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Models for low-spin—high-spin transitions in transition-metal-ion compounds are presented.
Within a molecular-field scheme, the transition between, and coexistence of, high-spin (Hund’s-
rule) and low-spin (crystal field) states are described. One- and two-sublattice-spin struc-
tures and the influence of magnetic interactions are considered. It is pointed out that the one-
sublattice model, which was considered by Chestnut for the singlet-triplet system, applies to
the transitions observed in certain organic complexes., We have found that the inclusion of mag-
netic interactions between ions can yield a magnetically ordered state above a certain transi-
tion temperature. This “heat magnetization” is not due to the coupling between levels but rath-
er to a self-consistently determined crystal field splitting. The two-sublattice-spin-structure
case exhibits a rich variety of behaviors. These include a low-spin to two-sublattice spin to
high-spin transition with the order of the transitions varying with the parameters of the model.
Applications to certain Fe?* and Co®* compounds are noted.

1972

1. INTRODUCTION

Because the octahedral-crystal-field energy and
the Hund’s-rule exchange energy are comparable
in the d*, d°, d® and d" systems of transition-metal
ions in certain compounds, the transition between,
and coexistence of, high-spin and low-spin states
has been expected and indeed observed in several
situations. In the case of Co* (d%), LaCoO,! and®
GdCoO, exhibit a thermal transition from low spin
(S=0) to high spin (S=2) and® Co,0; exhibits a low-
spin to high-spintransition with decreasing pressure.
In the case of Fe?* (d°), thermally driven transitions
(including first order) have been observed in various
ferrous complexes.* Examples of Co? (d7) with
S =%,‘§ have been found as well. ®

Although the existence of these transitions has
been known for several years, a satisfactory un-
derstanding and description (particularly in the case
of a rapid variation in magnetic moment with tem-
perature or first-order transition) were not present
in this literature. Recently, Wajnflasz and Pick®
have studied a model in which interactions between
ions were represented by an Ising model treated
in the molecular-field approximation. Although
the authors found a first-order phase transition,
they incorrectly analyzed the model in this approx-
imation and predicted that the transition tempera-
ture was independent of the interaction strength.

Some years ago, in an attempt to understand the
magnetic excitation spectrum of tetracyanoquinodi-
methan-ion-radical salts, Chestnut’ proposed a
simple model of a singlet-triplet system which could
qualitatively describe the observed behavior. We
wish to point out that, with appropriate interpreta-
tion, the model of Chestnut applies and can quali-
tatively account for the transitions observed in
several ferrous complexes. Consequently, the be-
lief of some authors that such an account was not
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present in the literature is dispelled.

Chestnut’s model is shown to be a cooperative
model of the low-spin-high-spin transition, based
on a two-level ® single-ion picture. The model is
a molecular-field model of a two-body interaction
between the ions or the result of a classical treat-
ment of a lattice distortion which couples to the
high-spin~low-spin energy-level separation.

It is found that, depending on the parameters,

(i) a continuous low-spin to high-spin transition

or (ii) a first-order low-spin to high-spin transition
or (iii) a thermal depletion of a high-spin ground
state can occur with increasing temperature. These
are essentially the results of Chestnut. The first-
order transition temperature is suppressed by an
external magnetic field and disappears at a certain
critical value of the field.

Going beyond the work of Chestnut, we have con-
sidered magnetic interactions between neighboring
high-spin ions and studied them in a molecular-
field treatment of the appropriate Ising model. It
is found that in addition to the first two possibilities
in the absence of magnetic interaction, (a) a high-
spin ground state will exhibit long-range magnetic
order at finite temperature and a second-order
magnetic phase transition and (b) a low-spin ground
state can be followed, with increasing temperature,
by a high-spin transition with the simultaneous ap-
pearance of a magnetization, the latter disappearing
at a yet higher second-order transition temperature.

We have also considered a two-sublattice model
for which it can be energetically favorable to have
one sublattice in the low-spin state and the other
in the high-spin state. This requiresthe presence
of two competing molecular fields at each ionic
site and the resulting phase diagram exhibits sever-
al possibilities. In addition to the possibilities
found in the one-sublattice case, the phase diagram
includes the following transitions (with increasing
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temperature): (i) low spin - two-sublattice spin
structure — high-spin; (ii) two-sublattice spin struc-
ture - high spin. Most of these transitions are
first order and the exceptions, as noted below, are
second order. In all cases, the highest-tempera-
ture phase is high-spin in the sense that, if the
multiplicity of the high-spin state is v, then v/(1 +v)
ions will be high spin due to thermal mixing at high
temperatures.

We have not attempted to make a quantitative
comparison with experiment; this could require
an accounting of spin-orbit effects on the energy-
level scheme, more detailed treatment of the lat-
tice dynamics, or perhaps knowledge of residual
magnetic effects due to preparation of a given sam-
ple.

II. THEORY

A. One-Sublattice Model (Chestnut’s Theory)

In this section we present a brief review of Chest-
nut’s model. We do this in order to make its appli-
cation to the low-spin-high-spin transitions in Fe?
and Co®* complexes clear and establish the notation
for our further studies.

We consider an array of N ions in which the high-
spin state is at an energy A-V@Q relative to the low-
spin state on a single-ion picture. A and V are
taken to be positive and @ is a measure of the dis-
tance from the ion to the nearby ions that produce
its octahedral environment. At @ =0, the ground
state is low-spin and the existing crystal field ef-
fects dominate the exchange effects to give a t§,
(!4,,S=0) configuration. At @ =A/V, the ground
state crosses over to high spin and has the high-
spin configuration f3,e2 (°T,, S=2). Let n, denote
the occupation number for the ith ion such that if
n;=0 the ion is in the low-spin state and if n;=1,
the ion is in the high-spin state. If, in addition to
the variation of level separation with @, we include
an elastic energy required to distort each octahedral
complex, then the Hamiltonian for the system can
be written in the simplest approximation as

H=NtQ*+25 (6 - VQny; (1)

here £ is a positive elastic constant. According to
Eq. (1), the second term favors a large @ and con-
sequently high-spin ground state (as in the case of
a Hund’s-rule free ion) and the first term favors
a @ =0 low-spin ground state. The competition be-
tween these terms determines the actual ground
state for given values of the parameters.

The free energy (per ion) is given by

f=Kx?—kTIn(1 + ve #'2 ~2K0) | (2)
where x=2£Q/V, K=%V?/t, and v is the multiplicity

of the high-spin state. Minimizing with respect to
x gives the condition

x=p/(v +e4 = 2KD) . (3)
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The high-spin population is given by 7=[{8/8 (84)]
(Bf) which implies, using Eq. (3), that #=x. Thus
Eq. (3) represents a self-consistent equation for

7 in which the thermal population of the high-spin
state is related to a gap which is itself linearly re-
lated to n. This result is what would be obtained in
a molecular-field treatment of an appropriate two-
body interaction model for this system. The lattice
model of Eq. (1) and the molecular-field treatment
of an interacting system are exactly equivalent as
can be seen by the displaced oscillator transfor-
mation @ =Q +(V/2tN)3, in Eq. (1),

H=N£(Q)2+Z‘>An, -4—5"% ‘Z; niny . (4)
The Hamiltonian represents an infinite-range at-
tractive interaction between the ions (and an inde-
pendent oscillator term). It is well known that the
molecular-field approach is exact® for a Hamilto-
nian with infinite-range interactions and the condi-
tion @ =0 reproduces the result 77 =x, following Eq.
(3). Consequently, the treatment given here [Eqgs.
(1)-(3)] apply equally well to an interacting two-
level model. °

For S=2, v=15 (including orbital degeneracy);
the minimum free-energy solutions of Eq. (3) have
been studied as a function of K/A and temperature.
The possible thermal variations of # are represented
in Fig. 1. If0.43<K/A<1, a first-order transition
occurs from a low-spin to a high-spin state with in-
creasing temperature. For K/A>0.55, A, =4A
-~ 2K7 becomes negative and the levels cross. Con-
sequently, there is a thermal population of the low-
spin state with increasing temperature above the
transition, which accounts for the negative slope
of 7 vs T. (This has been called a “supertransition”
by Chestnut. )

For other values of K/A, there is no phase tran-
sition; there is only thermal population of a mag-
netic (- ©<K/A<0.43) or nonmagnetic (K/A> 1.0)
state.

The phase diagram is shown in Fig. 2. We find
a liquid-vaporlike critical point C. Also shown are
the phase boundaries for »=2 and v=3. The latter
case may apply to the high-spin state in the presence
of spin-orbit coupling, with a J=1 multiplet lying
lowest.

It is interesting to note that the case v=1 does
not exhibit a phase transition except at K/A=1, and
in that case it is a second-order transition.!* Al-
though this case is not relevant from the point of
view of high-spin-low-spin transitions, it is an
interesting limiting case of this study. For v> 1,
the multiplicity of the high-spin state plays an es-
sential role in attaining the first-order transition.
A low-temperature expansion of the free energy
yields a —£T Inv term which represents a gain of
entropy associated with the high-spin multiplicity.



4468 R. A. BARI AND

0.5
kT/A

FIG. 1., Thermal variation of the order parameter »n for

different values of (K/4), v/ +1)=4].

This term is, of course, absent in the v=1 case
for which no first-order transition is found. These
results agree with the general considerations of
Landau: for v >1 there is no symmetry change
involved in the problem so that either we find a
first-order transition or no transition at all; for
v=1, the problem is symmetric under the inter-
change of the two spin levels (for A =K only) and

it is indeed this symmetry that is broken at the
second-order phase transition.

As shown in Fig. 3, we have checked that an
applied magnetic field favors the high-spin state:
The transition temperature is lowered with increas-
ing field and goes to 7=0 °K at a critical field given
by wH,=3(A - K); here p is the effective moment
of the high-spin state.

B. Influence of Magnetic Interactions

In this section, we study the effects of magnetic
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FIG. 2. Phase diagram in the (T, K/A) plane for var-
ious values of v: for v=1, P is an isolated transition point.
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interactions between high-spin ions in the model
considered in Sec. IIA. The magnetic term that
is added to the Hamiltonian is written
-2 d 4y nnyS,S,

1,4
and represents an Ising interaction between spin
S; and S,(Jy;>0). A single-ion Hamiltonian is de-
fined as

H(',=An¢-cm‘-HS‘n,

(5)

and the corresponding partition function (per ion)
is

Zo=1+3e"8“ (1 + 2coshBH + 2cosh2pH). (6)

S; takes on the value -2, -1, 0, 1, 2, and the fac-
tor of 3 corresponds to the orbital degeneracy as-
sociated with the #3, 2 configuration. From the
variational principle of statistical mechanics we
write

¢ ==kTInZy+TrpyH - Hy), po=e?H/Z,,

which is an upper bound to the free energy associ-
ated with H. Consequently,

¢ =-kTInZ, - Kn? - JM? +on +HM , 4]

where J=3,J,;, n=Trpyn;, and M=Trpyn,;S;. The
molecular fields ¢ and H are determined by mini-
mizing Eq. (7), which gives

o=2Kn

oo

®
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FIG. 3. Influence of a magnetic field on the first-order
low-spin—high-spin transition for K/A=0. 5.
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FIG. 4. Phase diagram in the (J/A, K/A) plane for the
one-sublattice model with magnetic interactions.

Thus n and M are given by the equations

n=3C/(E +3C) , (8a)
M=3D/(E +3C) , (8b)
where

= A =2K
E= -tk |

C=1+2cosh2BJM +2cosh4BJIM ,
D =2 sinh2BJM +4 sinh4BJM

Note that when A~—, n~1 and the equation for
M reduces to the familiar Brillouin function for
S =2 in molecular-field theory.

We solve Eqs. (8a) and (8b) at various points in
the J, K plane (see the resulting phase diagram in
Fig. 4) and find several possibilities: (a) The
ground state is magnetically ordered and the mag-
netization vanishes at a second-order transition
temperature [Fig. 5(a)]. (b) The ground state is
a low-spin nonmagnetic state; a first-order tran-
sition leads to an ordered high-spin state, and the
magnetization vanishes at yet a higher second-or-
der transition temperature [Fig. 5(b)]. (c) There
is a thermal population of the magnetic level with
no magnetic ordering. (d) There is a first-order
transition (low spin to high spin) with no magnetic
ordering. Cases (c) and (d) are similar to that
found in the J=0 case (Fig. 1) for K/A<1 and are
expected in the region J/K <1, Case (b) ex-
hibits two Curie temperatures for the appearance
and vanishing of the magnetization. As far as we
know, this situation has not been observed in
magnets. It is interesting to compare this case
with “heat magnetization” as predicted by Kitano
and Trammell. ' These authors consider a singlet-
triplet system in which a crystal field A splits the
S.=0 triplet state from the singlet. The Sg==%1
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levels are split from the S, =0 triplet by a molecular
field, proportional to the average spin. They fur-
ther allow that the effective spin operator has a
nonvanishing matrix element X between the S,= 0
triplet level and the singlet level. This leads to

an effective single-ion Hamiltonian with levels

given by

€,=38 - [(FAY + JPMZP 2| (9a)
€,=30 +[(ZA + PMAE] 2 (9b)
€3=A-JMS,; , (9¢)
€=A+IMS,; (9d)

For X =0, these equations reduce to the case con-
sidered by Blume, * with €, reducing to the singlet
energy level. These equations are similar to Eq.
(5); in Egs. (9a)-(9d) the thermal variation of the
levels comes from their dependence on the molecular
field M; in Eq. (5) in addition to a dependence on
M, the levels have a thermal dependence through
the molecular field o which arose from interactions
with the lattice vibrations (or residual ion-ion inter-
actions). Kitano and Trammell found a second-
order transition for the appearance of heat mag-
netization, whereas we found a first-order tran-
sition accompanied by a first-order low-spin to
high-spin transition.

In the limit K =0, case (b) is still possible even
though the molecular field o is absent. The molec-
ular field M must now carry the transition and
we attribute the persistence of this phase at K=0
(see Fig. 4) to the orbital degeneracy (=3) associ-
ated with each spinlevel. If the spinlevels were not
orbitally degenerate we expect to obtain the spin-

2 counterparts of the spin-1 results by Blume!®
and would thereby find that the region of the J-axis
that describes case (b) in Fig. 4 would be zero.

C. Two-Sublattice Model
In this section we study a two-sublattice model

T T T T T T T T

(a)

(b)

|
|
|
!
E
—+ -

2.0

n,M

1 | | L
0 0.1 0.2 03 04 o] ol 02 03 04 05

kT/48

FIG. 5. Thermal variation of the order parameters »
and M in the one-sublattice model with magnetic ordering:
(a) magnetically ordered ground state; (b) nonmagnetic

ground state.
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of a low-spin-high-spin transition. We consider
the possibility of a transition to a two-sublattice
spin structure in which one sublattice is predom-
inantly high spin and the other low spin. This sit-
uation is believed to occur in LaCoO, (see Raccah
and Goodenough, Ref. 1) and a two-sublattice mod-
el for such a transition has been studied by one of
us.' This model incorporates the structural change
found in LaCoQj; with the resulting modifications of
the local crystal fields to obtain a first-order change
in translational symmetry (to lower symmetry
above the transition) with a concomitant low spin to
two-sublattice spin structure.

Briefly, in the notation of Eq. (1), the model
considered was

H=NtQ*+ 25 (A-VQm;+ 2 (A+VQm, , (10)
i€ A i6B

where the summations are restricted to either sub-
lattice A or sublattice B. The translation

-V
=Q+=—=(2n,-2n
Q=@ 2§N<uA YT s ‘)
leads to an interacting model with interactions of
the form

—-v?
—(E nny + 2imgng -2 Lngn,
4§N i6 A ieB {€ A ’

i€ B jeB ieB
i.e., the intrasublattice interaction is attractive
and the intersublattice interaction is repulsive

(with twice the strength of the attractive interaction).

We have generalized this model by allowing the
attractive and repulsive interactions to be indepen-
dent parameters. This could correspond to, for
example, a situation in which there is simultaneous-
ly lattice interactions and genuine two-body forces,
so that the ratio of the interaction strengths would
not be exactly 2.

We define the molecular fields on sublattice A

A
b2

Kz7A
0.5
|
(0] 0.5 1.0 1.5 2.0
L/A
FIG. 6. Phase diagram in the (K/A, L/A) plane for the

two-sublattice model.
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FIG. 7. Thermal variation of the order parameters ns

and np in the various regions of the phase plane of Fig. 6.

and sublattice B, respectively, as

04=2Kn, —Lng, o =2Kng ~Ln, ,

where K and L are constants (2K = L corresponds

to the lattice model of Ref. 14) and #, and g are
the thermal high-spin occupations of sublattice A

and sublattice B, respectively. 7, and ny are the
solutions of the two equations

n4=15/(15 +¢P4 = 2Ka+ Lng))
and

ng=15/(15 + B A= 2Knp+ Ingy |
which minimize the free energy

¢ =—kTIn(1 +15¢™% A = 2Kny +Lnp))

—kTIn(1 + 15784 ~2Kng + Lny))
+K(n? +n3) - Ln gnp

In Fig. 6, we indicate the various regions of
phase diagram in the K, L plane. In the regions
denoted a,,, a,,, and aj,, the ground state is low
spin and a transition leads to a two-sublattice struc-
ture followed by a transition to a high-spin state
[Fig. 7(a)]. When the lower transition is first order,
the higher can be either first order (a,;;) or second
order (a,,). When the lower transition is second
order, the higher is always second order (a,,).

The regions b, and b, correspond to a ground state
that is a two-sublattice spin structure. The tran-
sition to the high-spin state is either first order
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(b,) or second order (b,). The arrow denotes that
the b, boundary is outside the region of the phase
diagram as shown in Fig. 6. Region ¢ denotes
thermal population of the low-spin state. In region
d, a first-order low-spin to high-spin transition
occurs. Region e denotes thermal population of
the high-spin state. The behaviors in the regions
¢ —e have already been encountered in the one-
sublattice model and the results are qualitatively
the same in the region L/A<<1. Likewise, in the
limit L =, the one-sublattice solutions are ob-
tained on the A (B) sublattice with ng(% 4)=0 for
all T.

III. SUMMARY

We have presented a description of low-spin to
high-spin transitions in a variety of circumstances.
We have shown how a self-consistent treatment of
crystal field and/or residual-ion-ion interactions
can account for a first-order low-spin to high-spin
transition. The transitions described in Sec. ITA
give a good qualitative description of the first-order
transitions found in certain ferrous complexes. **
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The progressive increase of high-spin population
and decreasing level separation with increasing
temperature applies well to? GdCoO; and ThCo0Qs. **°
The two-sublattice model of Sec. IIC has application
to LaCoO, as noted earlier.*

We have studied the effects of magnetic inter-
actions in the high-spin state and have found the
possibility of heat magnetization for certain values
of the parameters. We have also found that a first-
order low-spin to high-spin transition can be in-
duced by the magnetic interactions alone, provided
that orbital degeneracy is present.

There are several ways of refining or generaliz-
ing the treatment given here. These include a more
detailed treatment of the lattice dynamics, going
beyond the molecular-field approximation, inclusion
of spin-orbit coupling, inclusion of charge-transfer
states, and addition of other spin states.
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