the fact
that we still have to fit four parameters to an es-
sentially smooth curve and this is hard to do un-

ambiguously.
Due to the rounding we are first faced with the

problem of determining T„which will now not cor-
respond to any infinite singularity. It is most
tempting to choose the temperature of the experi-
mental specific-heat maximum T „, but Gaunt

and Domb have argued that the effect of the round-

ing will in fact be such that the true T„will, be
somewhat above T „. Since there is no direct way
of determining this difference we shall carry out

three separate analyses taking T~= T „+1.3 mK,
T „+0.3 mK, and T -0.7 mK in turn, and we

shall compare the parameters resulting from the
three different choices, We prefer this approach
to a straightforward simultaneous fit of all four
parameters since it demonstrates most clearly the
importance of choosing the correct T&, apoint whose
significance is frequently underestimated in analy-
ses which do not display this effect explicitly.

Another factor whose importance is sometimes
underestimated6' is the constant B, which, though
small compared with the singular term near T„,
may be quite comparable in the region over which
the fit to Eq. (37) is made. If, as in the present
case, one has closely spaced and accuratespecific-
heat data, one can eliminate the term B, by numer-
ically differentiating the experimental results with
respect to temperature and one can then plot
In!S/ST(C/R) I as a function of 1n(T —T„)/T„ for
selected values of TN to fit corresponding values of
1+ ~ and A, . Substituting these values back into the
expression for C/R one can then find B, The re-.
sults of this procedure, using the measurements
on sample I of Paper I, are shown in Fig. 8, '
and the corresponding parameters are summarized

in Table IV, which includes also the values cor-
responding to a fourth choice for T„=T,„+0.6 mK.
The variation of a, A„and B,with T„—T,„ is
shown graphically in Fig. 9.

It canbe seenthat changing T~byonly four parts in
10 affects the temperature range over which a fit
is obtained and it also varies the corresponding con-
stants o, A„and B, very significantly. If we as-
sume that the deviations from a straight line in
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FIG. 8. Log-log plot of I (8/BT)(C/R) t as a function of (T —T~)/TN, (T & TN), for three choices of Tz. {a) corresponds
to the value Tz= T~+0.0003'K; (b) shows the effect of changing TN by + 0.001 K. The slopes of the fitted lines give
corresponding values of —(1+ 0.) and hence indicate that 0.1 ~ n ~0.3. Corresponding values for the parameters A, and

B, are given in Table IV.

Fig. 8 at the lowest values of (T- T„)/T„are
genuine and not due to rounding effects, we might
conclude that the middle choice of T„gives the
best fit, but the fit for the other values is almost
as good, and it is really not possible to distinguish
between them using only the available experimental
data. It is almost certainly more significant that
the upper choice for T~ leads to an 0 close to 8 ~

the value currently accepted as the correct expo-
nent for three-dimensional Ising models, and it is
interesting to note that this T„would also be close
to the value T „+1.0 mK proposed by Gaunt and
Domb on the basis of their analysis of the data be-
low T„.~3 Moreover, we may note that for this
value of T„ the other two constants are also close
to the theoretical values calculated by Sykes
et cl. 4' ' for various cubic Ising models with near-
est-neighbor interactions (see Table IV and Fig.
9). There is some indication~ that the theoretical
values for other lattices and interactions will not
be too different, but a really critical comparison
with theory is not possible at this time.

Part of the difficulty in analyzing the specific
heat lies in the nature of singularity for T& T„
which makes the fitted parameters so extremely
sensitive to the particular choice of T~, and in
this connection it is of some interest to compare
the variation of the parameters a, A„and B,
with T& with that found for the critical indices
P, y, and v determined by neutron scattering. 6' '
In that case, a change in T„of a 1 mK resulted in

0.4— —1.6

0.3— —1.2

4+c B+

0.2— —0.8

0.1— —0.4

0 I I

0 1

TN-T „(m K)

0
2

FIG. 9. Critical-point specific-heat parameters for
T &TN as a function of T&-Tm~, with T~=2.543, 'K.

shows variation of n (left scale); ~, g show variation
of A, and -B, (right scale). The theoretical value a =~8

would correspond to TN —T~=1.05 mK and for this
choice of TN we find A, =1.10 and B,= —1.17. These
values may be compared with the results of the model
calculations given in Table IV, which indicate A, = 1.11
and B,= —1.24.

changes of about a 5, + 15, and a 12%, respectively,
in the fitted values for p, y, v, which may be corn-
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TABLE IV. Critical-point specific-heat parameters
for T & TN, showing the effect of choosing different values
for Tz, together with theoretical estimates for three cubic
Ising models.

fit is truly unique and not simply the result of
some ephemeral prejudice.

2. H-T Phase Boundary near T&

T~- T~ (m'K)

1.3
0.6
0.3

—0.7

theory sc
bcc
fcc'

0.09
0.14
0 ~ 22
0.33

0.125
0.125
0.125

1.58
0.91
0.42
0.19

1.136
1.106
1.088

B,
—1.64
—0.95
—0.37
—0.08

—1.244
—1.247
—1.242

In the presence of fairly small applied magnetic
fields (& 2. 0 kOe) the observed specific-heat peaks
remain quite sharp (see I), and while it was not
possible to examine the shapes of the peaks in any
detail, it was possible to estimate the variation of
the ordering temperature with field quite accurate-
Ly. For each pair of values of Ho and T the cor-
responding internal field H, was calculated using

~Values calculated in Ref. 65 for the case of three cubic
Ising models with nearest-neighbor interactions.

"All temperatures measured relative to T~= (2. 5437
+ 0.010) K for sample 1 of Ref. 1.

See also Ref. 64.

H] = HD —NM, (33}

and a phase boundary of H', vs T could thus be con-
structed. To analyze the shape of the curve, the
results were fitted to an expression of the form

H', = A, [(T„—T)/T„]" (39)

pared with the change of more than + 50% in a and
+(200 —400)% in A, and B, for a similar variation
in T„here. It is clear therefore that the specific-
heat parameters wilL always be intrinsically more .

uncertain, and we must conclude that it is simply
not possible to set very close limits on the param-
eters in Eq. (37), even when as in the present
case there are relatively good experimental results
available (4T/T„- 2 x 10 ', n C/C & 0. 04). The
only hope of improving this situation would seem
to involve some additional information„experi-
mental or theoretical.

The best solution, of course, would be to elim-
inate or substantially reduce the rounding but
this may just not be possible and a useful alterna-
tive would be a more refined analysis taking ac-
count of the rounding, which would then also allow
the use of experimental data closer to T„. It would
also make it possible to relate the results below
T„ to those in the range above, and this should help
to pin down the effective critical point. Another
approach would be to construct a theoretical in-
terpolation formula to allow a fit to the data over
a greater range of (T- T„)/T„, as discussed for
the region below T~, but this is again complicated
by the particular lattice structure of DAG and the
fact that the interactions are not restricted to
nearest neighbors. At this stage we can therefore
only conclude that the specific heat above T~ is
generally consistent with the variation predicted
by the available approximate models, but a more
detailed comparison is not possible.

It should perhaps be reemphasized that the dif-
ficulties which we have encountered here are not
really peculiar to DAG and that similar analyses
on other materials may also be subject to the same
problems. Any purely empirical analysis of the
specific heat in the critical region should therefore
be examined very closely to ensure that the proposed

and it was found that

n=0. 50+0.02,

A, =6.54~0. 02 kOe,

T„= (2. 54 + 0. 01) 'K .
The value of —,

' for n is consistent with present
theoretical modelss which all agree that the
phase boundary should be symmetrical in H and con-
tinuous through the point (T„,H=0). To illustrate
how well Eq. (39) fits the data, we have plotted in

Fig. 10 (H f)~ vs T, and it can be seen that the fit
is good to fields as high as 1.8 kOe, corresponding
to a n T„/T„=0.08. At higher fields the experi-
mental curve begins to increase more slowly and
at T= 0 'K, H', tends to about 3.SkOe (see below),
compared with the value A, = 6. 54kOe.

3. Magnetic Properties near Tricriticai Point

The experiments described in I showed that the
nature of the phase change varies continuously
along the phase boundary, becoming sharper as
H increases, until it suddenly becomes first order
at a point T, =1.66'K, H;'=3. 25kOe, and M, =250
emu/cm'. The approach of the first-order transi-
tion is signaled already above T, by a marked in-
crease in the maximum slopes of the M -H, iso-
therms, which appear to be definitely finite (with-
in the experimental resolution) but tend to infinity
as T- T,. There is no detailed theory of any kind
for this behavior but we can guess that the diver-
gence may be described by a law of the form

(40)

where P is a constant. As explained in I it was un-
fortunately not possible to obtain experimental val-
ues of X, very near T„but we can obtain approxi-
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FIG. 10. Phase boundary for DAG near TN for fields
along [111). All fields have been converted to the sample-
shape-independent internal field H& using Eq. (38). The
solid line through the experimental points represents the
relation H&=Af ff[(T~ —T)/T g)" with T~= (2.54+ 0.01) 'K,
Afff 6 ~ 54 + 0. 02 kOe, and g = 0.50 +0.02 ~

FIG. 12. Temperature dependence of the magnetization
discontinuity across the first-order phase transition in
DAG for fields along [111]near the tricritical point. The
log-log plot shows that the variation of Ldll is consistent
with a law of the form ~/MO=R[(T, —T)/T~) with R
= 1.96 + 0. 09, p = 0.65 + 0. 05, and T = (1.66 + 0. 01) 'K
as determined from the divergence of y~.

mate values for the parameters in Eq. (40) from
data at somewhat higher temperatures. Figure
11 shows a plot of in', as a function of ln(T —T,)/T,
from which we find

~= —1.3+0.1,
P=0. 1+0.03 emu/cm,

T, = (1.66+ 0. 01) 'K.

X,T/» =P'[(T- T )/T )', (40a)

where X is the Curie constant. Using this form
we find

P =1.05+0. 25,

m = —1.2+0. 1.

Equation (40) may also be rewritten in a possibly
more convenient dimensionless form

IOO Below T, the magnetization shows a typical first-
order discontinuity, &M=M'-M, which tends to
zero as T increases towards T„and we can at-
tempt to fit another asymptotic law to this varia-
tion. We shall assume for simplicity that

IO.O— (M' —M )/Mo-—R [(T, —T)/T, )', (41)

(
BfnU)

I.O-

O
I n I

axIO-~ IO-l ~BIO-' IOo

(v-T, ) z T,

FIG. 11. Temperature dependence of the critical sus-
ceptibility along the [111]phase boundary of DAG defined
by ~= (8~/&&;)~. The log-log plot shows that the diver-
gence of y~ as T approaches the tricritical point is con-
sistent with a law of the form y~= P[(T—T&)/T&] with
P=0. 10+ 0.03 emu/cm, T~= (1.66+ 0.01) K, and m

= —1.3 +0.1.

though it may in fact be more appropriate to fit
separate laws of this form to M' and M individual-
ly. '3 As explained in I, it is experimentally very
difficult to make any really accurate statements
about M' or M so that we must content ourselves
with the simpler form of Eq. (41). Choosing T,
to have the same value as indicated by the analysis
of y„we obtain the plot of ln(AM)/Mo as a function
of ln(T, —T)/T, shown in Fig. 12. The fit to a
straight line is quite good but we must allow for
possible uncertainties in both T, and 4M and we
finally conclude that

p= 0. 65+0.05,

R = 1.96+0.09.
The only quantitative theory for this type of be-

havior is given by the mean field approxima-
tion, s '4'" and this predicts p=1 in apparent con-
tradiction to the present results. This is of course
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P = M T = ' [H', (T) —H;(0}],

P= (M —M')T= ' [H;(T) -H f(0)].

(42)

not very surprising, but it is clear that more real-
istic theories will have to be quite subtle to repro-
duce the type of behavior which is observed. There
have recently been some new theoretical conjectures
by Griffiths concerning the nature of tricritical
points' and it will be interesting to see if these will
explain our results. In this connection it must be
cautioned that the present experiments do not really
cover the region in the immediate vicinity of the
tricritical point, so that the true asymptotic be-
havior could well be different from that inferred
here if the critical region were in fact quite small.
In any case it would seem clear that further the-
oretical and experimental studies of the region of
the tricritical point are called for.

4. Extrapolation of Critical Field to T = O'K

Even in the absence of a general theory of the
first-order phase transition, there is some inter-
est in extrapolating the phase boundary to T = 0 'K
since in this limit a very simple analysis is again
poss ible.

One way of estimating H'(0) is to use the fact
that M' and M tend to Mo and 0, respectively, '
as T-O'K, so that plots of H f(T) against M'(T)
and M (T) should extrapolate to a common value
of H'(0) as M'-MQ and M -0.

This extrapolation was carried out in the manner
prescribed by molecular field theory. " From the
asymptotic approach of H', M', and M- to their
T = 0 'K values we find the following relationships:

tion is needed. On the other hand, these measure-
ments only yield values for the external fields
Ho(T) and Ho(T), and the correction to'H, '(T) would
again require knowledge of M(T) which is not avail-
able in the interesting range. However, if we are
interested only in T = 0 'K, we can apply the de-
magnetizing correction without any additional mea-
surements, since we know that the correction will be
approximately zerofor Ho(0) and NMofor Ho(0). As be-
fore there will be small additional corrections due to
the temperature-independent sus ceptibility but these
can also be calculated. Corresponding to the values of
mo given in Ref. 76, there willbe additionaldemagnet-
izing fields Nmo= 250e and Nmo= 560e which
must be applied to Ho(0} and Ho(0), respectively.
Figure 14 shows graphs of h =Ho(T) —Nmo and h'
=Ho(T) —N(Mo+ mo) as functions of T, and it can
be seen that both extrapolate to approximately the
same value of T= 0 'K, with dH'/dT tending to zero
at T-0 'K. The small difference between the two
limits is almost certainly due to an error in the
demagnetizing correction to Ho(0), since this
amounts to more than 3.5 kOe, so that the dis-
crepancy corresponds to an error of only about
2%. We therefore attach a much larger weight
to the extrapolated value for Ho and we conclude
that this method gives

H', (0) = 3800+ 600e,
in excellent agreement with the value obtained pre-
viously.

Both values are also in good agreement with a
determination by Bidaux et al. ~2 who made magne-

Plots of f and g' vs H& should thus be straight
lines, having slopes proportional to g, and inter-
cepts equal to H, (0) Using .the measurements
given in I, corrected for second-order effects by
Eq. (5), we find the results shown in Fig. 13, and
these yieM the values

H f(0) =3770+400e, g, =10.1+1.0.

Although the errors in the slopes are larger than
we would have liked, the length of the extrapola-
tion is quite short and the uncertainty in H;(0) is
quite small. A linear extrapolation of M' vs
H', yields a critical field about 5 Oe greater than
the above value, but there is no theoretical justi-
fication for preferring this latter method.

A value of H', (0} can also be obtained by extrap-
olating the results of the isothermal field sweeps
described in I. The advantage of using these mea-
surements in the present case is that they extend
down to much lower temperatures than the magnetic
moment data, so that a much smaller extrapola-

300

(emu 'K)

200

IOO

0
3550

I

3600 3650 3700
Hc (Oe)

3750 3800

FIG. 13. Determination of critical field at absolute
zero, H&(0), from low-temperature magnetization mea-
surements with H along [111]. ooo =experimental values
of p =M T and ~ +=experimental values of f' = (Mo
-M') T, where M denote the end points of the first-order
discontinuity [corrected for small second-order effects
according to Eq. (5)], and MD=666 emu/cm is the satura-
tion magnetization. The intercepts on the abscissa give
Hc~(0) =3770 + 40 Oe.
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fact, there is no indication of any kind that such a
phase is really present in DAG and it seems safe
to assume that the interactions are such as to make
it energetically unfavorable. The microscopic con-
ditions for this have been discussed by Gorter and

van Peski-Tinbergen, "and will be reviewed in

Paper IV.

5. Thermodynamic Functions at Critical Points

H -N (M +m')- ~

34-
I

0.5
I a

I.O

I

l.5

tization measurements at very low temperatures
(0. 37 'K), and they are also in agreement with
values estimated from optical data, "but these were
obtained at higher temperatures and are not quite
so accurate.

All these results confirm an assumption which
we have made implicitly throughout but which is
not necessarily valid under all circumstances,
namely that there are really only two phases, the
antiferromagnetic and the paramagnetic. Since
the interactions are not identically Ising-like it
would appear possible that there might be another
phase, corresponding to the normal spin-flop phase
in more isotropic antiferromagnetics, and this
would appear at the upper end of the first-order
transition, before the final transition to the para-
magnetic state. Experimentally such an extra phase
would manifest itself as a flattening of the upper
corner of the magnetization curve, and this in turn
would make 4M (Mo at T= 0 K. The agreement be-
tween the different extrapolations of the upper and
lower ends of the observed phase transition indi-
cates that hM(T= 0) is in fact very close to Mo and
this shows that the spin-flop phase if present would
be restricted to a very narrow range of field. In

FIG. 14. Determination of critical field of DAG at
absolute zero, H&(0), from low-temperature latent-heat
measurements with H along [111]. ooo = experimental
values of h =Ho —Nmo and oo=experimental values of
h'=H() -N(MO+mp), where Ho denote the end points of the
first-order transition as measured on a sample with
demagnetizing factor N, Mo is the saturation magnetiza-
tion (666 emu/cme), and m~o are small second-order cor-
rections as given in Pef. 76. Meally, the two curves
should extrapolate to the same value at T = 0 K giving H&(0).
The error bars indicate a 2% uncertainty in the demagnetiz-
ing corrections plus the estimated errors in determining
FPz. Combining the weighted results gives H';(0) = 3800

60 Oe.

6. Summary of Critical Parameters

The parameters determined in the previous sec-
tions are summarized in Tables IV-VI. In contrast
to the single-ion and collective parameters, none
of these have any immediate microscopic interpre-
tation in terms of our simple model Hamiltonian,
since they describe complex many-body effects
which can only be discussed using detailed calcu-
lations of the statistical mechanics. Unfortunately
none of the calculations which have been made so far
are directly applicable, since DAG has an unusual cu-
bic-lattice structure and interactions which extend be-
yond nearest neighbors, "but we might hope that
the wealth of data now available will stimulate such
studies. One may also hope for further develop-
ments in the general theory of tricritical points which
may make it possible to interpret some of the new
parameters which have been determined here, but
at this stage they can only be viewed as providing
an empirical description of an interesting and com-

TABLE V. Internal energy and entropy at critical points
after Ref. 1.

T, H(

o0 0

Tz, 0
Tt~ H t

0, 0

U/R

—0.87 + 0.03
-0.92 + 0.05
—1.92 + O. O5

S/R

0.702 + 0.010
(0.693 calc)
0.518+ 0.005
0.330 + 0.010

0

It may be of interest for later microscopic cal-
culations to list some of the values of the two prin-
cipal thermodynamic functions, the internal energy
and the entropy at a number of critical points on the
phase diagram. Taking the zero of U at T= ~"
and that of S at T = 0 K, we find from the curves
given in I the values listed in Table V. These re-
sults are generally in good agreement with earlier
somewhat less accurate measurements made on a
polycrystalline sample of DAG. "

Most of the thermodynamic parameters will
become significant only in the context of detailed
statistical calculations, but at least one of them
[U(0, 0)) can be interpreted directly in terms of
a simple picture of the ground state as discussed
previously. We shall pursue this analysis in Paper
IV.
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Region

Zero-field critical point

Phase boundary near Tz

Tricritical point

Parameter

T„(K)

Alii (k&e)

T, ('K)
R
P

P (emu/cm3)

Value

2.55+ 0.01'
2.49 + 0.01
2. 54+ 0.02~
2. 517 + 0.01
2. 545 + 0.01

0.2+ 0.1
g

0.26 + 0.02
1.16 + 0.04
0.61+ 0.02
0.12+ 0.10

6.54+ 0.02

0.50 + 0.02

1.66+ 0.01
1.96+ 0.09
0.65+ 0.05
0.10+ 0.03

-1.3+ 0.1

Method of determination

Susceptibility b

Specific heat
Neutron diff raction ~

Neutron scattering ~

Specific heat

Specific heat T &Tz
Specific heat T & TN
Neutron scattering T & Tz"
Neutron scattering T& TN'

e
e

Magnetization and specific
heat in low fields

Magnetization and specific heat ~

Magnetization T & T&
~

f
Differential susceptibility
T&T r

The error limits for TN represent estimates of the calibration uncertainties which are generally much larger than the
errors in locating Tz on a relative temperature scale. The apparent discrepancies between the different Tz values are
almost certainly due to genuine differences between the samples studied, as discussed in the text.

Beference 6.
'Reference 58.
Reference 21.
Reference 68.
This work.
Data for T & Tz could be fitted by C/R =A ln(T&- T)/TN+ B with A =-0.485 + 0.015 and B =0.45 + 0.06 for 3 && 10 4

& (TN —T)/TN & 3 x 10, but this is outside the true critical region, as discussed in Ref. 60.
"Reference 67.

plex phenomenon.
It is perhaps worth commenting at this point that

there are also still some experimental problems in
the detailed understanding of DAG related to the ob-
served variation in the value of T„and the "rounding"
of high-resolution data in the immediate vicinity of
T„. Thus one can find in the literature different esti-
mates for T& ranging from 2.49 to 2. 55
a surprisingly large variation in view of the relative
ease of measuring temperatures in this region.
Some of these differences may in fact be due to un-
certainties in absolute temperature calibrations,
for which errors were generally not quoted, but to
some extent the variation is real and must be as-
cribed to actual differences between the samples
used. In particular, the low value of 2.49'K was
only found for a flaine-fusion-grown polycrystalline
sample which also contained a small impurity of the
perovskite DyAlO~, ' but even single crystals grown
by the same method showed T~'s varying over
0. 023 K. ' At this stage we can therefore only

conclude that "good quality" DAG has a T„which
falls in the range (2. 53+0.02)'K, with any partic-
ular sampl. e having a value which can be deter-
mined to within + 0. 001 'K, plus any uncertainty
on the absolute-temperature calibration.

Effects of this kind are of course important only
in quite detailed studies involving the correlation of
several different sets of experimental data, but it
is the possibility of just such comparisons that
makes DAG such an attractive material for thorough
analysis. For the moment, by far the biggest prob-
lems lie with the theorybut one may hope that the
experimental situation will also be clarified in the
future.

V. SUMMARY

In this paper we have analyzed the available mag-
netothermodynamic measurements on DAG using
a semimicroscopic approach. Without considering
specific details of the spin-spin interactions, it has
been possible to show that DAG in a magnetic fieM
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along a (111)axis closely resembles a two-sublat-
tice Ising antiferromagnet and we have considered
in some detail the various factors which might cause
small deviations from the ideal Ising approxima-
tions. It is shown that these are indeed all very
small in the case of DAG, but this is not necessari-
ly so in other systems which might sometimes ap-
Pem to be Ising-like.

Using the Ising-model approximation we have
then derived a number of asymptotically exact gen-
eral expressions relating the thermal and magnetic
properties to certain combinations of terms in the
microscopic spin Hamiltonian, and we have used
these to determine a number of characteristic
parameters describing DAG. These parameters
are of three kinds.

The first are single-ion parameters which de-
scribe the properties of the individual Dy3' ions in
their interactions with applied fields, their nuclear
moments, and optical radiation. These parameters
are summarized in Table II, which also includes a
number of other useful constants describing the
general properties of DAG.

The second kind are collective parameters, which
involve the effective spin-spin interactions in var-
ious combinations to describe macroscopic prop-
erties in the regions where asymptotically exact
theoretical expressions are valid. The results of
this type of analysis are summarized in Table III.
Clearly, all these parameters are not independent,
but we shall defer any correlation until Paper IV of
the present series, 4 where we shall reduce the
parameters to a single set consistent within the
limits of experimental uncertainty and extract a
corresponding set of micros eopic parameters. A
preliminary analysis of this sort has already dem-
onstrated that a general. ly satisfactory solution can
be obtained (see also Refs. 50 and 55), but

we shall show that some further refinement is, in

fact, possible.
In addition to these two kinds of parameters, we

have also been able to extract a third set which
characterizes the critical properties and which can
only be related to the microscopic Hamiltonian
using more detailed statistical calculations. These
critical parameter~ are summarized in Tables IV
and VI, and some of the corresponding thermody-
namic functions are given in TableV. Theseparam-
eters will be discussed in Paper V of the present
series. "

However, even without detailed microscopic
analyses it is already clear at this stage that while
DAG corresponds very closely to a simple Ising
antiferromagnet in some respects, it differs in
one very important property, in that its inter-
actions are not exclusively short ranged. In this
respect it is similar to all real magnetic systems
and it would seem well worth while at this stage to
make renewed attempts to extend the theory of the
Ising model to include more realistic interactions.
If such calculations could be made, DAG would
serve as an excellent test of the theoretical predic-
tions.
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Theory of Verwey and Charge-Density-Wave-State Ordering in Magnetite

J. B. Sokoloff~~
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and
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The Cullen-Callen Hartree-approximation band model of magnetite is solved self-consistently,
and it is found that if one starts with the three-order-parameter state of Cullen and Callen, the
solution iterates self-consistently to the Verwey ordered state. A charge-density-wave-state
ordering is proposed to explain recent neutron- and electron-diffraction, magnetic-resonance,
and Mossbauer-effect experiments on magnetite, which suggest a larger unit cell than occurs
in the Verwey ordering. It is argued that the Verwey ordering could very easily be unstable to
the formation of such a state. A discussion is also given of small polarons in a degenerate elec-
tron system and applied to magnetite.

I. INTRODUCTION

Recently, Cullen and Callen have proposed that
the low-temperature insulating phase of magnetite
(i.e. , below 120'K) could be described oy a Har-
tree-approximation band model in which the Har-
tree self-consistent field does not have the full
symmetry of the lattice. ' Within such a model,
it is possible to have a Verwey-type ordering~-
that is, an octahedral-site charge density per site
which alternates between two values on adjacent
planes of octahedral sites along one of the crys-
tallographic axes called the c axis. ~'4 (See Fig. 1 in
Ref. 4. ) The octahedral-site ions, however, need
not be pure Fe'3 or Fe~ as originally suggested by
Verwey. Recent neutron-diff raction, 5 electron-
microscopy, M5ssbauer-effect, ' and magnetic-
resonance experiments have shown that the order-
ing is apparently more complicated than the sim-
ple Verwey ordering. In this paper, the Cullen
and Callen model is reinvestigated. A self-con-
sistent calculation shows that the three-parameter
ordering suggested in Ref. 1 does not lead to a self-
consistent solution of the Hartree-approximation
equations. Rather, it is found that if we start with

the three-parameter ordering, successive inter-
actions in the self-consistency scheme take us to-
wards the Verwey ordering. It is proposed that
experimentally observed deviations from the Ver-
wey state can be explained as being due to an in-
stability of the Verwey state to the formation of
an excitonic insulating state. It is further shown
that if the Verwey order parameter is chosen small
enough for the insul. ating gap to just disappear, a
gap is not produced by also introducing the two
additional order parameters suggested by Cullen
and Callen. This fact together with the self-con-
sistency calculation, which is done for larger val-
ues oi the Verwey order parameter, castdoubt on
the existence of the three-parameter ordering, al-
though it is admittedly possible that for some partic-
ular values of the three order parameters sug-
gested by Cullen and Callen, a self-consistent solu-
tion might be possible. Although no gap is intro-
duced at the point Tc = (0, 0, v/a), it is still possible
for a gap to appear at other points in the zone.
Thus, the results are not conclusive.

II. SELF-CONSISTENCY OF THE CULLEN%ALLEN MODEL

Following Cullen and Callen, we assume a clos-


