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The superconducting tunneling results obtained by Dynes for the electron-phonon part
o.2(&) F(~) for indium-thallium alloys are examined in terms of both exact sum rules for
alloy lattice dynamics and the self-consistent mass-defect theory. Detailed calculations are
made of o.2(&)F(&) for four alloy concentrations. Good over-all agreement is found between
calculated and tunneling-derived results. Our analysis seems to support Dynes's conclusion
that the phase transition in the alloy structure near 30-at. % thallium could be due to phonon-
mode softening. Zero-temperature Eliashberg equations are solved using the calculated and
tunneling-derived values of G. (&)F(( ) to determine the gap and renormalization functions.
Reduction in the dc Josephson current and condensation energies from their BCS value are
calculated. Transition temperatures for the alloys are also calculated using the two sets
of a (~)F(~). The agreement with the experiment is satisfactory.

I. INTRODUCTION

Within the very sophisticated and accurate
formulation of the pairing theory, the strong-
coupling theory of superconductivity due to Eliash-
berg, ' Nambu, ~ Gorkov, s Scalapino, Schrieffer,
and Wilkins, 4 a superconductor in the "dirty" isotrop-
ic limit is completely characterized by a complex
energy-dependent generalization 4(~) of the BCS
energy gap and a renormalization function Z(tu).
The central result of the strong-coupling theory
is a set of nonlinear integral equations, the Eliash-
berg gap equations, which relate a(&u) and Z(u&) to
certain properties of the metal in its normal state.
The equations need to be solved numerically be-
cause of their complexity. The problem of cal-
culating the properties of a superconductor there-
fore reduces to (i) calculation of the kernels of the
gap equations, and (ii) solution of the gap equations
to determine the gap and renormalization functions
which in turn determine the superconducting prop-
erties of the material. The kernels of the gap
equations refer separately to the phonon-mediated
part of the interaction between two electrons, de-
noted by a (~)E(&u), and the basic Coulomb repul-
sion between them, denoted by p, ~, a(&u) is a

measure of the electron-phonon coupling and E(~)
is the phonon density of states.

It is widely accepted that the reason for unavail-
ability of accurate calculations, for example, of
the superconducting transition temperature T,
lies not in any basic failing of the superconductivity
theory but rather in the fact that T, depends sen-
sitively on the normal-state properties of the ma-
terial, which at present cannot be calculated to a
very high degree of accuracy starting from fun-
damentals.

Using a model for the phonon density of states
in Pb, Swihart, Scalapino, and Wada' performed
calculations of the superconducting properties of
Pb using the Eliashberg formulation. Their re-
sults agreed reasonably well with experiment.

A source of information on the normal-state
parameters entering Eliashberg kernels is provided
by quasiparticle-tunneling experiments. An image
of the phonon density of states exists in the cur-
rent-voltage characteristics of the tunnel junction.
McMillan and Rowells have devised a computer
program which inverts the zero-temperature
Eliashberg equations using the experimental tun-
neling density of states and determines, quite
accurately, the functions a (&u)E(~) and p,

~ which
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enter the Eliashberg kernels. Theoretically cal-
culated Eliashberg kernels should, of course,
agree with the kernels derived from tunneling data.
Vashishta and Carbotte' have performed extensive
calculations of the superconducting properties of
several strong-coupling materials, including amor-
phous Bi and Ga at zero and finite temperatures
using the tunneling-derived normal-state data.
Their results are in good agreement with experi-
ments, ' confirming the accuracy of the Eliashberg
equations at finite temperatures if the tunneling-
derived kernels are used.

In recent years much has been added to our
understanding of the normal-state properties of
simple metals. A reliable calculation of the rel-
evant normal-state properties to determine the
superconducting properties can now be attempted.
For the success of such a calculation it will, of
course, be helpful to have results for the normal-
state properties derived from quasiparticle tun-
neling. These can serve as a check on the accuracy
of the calculations. Recent calculations of super-
conducting properties, mainly T„due to Seiden, '

arbotte and Dynes ss and Allen and Cohenia have
been reasonably successful.

Recently Dynes'~ has made an experimental study
of In- Tl alloys by the quasiparticle-tunneling tech-
nique. From the tunneling data he has extracted
the functions a~(u&)F(&u) and p,

~ for the alloys. He
has used aa(&u)F((o) to discuss the possibility of
phonon-mode softening near the phase transition
in the alloy structure from face-centered tetragonal
(fct) to face-centered cubic (fcc) at around 30-at. %
thallium concentration. In particular he has used
the expressions for the frequency moments of
a (&u)F(~} in the alloys suggested by results for
pure materials. Furthermore, he has made a de-
tailed comparison between the T, calculated from
the expressions due to McMillan" and Garland and
Allen" and the experimentally measured values.

Besides the superconductivity theory outlined
above, there should enter into a discussion of these
results the available theory of the dynamics of dis-
ordered crystals. On examining the frequency
moments of aa(u}E((u) employed by Dynes, but
using an expression for a (&u)F(tu) applicable to
alloys, it becomes clear that only the frequency
moments of the lattice Green's functions are in-
volved. In Sec. II we derive exact expressions
for the latter moments (i.e. , sum rules) which
suggest a slightly different analysis than that given
by Dynes. One of the sum rules can be applied
exactly as far as the lattice dynamics is concerned
and we use it to extract information on the alloy
Fermi-surface density of states.

With regard to the detailed lattice dynamics of
an alloy we have used the approximate self-con-
sistent theory of Taylor' that is only applicable

for mass defects. This is essentially a procedure
that describes the configuration-averaged alloy by
an effective Green's function so defined that there
is zero scattering produced by the departure from
translational invariance. In the simplest approxi-
mation, which is the only one so far evaluated in

detail, ' this amounts to setting the average single-
site scattering to zero. So, besides the omission
of force-constant changes associated with the irn-
purities, these calculations omit effects arising
from clusters of impurities whether they occur in
a random manner or are due to short-range order.
The theory is applied in Sec. III to the In-Tl system
in the nominally fcc region. (Beyond about 55-at. %
thallium the structure is initially a mixture of
phases and finally hexagonal close packed. ") While
the omission of force-constant changes rules out
the possibility of describing in any detail the fcc/fct
phase transition, the fact that indium and thallium
have the same valence suggests that this omission
should not prevent our calculations from giving a
reasonable over-all description of the behavior of
a (cu)F(&u) as a function of concentration.

In Sec. IV we turn to the solution of the zero-
temperature Eliashberg gap equations, using both
the experimental and calculated values for a~(&u)

xE(u). With the resulting gap and renormalization
functions for the superconducting and normal states
we calculate the reductions in the dc Josephson
current and the condensation energy from their
BCS values. The transition temperature T, of the
alloys is calculated for both sets of a~(tu)F(~) using
the simple equations due to Leavens and Carbotte. "
A comparison is then made with the results for T,
obtained from the equations due to McMillan and to
Garland and Allen. Our conclusions are drawn to-
gether in Sec. V.

II. SUM RULES

The details of the lattice vibrations and the cou-
pling of these vibrations to the electrons enter the
strong-coupling superconductivity theory of Eliash-
berg via the function o|3(~)E(&e).'~ For an alloy it
can be written as

ds'()F()= ",~0
"' '. Z Z ",(q)

8m F ~ q N ri' os
a &aaz

xq ImG ~(l, /; ~ —i5) qz w(q) e '~'"~ "' (l)

where w, (q) is the pseudopotential form factor ap-
propriate to the kind of ion at the site 0,. The
Green's function in (l) is given by

d&e'"'((u (f, t); u, (f', 0))),
(2)

where (( )} indicates a double-time Green's function,
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as defined by Zubarev. 22 u (I, f) is the Heisenberg
operator for a lattice displacement at f„with o.'

the Cartesian coordinate.
Our expression for a2(1d)E(&v) refers to a given

configuration of ions, i. e. , no configuration av-
eraging has been performed. It should also be
noted that explicit effects on the electron states due
to alloying have been ignored, although to some ex-
tent they could be considered to be included in the
screening of the form factors and in the band-struc-
ture density of states at the Fermi surface, N(0).
It can be seen from (1) that to discuss the frequency
moments of a2(&v)F(&d) we need only examine those
for ImG~&.

The first moment

i1 '2' (I, I') = f 1d lmG 2 (I, I; 1v - i&) d1d
0

is just an f sum rule and an expression for it can
be derived in the usual way. 2' The central identity
invoh ed is

—52
[u.(z), [u, (z'), H]]= (4)

where M(l) is the mass of the atom at 0,. On taking
a thermal average of both sides of (4), the left-
hand side becomes related to ImG ~, andwe obtain

= 0. 575 A,~ and screening according to Singwi,
Sjolander, Tosi, and Land, 22 we find N(0}/N(0) vs
=0.701. This is in fair agreement with the value
of 0. 745 taken from the specific heat 4

y suitably
adjusted for the electron-phonon enhancement,
1+ X, using the results of Dynes" (see below}.2'

Very close agreement is not to be expected as we
have not taken into account departures from the
N(0)zz in calculating the screening. For thallium
we have used the Heine-Abarenkov model26 to ob-
tain N(0}/N(0)zz ——0. 580 compared with 0. 640 ob-
tained via '

y and X.'
On using the experimental variation of volume

with concentration22 we find the results for N(0)/
N(0)rs given in Fig. 1. These results are not very
different from those of Dynes for his quantity
N(0) (v2), though we have taken into account in a
more accurate way the mass and pseudopotential
differences between indium and thallium. The
small apparent jump in the region of the phase transi-
tion from fct to fcc is to be noted. It would be of
interest to have experimental values for y to ex-
amine this effect and to test the above manipula-
tions.

The situation is different for the first inverse
moment

(5)

This result is exact, as is the following sum rule
[see (10}], irrespective of short-range order, an-
harmonicity, structure, and force-constant changes.

The first moment of n2(&d)E(1d} then becomes

12(1& 1vo 2(~)Z( ) d ( ) Q (2v1) (6)
4kr N, M(l)

with

Even neglecting the difference in form factors
between the two atoms, we see that it is the mean
inverse mass (M 1), rather than the inverse mean
mass of Dynes, ' that enters n ". Although, as
Dynes indicates, n"' does not contain information
on the lattice vibrations, it does give information
on the band-structure density of states and the
form factors.

Taking available values for the bare pseudo-
potentials we can calculate the right-hand side of
(6) using a free-electron density of states N(0)ps.
Then, from the experimental values of e'", values
of N(0) can be obtained for the alloy system'! For
the pure metals the pseudopotentials can be checked
by comparing the calculated values af N(0) with
those obtained from the specific heat y. ' For
indium, using the Ashcroft potential with R,

We can relate ~' " to p"' using the equation of
motion for G, 29

~ M (l)G,2(l, I; 1v) = &~26„.+ Q 4'~„(l, l1)
~s,

x G 2(l„ l'; 1v), (8)

0.8

UJ
U.

o
z
0
z 0.6—

~—~

0.5
0.5 I.O

FIG. 1. Calculated ratio of band structure to free-
electron Fermi-surface density of states, N(0)/N(0) Fz,
as a function of thallium concentration c. x indicates
values obtained from specific heat y for In (Ref. 24)
and Tl (Ref. 27).

where 4 is the force-constant matrix. On multiply-
ing on the left-hand side by 4 ', dividing by w, and
then taking the discontinuity across the real axis
of the resulting equation, we find
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2 4' '„(l, lq)M„(l, )~ lmG„~(l„ l; ~) = —v~(~)
y/1

x[4-,'~ (I, I )+ReG,~(l, l; &u)]+ —ImG, B(l, l; ~). (9)

30
Ol

4)
E

20
a

{o)

Setting ~= 0 in (8) shows that the first term on the

right-hand side of (9) is zero W.e obtain, finally, IO
0 0 ~ 5 0.5 1.0

(IQ)

This moment does contain information on the
lattice dynamics but not in as clear a form as might
be desired. Unfortunately, it is the trace of the in-
verse of the reduced-force-constant matrix
[M(l)M(l )] '~ C'~ (l, l ) that gives the second in-
verse-frequency moment of the phonon density of

states. Only in a monatomic system does Tr p "
give this moment. However, it seems very reason-
able to conclude that p.

' " should tend to peak when

there is phonon-mode softening.
As the first inverse moment of a (ur)F(&u) is one-

half the electron-phonon-coupling constant~ &, we

quote the expression for the latter parameter aris-
ing from (10):

l.2 .
t
I

I

ip X) )C—X

0.8—
I

I I0.6
0 0.50.5 I,O

FIG. 2. Frequency moments of e2(&)F(&) as a func-
tion of thallium concentration c. Solid line is calculated
assuming only mass difference; +experiment; && adjusted
experiment [see text after Eq. (12)j. (a) First moment

(b) inverse moment or electron-phonon-coupling
parameter g.

@&2k@

, ( ) 'y &Iii -Rt''~ (ll)

Unfortunately it appears that this expression
cannot be simplified unless we neglect both the
differences in the form factors of the different
atoms and the variations in force constants. Then
we regain the familiar result"

N(0) "d'q lw(q}q o'(q) I'
8vMNk r ~ „q w, (q)

where &u, (q} and o'(q) are the eigenfrequency and

eigenvector, respectively, for the phonon mode

(j,q) in the host material. This result indicates
that if only the mass differences are taken into
account, A. remains constant through the alloy
system since M in (12) is the host atomic mass.
It appears that we must rely on (12) to suggest that
in an alloy &, as given by (11), should tend to peak
when a phonon mode softens.

Unlike (6}, (11) is not calculable at present as
it requires both a model for the lattice dynamics
and a knowledge of the atomic configuration of the
alloy.

If we neglect the difference in form factors for
the different atoms we note that, aside from the
exponential factor in (11), it is the same q moment
of the form factors that enters both (6) and (11}.
This suggests that we use the experimental value
for n"' to approximately remove from X the
changes in the electronic factors. This can be

done by dividing X by the ratio of the experimental
a'" [+ in Fig. 2(a) ] to that obtained by taking into
account just the mass change [solid line in Fig.
2(a)]. The result is shown in Fig. 2(b), where the
experimental values of X(+) are compared to those
adjusted in the above manner (x}. We think this
is preferable to examining A. normalized by the
area under a'(~)F(~) ((~) ' of Dynes) because a'"
does not contain any information about mode soften-
ing due to force-constant changes.

The behavior of the adjusted ~ as a function of
thallium concentration contains a sharp increase
on crossing the critical thallium concentration
(c=0.3) from the fcc phase (c&0.3) to the fct phase
(c & 0. 3). This indicates a decrease in phonon fre-
quencies and may be attributable to some of the
phonon modes becoming very soft, heralding the
instability responsible for the transition. However,
this evidence for mode softening obtained from our
analysis of the experimental data is not significantly
different, in numerical sense, from that presented
by Dynes using (~) (Fig. 9, Ref. 13).

The general trend of X adjusted as c increases,
c&0.5, does indicate a general reduction in phonon
frequencies that can be attributed to a general re-
duction in force constants according to (11). A
similar reduction is indicated in Fig. 2(b} as
indium is added to thallium in the bcc, hcp region
(0. 7-c- 1.0). This is quite different from the
behavior of (~) which, except at the fct/fcc phase
transition, decreases monotonically with thallium
concentration. We suspect that this is partly a
consequence of dividing two quantities both con-
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taining information about the phonon-frequency
distribution.

~'(~)„,= o"(~)F(~).../F(~)... ,

and then obtained

F(~) = ~'(~)F(~)..„/~'(~),.,
(13)

(14)

As the theoretical discrepancy is mainly an over-
estimate of the transverse frequencies, we have
increased o. (cu)„, in this region by about 20% and
then only an over-all scaling of 5% is required to
obtain a, correctly normalized F(&u).

We can transform the Green's function in (1)
using the host-crystal eigenvectors to obtain

(15)
In our approximation for the alloy lattice dynamics
the Green's function given in (15) depends on (j, q)
only through &u&(q), and so we can write

III. DETAILED CALCULATION OF ALLOY

n (w)F(cu)

An examination of the experimental o. ~(&u)F(&u)

near the fct/fcc phase transition reveals no spec-
tacular evidence of mode softening. It is of inter-
est to have a reference with which to compare these
results in order to obtain further information on

possible mode softening. Such a reference can be
obtained by calculating the alloy lattice dynamics
taking into account just the mass difference, as this
is not expected to induce a phase transition.

We have used the self-consistent theory for
random alloys' to do this, working with indium

as the host material and so treating thallium as
the impurity. As mentioned in Sec. I this involves
setting to zero the average single-site scattering
in the effective crystal. The consequent neglect
of effects due to clusters of impur ities or, equiv-
alently, the variations in the local environment
of an impurity atom should not be too important
as we are concerned only with the region in which
the heavier atom (thallium) has fractional concen-
tration c & P. 5. Comparison with machine calcula-
tions has shown that the theory is quite accurate
in these circumstances. '6 It is the neglect of force-
constant changes and the use of a theory developed
for a cubic system that are the more serious ap-
proximations involved in our calculations.

As only G (I, I; ~) is involved in calculating the
scattering described above we only need the indium
phonon density of states F((u). We have extracted
this from the experimental o.'~(~)F((u) in the fol-
lowing manner. Although theoretical pseudopoten-
tial attempts to calculate F(&u) have not been too
successful, 'o we have used them to estimate & (~),u
defined by

G'(q, ~) = G(~, (q), ~) .
Then, on neglecting the variation in form factors,
o. ~(&e)F(&u) from (1) becomes

8m k~N .,& q„q
x

~

q. (r'(q) ~'ImG((u, .(q), ~ —f5)

dm' n~(&u')„„, &u'imG (&u', &u).

(17)

The properties of the spectral function ImG (~, &u)

have been discussed in detail by Taylor' for the
case of a very heavy impurity with a mass ratio
of 3.1:1. In the present case the thallium/indium
mass ratio is 1.7:1 and is insufficient to produce
any strong resonance effects. Consequently the
spectral function does not have any of the strong
features found by Taylor, such as the occurence of
two peaks in the region of a resonance. Rather, it
always has a single peak although it is sometimes
rather asymmetric.

We have compared our calculations of (17) with
experiment for various thallium concentrations c.
In Fig. 3 we give the results for c=0.27, 0. 33, and
0. 50, comparing experiment with (17) and with
(17) adjusted for changes in N(0), as suggested by
Fig. 1. The results for indium are given as a
reference.

Although in Sec. II we adjusted ~ to take into ac-
count variations in both the form factors and the
electron density of states we have not included the
former in Fig. 3 as we are now examining the fre-
quency dependence n~(&u)F (&u). The indium and
thallium form factors are not that different, so it
is the deviations of N(0) from N(0)vs that dominate
the over-all scaling. Because the low-frequency
region will tend to be dominated by the thallium
motion, the main consequence of the difference in
form factors will be a frequency-dependent scaling.
Detailed calculations, equival. ent to the inclusion
of different scattering lengths in neutron-scattering
cross sections, "' ' would be required to test this
effect.

When compared to the indium n~(&u)F(&u) it can
be seen in Fig. 3 that the calculated o.~(~)F(~) for
alloys is in reasonable accord with the experimental
results, particularly when adjusted for variations
in N(0). In the longitudinal region the only dis-
crepancy is the location of the peak and this can be
taken as evidence for reductions in the force con-
stants. Such a reduction would enhance the tendency
to form resonant modes in the transverse region.
Detailed calculations for low concentrations of gold
in copper definitely indicate this tendency. ' Thus
the omission of these changes in our calculations
could be the major reason for the large discrepancy
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TABLE I. Values of the energy gap and transition temperature from experiment. Transition temperatures calcu-
lated from (O,'F) t using the equations due to McMilland and to Garland and Allen, and calculated from (& F) t~ and2

(n F)~& using Leavens-Carbotte equation.

T, calculated using
(e2F) t

T, from Leavens and Carbotte, Eq. (25)

pg (alloy) = 0.10492

Alloy

In
Inp lp Tlp fp

Inp 73Tlo. 27

Inp 67Tlp 33

Ino. 5o Tlo. 5o

Tl

+Expt

(mev)

0.5400
0.5300
0.5700
0.5360
0.4110
0.3690

Exptb
C

3.40
3.28
3.36
3.26
2. 52
2.33

McMillan

3.44
3.42
3.60
3.42
2.58
2. 10

Garland-
Allenb

(K)

2. 57
2.40
2.47
2. 21
1.57
I.41

Calculated using
(~2F) t

(K)

3.581
3.454
3.584
3.464
2. 857
2. 363

Calculated using
( 2F) z from (17)

(K)

~ ~ ~

3.494
3.317
3.267
3.119

pgc (alloy) = pfpfc(In)+ p fc(T1)]. From Ref. 13.

c=0.00, 0. 10, 0. 2?, 0. 33, 0. 50, 1.00, respec-
tively) because for the two sets of a2E the value
of the cal.culated gap is equal to the exgerimental
gap. The differences in (a2E)„, and ( aE),„„rae
reflected in their respective p.~ values. Our values
of ps" pertaining to (a~E),„,compare quite well with
those of Dynes (pg=0. 125, 0. 122, 0. 128, 0. 127,
0. 133, 0. 127 for c= 0.00, 0. 10, 0. 27, 0. 33, 0. 50,
1.00, respectively). Slight differences between
Dynes'sandour pgv laue sfr om( aE), aredueto
different mesh sizes and cutoff values , .

The results for the real and imaginary parts of
the gap function &(~) and the renormalization
functions Z~(~) and Z„(~) for the superconducting
and normal states are shown in Figs. 4(a}-4(c),
respectively, for InQ ~ 73 TlD z7. The continuous and
broken curves refer to the solutions obtained by
using (a E),„,and ( Ea)„„respectively. In Fig.
4(a) the two sets of curves for 4, and 62 compare
quite well. The continuous and broken curves for
4, join together at small . This is because the
calculated gap 4D is equal to 'for both sets of
a~E. In Figs. 4(b) and 4(c}the values of Z, ~(0}and
Z, ~(0) are different for the continuous and broken
curves. This can be understood by noting that
Z~„(0) is related to the strength of electron-phonon
coupling X according to

Zg„(0}= Z„(0)= 1+ A = 1+ 2 d~, (18)
a'(~)E(~)

and as we mentioned at the beginning of this section
we are using the unadjusted values for (a~E}„,
taken directly from (17). Keeping in mind the ap-
proximations made in the calculation of a2(&o)E(&u)
from (17), the agreement between two sets of curves
for Z, „((u), Zz„(&u), Z, ~(u), and Zzz((u) in Figs. 3(b)
and 3(c}is quite reasonable.

A. dc Josephson Current

From our T= 0 solutions of the Eliashberg equa-

1 &'(~)d~ Im. . . (19)
2R+ + g+ &d —Q (d

D

where RN is the normal-state resistance, e is the
electron charge, and h, (&u) stands for the first
derivative with respect to w of the real part of the
gap function. means that the contribution from
the pole = + is to be excluded from the integra-
tion. Equation (19) is to be compared with the
result of Ambegaokar and Baratoff ' for a weak-
coupling superconductor at temperature T:

J = tanh (20)

Only the gay function enters in these expressions;
the renormalization function does not occur ex-
plicitly. From our two sets of solutions for a(&u)
we can easily calculate (19). The results are given
in Table II. The results for J,/Jsc' for the four
alloy concentrations calculated using (a E}„,are
in good agreement with those calculated using
(a E), . Finally we would like to remark that in
Table II the ratio J,/Zscs calculated from (a~E},„,

tions we shall now calculate the reduction in the dc
Josephson current from its BCS value. Fulton and
McCumber33 have discussed the problem of the
(maximum) dc Josephson current that can flow at
zero voltage across a tunnel. junction made up of two
identical superconductors. Strong- coupling effects
in Pb reduce this current to 0. 788 of the BCS
value. This result has been confirmed experimen-
tally by Schwidtal and Finnegan. 34

For a symmetric tunnel junction Fulton and
McCumber have given an expression for the dc
Josephson current J, at temperature T. For T=O
it becomes
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& 1.0
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by McMillan and Rowell, which is in good agree-
ment with experiment. The expression for the con-
densation energy as derived by Bardeen and
Stephen is

0.5 U= ReN(0) d~[Za(~)+ Z, (~)]
-+0

a a 1/ax co — —+
2 ~2 g2 ~ j. /2

-0.5

2.0

1.6

~'(~)
d~ [Z~(~) —Zs(~) j 2[„a ~a(~) Isa

Q

(»)
To evaluate (21) we need Z„(~) along with 4(~) and

Za(~). Z„(&u) is obtained by solving the Eliashberg
equations with h(u) equal to zero. The Bardeen-
Stephen expression is to be compared with the BCS
result~

1.2 U = aN(0) Z~(0) &a, (22)

0.8-

0.4-

I

15
M meV

30

where Z„(0} is defined in (18) and N(0) is the band-
structure density of states. In Table III we present
our results for the condensation energy calculated
from (21) using the two sets of solutions for h(~),
Zj(u), and Z„(&u), obtained by using (o.aF),„,and

(aaF)„,. Results calculated from (22) are also
given. The quantity entered in Table III is not U

but U/N(0) and Uaoa/N(0) and the ratio R defined as

R= U/U

1.2

O. S-

0.4—

I

15 30m meV
45

FIG. 4. Gap and renormalization functions for T
=0 'K for Inp 73Tlp 27 ~ Solid line is using tunneling-de-
rived o, 2((d)F(~); dashed line is using calculated
0.' (v)F(~) from (17). (a) Real, b,&, and imaginary, 02,
parts of the gap function; (b) real, Z&z, and imaginary,
Z2~, parts of the superconducting-state renormalization
function; (c) real, Z&N, and imaginary, Z2&, parts of the
normal-state renormalization function.

TABLE II. Ratio of the strong-coupling to BCS value
of the dc Josephson current for various In-Tl alloy com.-
positions.

Alloy (2~p/I, T,)' '

Bca

~,I~, Using (o F)~&
Using (0 F)t~ from (17)

From Table III it is clear that the values of the
condensation energy obtained from (21} are always
smaller than the BCS value U, The ratio R
tends toward unity as the strength of the electron-
phonon coupling decreases. a~ The values of U/N(0)
and Usca/N(0) calculated using (n'aF)„, are in good
agreement with those calculated using (aaF),„,.
Slight discrepancies in the values of the condensa-
tion energies are due to different values of Z„(0)
=1+& from (naF)„, and (aaF),„,. The critical
magnetic field at zero temperature is related to
the condensation energy by

follows the same trend as the experimental value
of the ratio (2+/ks T,) for In, Tl, and four alloys.

B. Condensation Energy

For a strong-coupling superconductor the con-
densation energy is less than the BCS value. In Pb
the reduction is 22% of the BCS value as calculated

In
Inp gp Tlp

np. 73 p. 27

Inp 67Tlp 33
Inp 5pTlp 5p

Tl

3.683
3.750
3.937
3.816
3.786
3.676

From Ref. 13.

0.898
0.894
0.879
0.886
0.899
0.905

~ ~ ~

0.893
0.887
0.889
0.901
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TABLE III. Ratio of the strong-coupling to BCS value of the condensation energy for various In-Tl alloy compositions.
Electron-phonon renormalization ZN(0) =1+X and condensation energy divided by band-structure density of states
U/N(0) are also given in strong-coupling and BCS theories.

Using (0.2F)~ Using (e2F)~& from (17)

Alloy Z (0)

U~'/N(0)
(meV )

U/N(0)
(me V2)

Ratio
R Z~(0)

U /N(0)
{meV2)

U/N(0)
(meV2)

Ratio
R

In

p. Sp p. 1p

Inp 73T1p 27

p, 67 p, 33

p 5p p. 5p

Tl

1.832
1.847
1.929
1.896
1.831
1.777

0.2670
0.259
0.313
0.272
0.155
0.121

0.248
0.241
0.283
0.249
0.144
0. 115

0.931
0.928
0.904
0.916
0.934
0.949

~ ~ ~

1.867
1.857
1.858
1.856

0 ~ 4

0.262
0.302
0.267
0.157

~ 4 ~

0.241
0.276
0.245
0. 145

0 ~ 4

0.919
0.915
0.917
0. 927

H /8R= U=RU

C. Gap and Transition Temperature

(23)

Leavens and Carbotte(LC)' have derived simpli-
fied expressions for the gap and transition tem-
perature of a weak- and intermediate-coupling
superconductor by approximately solving the
Eliashberg equations. Their equations are

a~ = 2&oD exp [- (1 + &(0}+X)/(&(0} —u')]

T, = 1. 134&&&z& exp [- (1+ &(T,)+ X)/(&(0} —g*)] . (25}

X and X(T) are defined as

d(o (d~
X =2 a'(&u)F(&u) ln 1+

4P (d
(26)

A(T) = 2 dE — d~, (27)&E ~+ E

where f(E) = (1+ es 'sr) ' is the Fermi distribution,
X(0) = X, &un is the maximum phonon frequency in
e F, and p,

~ is the Coulomb part. ' The main ap-
proximations involved in deriving (24) and (25) are
that damping effects are neglected, that is to say
4~ = Zz = 0, a model form is taken for the real part
of the gap function h((u}, Zjho} is taken to be equal
to Z„(0) at T= 0 [this approximation is good for
weak- and intermediate-coupling materials where
the difference between Z /ho) and Z„(0) is less
than I/p"], and Z~[r (T), T] is taken to be equal to
Z„(0, T) near the transition temperature (this ap-
proximation is good for T near T, and becomes
exact at T,).

To calculate 60 and T, from (24} and (25}, in ad-
dition to e ~F we need to know the value of p,

~ for
the alloys. The experimentally observed energy
gap b "'varies anything but smoothly from the
value 0. 540 meV for pure In to 0.369 for pure Tl,
as the Tl concentration increases. The values of
the Coulomb pseudopotential pg (obtained from the
T = 0 Eliashberg equations by fixing equal to

PPo"' ) do not vary smoothly in going from In to Tl
and the variation from the average value is quite
large. Furthermore there is a strong correlation
between p, ~~ and h~""; when do~'is large, p.~~ is
small and vice versa. The energy gap of an inter-
mediate-coupling superconductor is fairly sensitive
to the Coulomb part. To obtain good quantitative
agreement with the experimental values one would
need reliable values of p* (which would certainly
vary with c in the same manner as pz~}. Rather
than become involved in the difficult task of trying
to obtain reliable values of p~ to use in (24) and

(25), we use a single value of p~ for all the alloy
compositions. The value of p,

~ is taken to be

g„*c(alloy) = —,'[ p ~~c*'(In)+ p@c'(Tl)], (28)

where @~Le*"(In) and p, ~~c*"(Tl) are obtained from
(24) using (a~E),„, and requiring that the calculated
energy gaps for pure indium and thallium be equal
to the experimental gap values. This gives

p ~~c '(In) = 0. 10808, p*~""(Tl)= 0. 10177,

and from (28) we get

pic (alloy) = 0. 10492 .
We shall use this value of the Coulomb part for all
alloy compositions to study the concentration depen-
dence of the gap and transition temperature when
(a~E},„,and (a ~F)„,are used to describe the
phonon-mediated interaction. Qf course, using
the average value of p~ = pic (alloy) we cannot hope
to get good quantitative agreement with experiment.

In Fig. 5 we have plotted + calculated from (24)
by using pic (alloy) for all values of c. The values
given by crosses (X} and solid points were obtained
by using (a2E),„,and (a2E)„„respectively. The
experimental gap values (+) are also shown. It
is clear that the Leavens-Carbotte equation
(24) with an average value of pLc(alloy) and (a RF),„,
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FIG. 5. Superconducting energy gap for various val-
ues of thallium concentration c; + experiment, x calculated
from (24) using tunneling-derived n2(~)F(co) (Ref. 18),
solid points calculated using n (u)F(~) f.=om (17).
pz (alloy) =0.10492 for both sets of G.2(( )E(~) for all
values of c =0-1.

gives results in good agreement with experiment. '

The energy gap calculated from (24) with (a E)„,
and the same value of the Coulomb part are also in
satisfactory agreement, considering the approxi-
mations involved in calculating e~E for alloys from
(IV).

Using iL„"c(alloy) = 0. 10492 in (25) and the two
sets of a~E we have self-consistently solved (25)
and (27) for the transition temperature for various
alloy compositions. In Fig. 6 we have plotted TE &'

along with two sets of T, obtained by using (a E),„,
and (a F)„,. Again the agreement between Ts~'
and T, calculated with (a F),„,is quite satisfactory.
T, calculated from (a~E)„, is also in fair agree-
ment with 1',""for the four alloy concentrations
studied. With a simple-minded calculation of
(a2F)„, from (17), with only one crystal structure
for c=0.10, 0.27, 0. 33, 0. 50, and neglecting such
effects as changes in N(0), we do not expect to
reproduce such subtle features as the image of
phase transition in the T,-vs-c curve for c= 0. 30.
In Table I the values of T, calculated from the
equations due to McMillan' and Garland and Allen"
using (amF), „,are given along with the values of
T, calculated from the equations due to Leavens
and Carbotte' using (a E},„,and (a F)„,. It can
be seen from Table I that T, values from the
Leavens-Carbotte equations, with a single value
of p,

~ throughout, are in good agreement with ex-
periment. The T, values calculated from the
McMillan equation, with values of p~ obtained from
tunneling, are also in equally good agreement with
experiment, whereas the Garland-Allen expression
for T, gives a much poorer estimate.

V. CONCLUSION

We derive two exact sum rules for the alloy

-+~x
o 3

I

0.5 I.O

FIG. 6. Transition temperature T, for various values
of thallium concentration c; +experiment, &calculated
using tunneling-derived G.2(~)E(~), solid points calculated
using o.2(&)E(cu) from (17). pQ (alloy) =0.10492 for both
sets of e2(u:)F(~) for all values of c=0-1.

phonon Green's functions, giving expressions for
the first and first-inverse frequency moments (p,

"'
and p' ") for the imaginary parts of these Green's
functions. With their aid, expressions for the
first frequency moment of am((u)F(~) [a"', Eq. (6)]
and the electron-phonon-coupling constant [X,
Eq. (11)]are obtained in which the only effect due
to alloying that has been neglected is the effect of
disorder on the electron states. e"' is given in
terms of the atomic masses, screened form factors,
and the electron Fermi-surface density of states
X(0}. Using this result the experimental values ofa"' can be used to estimate values of N(0) in an
alloy. The expression for X is more complicated,
involving the atomic-force constants, and is not
readily calculable. However, if just the difference
in atomic masses is taken into account X remains
constant, independent of concentration.

Detailed calculations of alloy a2(ur)F(&u) are
made in the framework of self-consistent defect
theory. Confining ourselves to the nominally fcc
region and taking into account only the mass dif-
ference between In and Tl, we obtain a fairly good
over-all description of the concentration dependence
of a (~)F(&u). On comparing our theory with the
experiment we reach the conclusion that, although
there is a general weakening of the force constants
near the phase transition fct-fcc, there is no clear-
cut evidence for specific phonon-mode softening.
In making a quantitatively correct calculation of
the alloy a (~)F(~) one will have to take into ac-
count the force-constant changes and such subtle
features as the distorted cubic structure (In has a
distorted cubic structure at low temperatures with
c/a = 1.083). Multiple-orthogonalized-plane-wave
corrections may also be important.

In the light of the recent experiments by Schwid-
tal and Finnegan, who have confirmed experimental-
ly the theoretical prediction of Fulten and McCum-
ber for Pb, it may be of some interest to experi-
mentally measure the reduction in the (maximum)
dc Josephson current, from the BCS value, in the
intermediate-coupling superconductors like In, Tl,
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and In-Tl alloys. Experimental determinations of

the critical magnetic field to check the predictions
for the condensation energies of In-Tl alloys will

also be of interest.
For In-Tl alloys (25), due to Leavens and Carbotte

with a single value of the Coulomb part gives values
of T, as good as those obtained from the McMillan
equation, which are in good agreement with the
experiment. The Garland-Allen expression gives
a much poorer estimate of T,. It is rather grati-
fying to see that with a single average value of the
Coulomb part p, Lc (alloy) = —,'[p z~g"(In}+ p z,c'(Tl)]
and the n~(&u)E((o) from tunneling, one can obtain

T,'s from (25) which are in semiquantitative agree-
ment with the experiment and reproduce reasonably

well the observed concentration dependence of T,.
The values of I', from (25) with n~(~}E(~) calcu-
lated from (17) and the same p fc(alloy) are also
in satisfactory agreement with the experiment.
Keeping in mind the approximations made in cal-
culating n~(&u)E(~) from (17), one of course does
not hope to reproduce such subtle features as the
image of phase transition in the alloy structure
in the T, calculated with (n ~E), in (25).
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